Urho3D/Source/Samples/15_Navigation/Navigation.cpp
2020-01-05 06:21:40 +00:00

509 lines
20 KiB
C++

//
// Copyright (c) 2008-2020 the Urho3D project.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#include <Urho3D/Core/CoreEvents.h>
#include <Urho3D/Engine/Engine.h>
#include <Urho3D/Graphics/AnimatedModel.h>
#include <Urho3D/Graphics/Camera.h>
#include <Urho3D/Graphics/DebugRenderer.h>
#include <Urho3D/Graphics/Graphics.h>
#include <Urho3D/Graphics/Light.h>
#include <Urho3D/Graphics/Material.h>
#include <Urho3D/Graphics/Octree.h>
#include <Urho3D/Graphics/Renderer.h>
#include <Urho3D/Graphics/Zone.h>
#include <Urho3D/Input/Input.h>
#include <Urho3D/Navigation/Navigable.h>
#include <Urho3D/Navigation/NavigationMesh.h>
#include <Urho3D/Resource/ResourceCache.h>
#include <Urho3D/Scene/Scene.h>
#include <Urho3D/UI/Font.h>
#include <Urho3D/UI/Text.h>
#include <Urho3D/UI/UI.h>
#include "Navigation.h"
#include <Urho3D/DebugNew.h>
URHO3D_DEFINE_APPLICATION_MAIN(Navigation)
Navigation::Navigation(Context* context) :
Sample(context),
drawDebug_(false),
useStreaming_(false),
streamingDistance_(2)
{
}
void Navigation::Start()
{
// Execute base class startup
Sample::Start();
// Create the scene content
CreateScene();
// Create the UI content
CreateUI();
// Setup the viewport for displaying the scene
SetupViewport();
// Hook up to the frame update and render post-update events
SubscribeToEvents();
// Set the mouse mode to use in the sample
Sample::InitMouseMode(MM_RELATIVE);
}
void Navigation::CreateScene()
{
auto* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
// Also create a DebugRenderer component so that we can draw debug geometry
scene_->CreateComponent<Octree>();
scene_->CreateComponent<DebugRenderer>();
// Create scene node & StaticModel component for showing a static plane
Node* planeNode = scene_->CreateChild("Plane");
planeNode->SetScale(Vector3(100.0f, 1.0f, 100.0f));
auto* planeObject = planeNode->CreateComponent<StaticModel>();
planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
auto* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(100.0f);
zone->SetFogEnd(300.0f);
// Create a directional light to the world. Enable cascaded shadows on it
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
auto* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
// Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
// Create some mushrooms
const unsigned NUM_MUSHROOMS = 100;
for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
CreateMushroom(Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f));
// Create randomly sized boxes. If boxes are big enough, make them occluders
const unsigned NUM_BOXES = 20;
for (unsigned i = 0; i < NUM_BOXES; ++i)
{
Node* boxNode = scene_->CreateChild("Box");
float size = 1.0f + Random(10.0f);
boxNode->SetPosition(Vector3(Random(80.0f) - 40.0f, size * 0.5f, Random(80.0f) - 40.0f));
boxNode->SetScale(size);
auto* boxObject = boxNode->CreateComponent<StaticModel>();
boxObject->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
boxObject->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
boxObject->SetCastShadows(true);
if (size >= 3.0f)
boxObject->SetOccluder(true);
}
// Create Jack node that will follow the path
jackNode_ = scene_->CreateChild("Jack");
jackNode_->SetPosition(Vector3(-5.0f, 0.0f, 20.0f));
auto* modelObject = jackNode_->CreateComponent<AnimatedModel>();
modelObject->SetModel(cache->GetResource<Model>("Models/Jack.mdl"));
modelObject->SetMaterial(cache->GetResource<Material>("Materials/Jack.xml"));
modelObject->SetCastShadows(true);
// Create a NavigationMesh component to the scene root
auto* navMesh = scene_->CreateComponent<NavigationMesh>();
// Set small tiles to show navigation mesh streaming
navMesh->SetTileSize(32);
// Create a Navigable component to the scene root. This tags all of the geometry in the scene as being part of the
// navigation mesh. By default this is recursive, but the recursion could be turned off from Navigable
scene_->CreateComponent<Navigable>();
// Add padding to the navigation mesh in Y-direction so that we can add objects on top of the tallest boxes
// in the scene and still update the mesh correctly
navMesh->SetPadding(Vector3(0.0f, 10.0f, 0.0f));
// Now build the navigation geometry. This will take some time. Note that the navigation mesh will prefer to use
// physics geometry from the scene nodes, as it often is simpler, but if it can not find any (like in this example)
// it will use renderable geometry instead
navMesh->Build();
// Create the camera. Limit far clip distance to match the fog
cameraNode_ = scene_->CreateChild("Camera");
auto* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(300.0f);
// Set an initial position for the camera scene node above the plane and looking down
cameraNode_->SetPosition(Vector3(0.0f, 50.0f, 0.0f));
pitch_ = 80.0f;
cameraNode_->SetRotation(Quaternion(pitch_, yaw_, 0.0f));
}
void Navigation::CreateUI()
{
auto* cache = GetSubsystem<ResourceCache>();
auto* ui = GetSubsystem<UI>();
// Create a Cursor UI element because we want to be able to hide and show it at will. When hidden, the mouse cursor will
// control the camera, and when visible, it will point the raycast target
auto* style = cache->GetResource<XMLFile>("UI/DefaultStyle.xml");
SharedPtr<Cursor> cursor(new Cursor(context_));
cursor->SetStyleAuto(style);
ui->SetCursor(cursor);
// Set starting position of the cursor at the rendering window center
auto* graphics = GetSubsystem<Graphics>();
cursor->SetPosition(graphics->GetWidth() / 2, graphics->GetHeight() / 2);
// Construct new Text object, set string to display and font to use
auto* instructionText = ui->GetRoot()->CreateChild<Text>();
instructionText->SetText(
"Use WASD keys to move, RMB to rotate view\n"
"LMB to set destination, SHIFT+LMB to teleport\n"
"MMB or O key to add or remove obstacles\n"
"Tab to toggle navigation mesh streaming\n"
"Space to toggle debug geometry"
);
instructionText->SetFont(cache->GetResource<Font>("Fonts/Anonymous Pro.ttf"), 15);
// The text has multiple rows. Center them in relation to each other
instructionText->SetTextAlignment(HA_CENTER);
// Position the text relative to the screen center
instructionText->SetHorizontalAlignment(HA_CENTER);
instructionText->SetVerticalAlignment(VA_CENTER);
instructionText->SetPosition(0, ui->GetRoot()->GetHeight() / 4);
}
void Navigation::SetupViewport()
{
auto* renderer = GetSubsystem<Renderer>();
// Set up a viewport to the Renderer subsystem so that the 3D scene can be seen
SharedPtr<Viewport> viewport(new Viewport(context_, scene_, cameraNode_->GetComponent<Camera>()));
renderer->SetViewport(0, viewport);
}
void Navigation::SubscribeToEvents()
{
// Subscribe HandleUpdate() function for processing update events
SubscribeToEvent(E_UPDATE, URHO3D_HANDLER(Navigation, HandleUpdate));
// Subscribe HandlePostRenderUpdate() function for processing the post-render update event, during which we request
// debug geometry
SubscribeToEvent(E_POSTRENDERUPDATE, URHO3D_HANDLER(Navigation, HandlePostRenderUpdate));
}
void Navigation::MoveCamera(float timeStep)
{
// Right mouse button controls mouse cursor visibility: hide when pressed
auto* ui = GetSubsystem<UI>();
auto* input = GetSubsystem<Input>();
ui->GetCursor()->SetVisible(!input->GetMouseButtonDown(MOUSEB_RIGHT));
// Do not move if the UI has a focused element (the console)
if (ui->GetFocusElement())
return;
// Movement speed as world units per second
const float MOVE_SPEED = 20.0f;
// Mouse sensitivity as degrees per pixel
const float MOUSE_SENSITIVITY = 0.1f;
// Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees
// Only move the camera when the cursor is hidden
if (!ui->GetCursor()->IsVisible())
{
IntVector2 mouseMove = input->GetMouseMove();
yaw_ += MOUSE_SENSITIVITY * mouseMove.x_;
pitch_ += MOUSE_SENSITIVITY * mouseMove.y_;
pitch_ = Clamp(pitch_, -90.0f, 90.0f);
// Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero
cameraNode_->SetRotation(Quaternion(pitch_, yaw_, 0.0f));
}
// Read WASD keys and move the camera scene node to the corresponding direction if they are pressed
if (input->GetKeyDown(KEY_W))
cameraNode_->Translate(Vector3::FORWARD * MOVE_SPEED * timeStep);
if (input->GetKeyDown(KEY_S))
cameraNode_->Translate(Vector3::BACK * MOVE_SPEED * timeStep);
if (input->GetKeyDown(KEY_A))
cameraNode_->Translate(Vector3::LEFT * MOVE_SPEED * timeStep);
if (input->GetKeyDown(KEY_D))
cameraNode_->Translate(Vector3::RIGHT * MOVE_SPEED * timeStep);
// Set destination or teleport with left mouse button
if (input->GetMouseButtonPress(MOUSEB_LEFT))
SetPathPoint();
// Add or remove objects with middle mouse button, then rebuild navigation mesh partially
if (input->GetMouseButtonPress(MOUSEB_MIDDLE) || input->GetKeyPress(KEY_O))
AddOrRemoveObject();
// Toggle debug geometry with space
if (input->GetKeyPress(KEY_SPACE))
drawDebug_ = !drawDebug_;
}
void Navigation::SetPathPoint()
{
Vector3 hitPos;
Drawable* hitDrawable;
auto* navMesh = scene_->GetComponent<NavigationMesh>();
if (Raycast(250.0f, hitPos, hitDrawable))
{
Vector3 pathPos = navMesh->FindNearestPoint(hitPos, Vector3(1.0f, 1.0f, 1.0f));
if (GetSubsystem<Input>()->GetQualifierDown(QUAL_SHIFT))
{
// Teleport
currentPath_.Clear();
jackNode_->LookAt(Vector3(pathPos.x_, jackNode_->GetPosition().y_, pathPos.z_), Vector3::UP);
jackNode_->SetPosition(pathPos);
}
else
{
// Calculate path from Jack's current position to the end point
endPos_ = pathPos;
navMesh->FindPath(currentPath_, jackNode_->GetPosition(), endPos_);
}
}
}
void Navigation::AddOrRemoveObject()
{
// Raycast and check if we hit a mushroom node. If yes, remove it, if no, create a new one
Vector3 hitPos;
Drawable* hitDrawable;
if (!useStreaming_ && Raycast(250.0f, hitPos, hitDrawable))
{
// The part of the navigation mesh we must update, which is the world bounding box of the associated
// drawable component
BoundingBox updateBox;
Node* hitNode = hitDrawable->GetNode();
if (hitNode->GetName() == "Mushroom")
{
updateBox = hitDrawable->GetWorldBoundingBox();
hitNode->Remove();
}
else
{
Node* newNode = CreateMushroom(hitPos);
updateBox = newNode->GetComponent<StaticModel>()->GetWorldBoundingBox();
}
// Rebuild part of the navigation mesh, then recalculate path if applicable
auto* navMesh = scene_->GetComponent<NavigationMesh>();
navMesh->Build(updateBox);
if (currentPath_.Size())
navMesh->FindPath(currentPath_, jackNode_->GetPosition(), endPos_);
}
}
Node* Navigation::CreateMushroom(const Vector3& pos)
{
auto* cache = GetSubsystem<ResourceCache>();
Node* mushroomNode = scene_->CreateChild("Mushroom");
mushroomNode->SetPosition(pos);
mushroomNode->SetRotation(Quaternion(0.0f, Random(360.0f), 0.0f));
mushroomNode->SetScale(2.0f + Random(0.5f));
auto* mushroomObject = mushroomNode->CreateComponent<StaticModel>();
mushroomObject->SetModel(cache->GetResource<Model>("Models/Mushroom.mdl"));
mushroomObject->SetMaterial(cache->GetResource<Material>("Materials/Mushroom.xml"));
mushroomObject->SetCastShadows(true);
return mushroomNode;
}
bool Navigation::Raycast(float maxDistance, Vector3& hitPos, Drawable*& hitDrawable)
{
hitDrawable = nullptr;
auto* ui = GetSubsystem<UI>();
IntVector2 pos = ui->GetCursorPosition();
// Check the cursor is visible and there is no UI element in front of the cursor
if (!ui->GetCursor()->IsVisible() || ui->GetElementAt(pos, true))
return false;
auto* graphics = GetSubsystem<Graphics>();
auto* camera = cameraNode_->GetComponent<Camera>();
Ray cameraRay = camera->GetScreenRay((float)pos.x_ / graphics->GetWidth(), (float)pos.y_ / graphics->GetHeight());
// Pick only geometry objects, not eg. zones or lights, only get the first (closest) hit
PODVector<RayQueryResult> results;
RayOctreeQuery query(results, cameraRay, RAY_TRIANGLE, maxDistance, DRAWABLE_GEOMETRY);
scene_->GetComponent<Octree>()->RaycastSingle(query);
if (results.Size())
{
RayQueryResult& result = results[0];
hitPos = result.position_;
hitDrawable = result.drawable_;
return true;
}
return false;
}
void Navigation::FollowPath(float timeStep)
{
if (currentPath_.Size())
{
Vector3 nextWaypoint = currentPath_[0]; // NB: currentPath[0] is the next waypoint in order
// Rotate Jack toward next waypoint to reach and move. Check for not overshooting the target
float move = 5.0f * timeStep;
float distance = (jackNode_->GetPosition() - nextWaypoint).Length();
if (move > distance)
move = distance;
jackNode_->LookAt(nextWaypoint, Vector3::UP);
jackNode_->Translate(Vector3::FORWARD * move);
// Remove waypoint if reached it
if (distance < 0.1f)
currentPath_.Erase(0);
}
}
void Navigation::ToggleStreaming(bool enabled)
{
auto* navMesh = scene_->GetComponent<NavigationMesh>();
if (enabled)
{
int maxTiles = (2 * streamingDistance_ + 1) * (2 * streamingDistance_ + 1);
BoundingBox boundingBox = navMesh->GetBoundingBox();
SaveNavigationData();
navMesh->Allocate(boundingBox, maxTiles);
}
else
navMesh->Build();
}
void Navigation::UpdateStreaming()
{
// Center the navigation mesh at the jack
auto* navMesh = scene_->GetComponent<NavigationMesh>();
const IntVector2 jackTile = navMesh->GetTileIndex(jackNode_->GetWorldPosition());
const IntVector2 numTiles = navMesh->GetNumTiles();
const IntVector2 beginTile = VectorMax(IntVector2::ZERO, jackTile - IntVector2::ONE * streamingDistance_);
const IntVector2 endTile = VectorMin(jackTile + IntVector2::ONE * streamingDistance_, numTiles - IntVector2::ONE);
// Remove tiles
for (HashSet<IntVector2>::Iterator i = addedTiles_.Begin(); i != addedTiles_.End();)
{
const IntVector2 tileIdx = *i;
if (beginTile.x_ <= tileIdx.x_ && tileIdx.x_ <= endTile.x_ && beginTile.y_ <= tileIdx.y_ && tileIdx.y_ <= endTile.y_)
++i;
else
{
navMesh->RemoveTile(tileIdx);
i = addedTiles_.Erase(i);
}
}
// Add tiles
for (int z = beginTile.y_; z <= endTile.y_; ++z)
for (int x = beginTile.x_; x <= endTile.x_; ++x)
{
const IntVector2 tileIdx(x, z);
if (!navMesh->HasTile(tileIdx) && tileData_.Contains(tileIdx))
{
addedTiles_.Insert(tileIdx);
navMesh->AddTile(tileData_[tileIdx]);
}
}
}
void Navigation::SaveNavigationData()
{
auto* navMesh = scene_->GetComponent<NavigationMesh>();
tileData_.Clear();
addedTiles_.Clear();
const IntVector2 numTiles = navMesh->GetNumTiles();
for (int z = 0; z < numTiles.y_; ++z)
for (int x = 0; x <= numTiles.x_; ++x)
{
const IntVector2 tileIdx = IntVector2(x, z);
tileData_[tileIdx] = navMesh->GetTileData(tileIdx);
}
}
void Navigation::HandleUpdate(StringHash eventType, VariantMap& eventData)
{
using namespace Update;
// Take the frame time step, which is stored as a float
float timeStep = eventData[P_TIMESTEP].GetFloat();
// Move the camera, scale movement with time step
MoveCamera(timeStep);
// Make Jack follow the Detour path
FollowPath(timeStep);
// Update streaming
auto* input = GetSubsystem<Input>();
if (input->GetKeyPress(KEY_TAB))
{
useStreaming_ = !useStreaming_;
ToggleStreaming(useStreaming_);
}
if (useStreaming_)
UpdateStreaming();
}
void Navigation::HandlePostRenderUpdate(StringHash eventType, VariantMap& eventData)
{
// If draw debug mode is enabled, draw navigation mesh debug geometry
if (drawDebug_)
scene_->GetComponent<NavigationMesh>()->DrawDebugGeometry(true);
if (currentPath_.Size())
{
// Visualize the current calculated path
auto* debug = scene_->GetComponent<DebugRenderer>();
debug->AddBoundingBox(BoundingBox(endPos_ - Vector3(0.1f, 0.1f, 0.1f), endPos_ + Vector3(0.1f, 0.1f, 0.1f)),
Color(1.0f, 1.0f, 1.0f));
// Draw the path with a small upward bias so that it does not clip into the surfaces
Vector3 bias(0.0f, 0.05f, 0.0f);
debug->AddLine(jackNode_->GetPosition() + bias, currentPath_[0] + bias, Color(1.0f, 1.0f, 1.0f));
if (currentPath_.Size() > 1)
{
for (unsigned i = 0; i < currentPath_.Size() - 1; ++i)
debug->AddLine(currentPath_[i] + bias, currentPath_[i + 1] + bias, Color(1.0f, 1.0f, 1.0f));
}
}
}