Urho3D/Source/Samples/19_VehicleDemo/VehicleDemo.cpp
2020-01-05 06:21:40 +00:00

299 lines
12 KiB
C++

//
// Copyright (c) 2008-2020 the Urho3D project.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#include <Urho3D/Core/CoreEvents.h>
#include <Urho3D/Core/ProcessUtils.h>
#include <Urho3D/Engine/Engine.h>
#include <Urho3D/Graphics/Camera.h>
#include <Urho3D/Graphics/Light.h>
#include <Urho3D/Graphics/Material.h>
#include <Urho3D/Graphics/Model.h>
#include <Urho3D/Graphics/Octree.h>
#include <Urho3D/Graphics/Renderer.h>
#include <Urho3D/Graphics/StaticModel.h>
#include <Urho3D/Graphics/Terrain.h>
#include <Urho3D/Graphics/Zone.h>
#include <Urho3D/Input/Input.h>
#include <Urho3D/IO/FileSystem.h>
#include <Urho3D/Physics/CollisionShape.h>
#include <Urho3D/Physics/Constraint.h>
#include <Urho3D/Physics/PhysicsWorld.h>
#include <Urho3D/Physics/RigidBody.h>
#include <Urho3D/Resource/ResourceCache.h>
#include <Urho3D/Scene/Scene.h>
#include <Urho3D/UI/Font.h>
#include <Urho3D/UI/Text.h>
#include <Urho3D/UI/UI.h>
#include "Vehicle.h"
#include "VehicleDemo.h"
#include <Urho3D/DebugNew.h>
const float CAMERA_DISTANCE = 10.0f;
URHO3D_DEFINE_APPLICATION_MAIN(VehicleDemo)
VehicleDemo::VehicleDemo(Context* context) :
Sample(context)
{
// Register factory and attributes for the Vehicle component so it can be created via CreateComponent, and loaded / saved
Vehicle::RegisterObject(context);
}
void VehicleDemo::Start()
{
// Execute base class startup
Sample::Start();
// Create static scene content
CreateScene();
// Create the controllable vehicle
CreateVehicle();
// Create the UI content
CreateInstructions();
// Subscribe to necessary events
SubscribeToEvents();
// Set the mouse mode to use in the sample
Sample::InitMouseMode(MM_RELATIVE);
}
void VehicleDemo::CreateScene()
{
auto* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create scene subsystem components
scene_->CreateComponent<Octree>();
scene_->CreateComponent<PhysicsWorld>();
// Create camera and define viewport. We will be doing load / save, so it's convenient to create the camera outside the scene,
// so that it won't be destroyed and recreated, and we don't have to redefine the viewport on load
cameraNode_ = new Node(context_);
auto* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(500.0f);
GetSubsystem<Renderer>()->SetViewport(0, new Viewport(context_, scene_, camera));
// Create static scene content. First create a zone for ambient lighting and fog control
Node* zoneNode = scene_->CreateChild("Zone");
auto* zone = zoneNode->CreateComponent<Zone>();
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(0.5f, 0.5f, 0.7f));
zone->SetFogStart(300.0f);
zone->SetFogEnd(500.0f);
zone->SetBoundingBox(BoundingBox(-2000.0f, 2000.0f));
// Create a directional light with cascaded shadow mapping
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.3f, -0.5f, 0.425f));
auto* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
light->SetSpecularIntensity(0.5f);
// Create heightmap terrain with collision
Node* terrainNode = scene_->CreateChild("Terrain");
terrainNode->SetPosition(Vector3::ZERO);
auto* terrain = terrainNode->CreateComponent<Terrain>();
terrain->SetPatchSize(64);
terrain->SetSpacing(Vector3(2.0f, 0.1f, 2.0f)); // Spacing between vertices and vertical resolution of the height map
terrain->SetSmoothing(true);
terrain->SetHeightMap(cache->GetResource<Image>("Textures/HeightMap.png"));
terrain->SetMaterial(cache->GetResource<Material>("Materials/Terrain.xml"));
// The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
// terrain patches and other objects behind it
terrain->SetOccluder(true);
auto* body = terrainNode->CreateComponent<RigidBody>();
body->SetCollisionLayer(2); // Use layer bitmask 2 for static geometry
auto* shape = terrainNode->CreateComponent<CollisionShape>();
shape->SetTerrain();
// Create 1000 mushrooms in the terrain. Always face outward along the terrain normal
const unsigned NUM_MUSHROOMS = 1000;
for (unsigned i = 0; i < NUM_MUSHROOMS; ++i)
{
Node* objectNode = scene_->CreateChild("Mushroom");
Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
position.y_ = terrain->GetHeight(position) - 0.1f;
objectNode->SetPosition(position);
// Create a rotation quaternion from up vector to terrain normal
objectNode->SetRotation(Quaternion(Vector3::UP, terrain->GetNormal(position)));
objectNode->SetScale(3.0f);
auto* object = objectNode->CreateComponent<StaticModel>();
object->SetModel(cache->GetResource<Model>("Models/Mushroom.mdl"));
object->SetMaterial(cache->GetResource<Material>("Materials/Mushroom.xml"));
object->SetCastShadows(true);
auto* body = objectNode->CreateComponent<RigidBody>();
body->SetCollisionLayer(2);
auto* shape = objectNode->CreateComponent<CollisionShape>();
shape->SetTriangleMesh(object->GetModel(), 0);
}
}
void VehicleDemo::CreateVehicle()
{
Node* vehicleNode = scene_->CreateChild("Vehicle");
vehicleNode->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
// Create the vehicle logic component
vehicle_ = vehicleNode->CreateComponent<Vehicle>();
// Create the rendering and physics components
vehicle_->Init();
}
void VehicleDemo::CreateInstructions()
{
auto* cache = GetSubsystem<ResourceCache>();
auto* ui = GetSubsystem<UI>();
// Construct new Text object, set string to display and font to use
auto* instructionText = ui->GetRoot()->CreateChild<Text>();
instructionText->SetText(
"Use WASD keys to drive, mouse/touch to rotate camera\n"
"F5 to save scene, F7 to load"
);
instructionText->SetFont(cache->GetResource<Font>("Fonts/Anonymous Pro.ttf"), 15);
// The text has multiple rows. Center them in relation to each other
instructionText->SetTextAlignment(HA_CENTER);
// Position the text relative to the screen center
instructionText->SetHorizontalAlignment(HA_CENTER);
instructionText->SetVerticalAlignment(VA_CENTER);
instructionText->SetPosition(0, ui->GetRoot()->GetHeight() / 4);
}
void VehicleDemo::SubscribeToEvents()
{
// Subscribe to Update event for setting the vehicle controls before physics simulation
SubscribeToEvent(E_UPDATE, URHO3D_HANDLER(VehicleDemo, HandleUpdate));
// Subscribe to PostUpdate event for updating the camera position after physics simulation
SubscribeToEvent(E_POSTUPDATE, URHO3D_HANDLER(VehicleDemo, HandlePostUpdate));
// Unsubscribe the SceneUpdate event from base class as the camera node is being controlled in HandlePostUpdate() in this sample
UnsubscribeFromEvent(E_SCENEUPDATE);
}
void VehicleDemo::HandleUpdate(StringHash eventType, VariantMap& eventData)
{
using namespace Update;
auto* input = GetSubsystem<Input>();
if (vehicle_)
{
auto* ui = GetSubsystem<UI>();
// Get movement controls and assign them to the vehicle component. If UI has a focused element, clear controls
if (!ui->GetFocusElement())
{
vehicle_->controls_.Set(CTRL_FORWARD, input->GetKeyDown(KEY_W));
vehicle_->controls_.Set(CTRL_BACK, input->GetKeyDown(KEY_S));
vehicle_->controls_.Set(CTRL_LEFT, input->GetKeyDown(KEY_A));
vehicle_->controls_.Set(CTRL_RIGHT, input->GetKeyDown(KEY_D));
// Add yaw & pitch from the mouse motion or touch input. Used only for the camera, does not affect motion
if (touchEnabled_)
{
for (unsigned i = 0; i < input->GetNumTouches(); ++i)
{
TouchState* state = input->GetTouch(i);
if (!state->touchedElement_) // Touch on empty space
{
auto* camera = cameraNode_->GetComponent<Camera>();
if (!camera)
return;
auto* graphics = GetSubsystem<Graphics>();
vehicle_->controls_.yaw_ += TOUCH_SENSITIVITY * camera->GetFov() / graphics->GetHeight() * state->delta_.x_;
vehicle_->controls_.pitch_ += TOUCH_SENSITIVITY * camera->GetFov() / graphics->GetHeight() * state->delta_.y_;
}
}
}
else
{
vehicle_->controls_.yaw_ += (float)input->GetMouseMoveX() * YAW_SENSITIVITY;
vehicle_->controls_.pitch_ += (float)input->GetMouseMoveY() * YAW_SENSITIVITY;
}
// Limit pitch
vehicle_->controls_.pitch_ = Clamp(vehicle_->controls_.pitch_, 0.0f, 80.0f);
// Check for loading / saving the scene
if (input->GetKeyPress(KEY_F5))
{
File saveFile(context_, GetSubsystem<FileSystem>()->GetProgramDir() + "Data/Scenes/VehicleDemo.xml",
FILE_WRITE);
scene_->SaveXML(saveFile);
}
if (input->GetKeyPress(KEY_F7))
{
File loadFile(context_, GetSubsystem<FileSystem>()->GetProgramDir() + "Data/Scenes/VehicleDemo.xml", FILE_READ);
scene_->LoadXML(loadFile);
// After loading we have to reacquire the weak pointer to the Vehicle component, as it has been recreated
// Simply find the vehicle's scene node by name as there's only one of them
Node* vehicleNode = scene_->GetChild("Vehicle", true);
if (vehicleNode)
vehicle_ = vehicleNode->GetComponent<Vehicle>();
}
}
else
vehicle_->controls_.Set(CTRL_FORWARD | CTRL_BACK | CTRL_LEFT | CTRL_RIGHT, false);
}
}
void VehicleDemo::HandlePostUpdate(StringHash eventType, VariantMap& eventData)
{
if (!vehicle_)
return;
Node* vehicleNode = vehicle_->GetNode();
// Physics update has completed. Position camera behind vehicle
Quaternion dir(vehicleNode->GetRotation().YawAngle(), Vector3::UP);
dir = dir * Quaternion(vehicle_->controls_.yaw_, Vector3::UP);
dir = dir * Quaternion(vehicle_->controls_.pitch_, Vector3::RIGHT);
Vector3 cameraTargetPos = vehicleNode->GetPosition() - dir * Vector3(0.0f, 0.0f, CAMERA_DISTANCE);
Vector3 cameraStartPos = vehicleNode->GetPosition();
// Raycast camera against static objects (physics collision mask 2)
// and move it closer to the vehicle if something in between
Ray cameraRay(cameraStartPos, cameraTargetPos - cameraStartPos);
float cameraRayLength = (cameraTargetPos - cameraStartPos).Length();
PhysicsRaycastResult result;
scene_->GetComponent<PhysicsWorld>()->RaycastSingle(result, cameraRay, cameraRayLength, 2);
if (result.body_)
cameraTargetPos = cameraStartPos + cameraRay.direction_ * (result.distance_ - 0.5f);
cameraNode_->SetPosition(cameraTargetPos);
cameraNode_->SetRotation(dir);
}