Urho3D/Source/Samples/23_Water/Water.cpp
2020-01-05 06:21:40 +00:00

284 lines
12 KiB
C++

//
// Copyright (c) 2008-2020 the Urho3D project.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#include <Urho3D/Core/CoreEvents.h>
#include <Urho3D/Engine/Engine.h>
#include <Urho3D/Graphics/Camera.h>
#include <Urho3D/Graphics/Graphics.h>
#include <Urho3D/Graphics/Light.h>
#include <Urho3D/Graphics/Material.h>
#include <Urho3D/Graphics/Model.h>
#include <Urho3D/Graphics/Octree.h>
#include <Urho3D/Graphics/Renderer.h>
#include <Urho3D/Graphics/RenderSurface.h>
#include <Urho3D/Graphics/Skybox.h>
#include <Urho3D/Graphics/Terrain.h>
#include <Urho3D/Graphics/Texture2D.h>
#include <Urho3D/Graphics/Zone.h>
#include <Urho3D/Input/Input.h>
#include <Urho3D/IO/File.h>
#include <Urho3D/IO/FileSystem.h>
#include <Urho3D/Resource/ResourceCache.h>
#include <Urho3D/Scene/Scene.h>
#include <Urho3D/UI/Font.h>
#include <Urho3D/UI/Text.h>
#include <Urho3D/UI/UI.h>
#include "Water.h"
#include <Urho3D/DebugNew.h>
URHO3D_DEFINE_APPLICATION_MAIN(Water)
Water::Water(Context* context) :
Sample(context)
{
}
void Water::Start()
{
// Execute base class startup
Sample::Start();
// Create the scene content
CreateScene();
// Create the UI content
CreateInstructions();
// Setup the viewport for displaying the scene
SetupViewport();
// Hook up to the frame update event
SubscribeToEvents();
// Set the mouse mode to use in the sample
Sample::InitMouseMode(MM_RELATIVE);
}
void Water::CreateScene()
{
auto* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
scene_->CreateComponent<Octree>();
// Create a Zone component for ambient lighting & fog control
Node* zoneNode = scene_->CreateChild("Zone");
auto* zone = zoneNode->CreateComponent<Zone>();
zone->SetBoundingBox(BoundingBox(-1000.0f, 1000.0f));
zone->SetAmbientColor(Color(0.15f, 0.15f, 0.15f));
zone->SetFogColor(Color(1.0f, 1.0f, 1.0f));
zone->SetFogStart(500.0f);
zone->SetFogEnd(750.0f);
// Create a directional light to the world. Enable cascaded shadows on it
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f));
auto* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00025f, 0.5f));
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
light->SetSpecularIntensity(0.5f);
// Apply slightly overbright lighting to match the skybox
light->SetColor(Color(1.2f, 1.2f, 1.2f));
// Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
// illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
// generate the necessary 3D texture coordinates for cube mapping
Node* skyNode = scene_->CreateChild("Sky");
skyNode->SetScale(500.0f); // The scale actually does not matter
auto* skybox = skyNode->CreateComponent<Skybox>();
skybox->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
skybox->SetMaterial(cache->GetResource<Material>("Materials/Skybox.xml"));
// Create heightmap terrain
Node* terrainNode = scene_->CreateChild("Terrain");
terrainNode->SetPosition(Vector3(0.0f, 0.0f, 0.0f));
auto* terrain = terrainNode->CreateComponent<Terrain>();
terrain->SetPatchSize(64);
terrain->SetSpacing(Vector3(2.0f, 0.5f, 2.0f)); // Spacing between vertices and vertical resolution of the height map
terrain->SetSmoothing(true);
terrain->SetHeightMap(cache->GetResource<Image>("Textures/HeightMap.png"));
terrain->SetMaterial(cache->GetResource<Material>("Materials/Terrain.xml"));
// The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
// terrain patches and other objects behind it
terrain->SetOccluder(true);
// Create 1000 boxes in the terrain. Always face outward along the terrain normal
unsigned NUM_OBJECTS = 1000;
for (unsigned i = 0; i < NUM_OBJECTS; ++i)
{
Node* objectNode = scene_->CreateChild("Box");
Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
position.y_ = terrain->GetHeight(position) + 2.25f;
objectNode->SetPosition(position);
// Create a rotation quaternion from up vector to terrain normal
objectNode->SetRotation(Quaternion(Vector3(0.0f, 1.0f, 0.0f), terrain->GetNormal(position)));
objectNode->SetScale(5.0f);
auto* object = objectNode->CreateComponent<StaticModel>();
object->SetModel(cache->GetResource<Model>("Models/Box.mdl"));
object->SetMaterial(cache->GetResource<Material>("Materials/Stone.xml"));
object->SetCastShadows(true);
}
// Create a water plane object that is as large as the terrain
waterNode_ = scene_->CreateChild("Water");
waterNode_->SetScale(Vector3(2048.0f, 1.0f, 2048.0f));
waterNode_->SetPosition(Vector3(0.0f, 5.0f, 0.0f));
auto* water = waterNode_->CreateComponent<StaticModel>();
water->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
water->SetMaterial(cache->GetResource<Material>("Materials/Water.xml"));
// Set a different viewmask on the water plane to be able to hide it from the reflection camera
water->SetViewMask(0x80000000);
// Create the camera. Set far clip to match the fog. Note: now we actually create the camera node outside
// the scene, because we want it to be unaffected by scene load / save
cameraNode_ = new Node(context_);
auto* camera = cameraNode_->CreateComponent<Camera>();
camera->SetFarClip(750.0f);
// Set an initial position for the camera scene node above the ground
cameraNode_->SetPosition(Vector3(0.0f, 7.0f, -20.0f));
}
void Water::CreateInstructions()
{
auto* cache = GetSubsystem<ResourceCache>();
auto* ui = GetSubsystem<UI>();
// Construct new Text object, set string to display and font to use
auto* instructionText = ui->GetRoot()->CreateChild<Text>();
instructionText->SetText("Use WASD keys and mouse/touch to move");
instructionText->SetFont(cache->GetResource<Font>("Fonts/Anonymous Pro.ttf"), 15);
instructionText->SetTextAlignment(HA_CENTER);
// Position the text relative to the screen center
instructionText->SetHorizontalAlignment(HA_CENTER);
instructionText->SetVerticalAlignment(VA_CENTER);
instructionText->SetPosition(0, ui->GetRoot()->GetHeight() / 4);
}
void Water::SetupViewport()
{
auto* graphics = GetSubsystem<Graphics>();
auto* renderer = GetSubsystem<Renderer>();
auto* cache = GetSubsystem<ResourceCache>();
// Set up a viewport to the Renderer subsystem so that the 3D scene can be seen
SharedPtr<Viewport> viewport(new Viewport(context_, scene_, cameraNode_->GetComponent<Camera>()));
renderer->SetViewport(0, viewport);
// Create a mathematical plane to represent the water in calculations
waterPlane_ = Plane(waterNode_->GetWorldRotation() * Vector3(0.0f, 1.0f, 0.0f), waterNode_->GetWorldPosition());
// Create a downward biased plane for reflection view clipping. Biasing is necessary to avoid too aggressive clipping
waterClipPlane_ = Plane(waterNode_->GetWorldRotation() * Vector3(0.0f, 1.0f, 0.0f), waterNode_->GetWorldPosition() -
Vector3(0.0f, 0.1f, 0.0f));
// Create camera for water reflection
// It will have the same farclip and position as the main viewport camera, but uses a reflection plane to modify
// its position when rendering
reflectionCameraNode_ = cameraNode_->CreateChild();
auto* reflectionCamera = reflectionCameraNode_->CreateComponent<Camera>();
reflectionCamera->SetFarClip(750.0);
reflectionCamera->SetViewMask(0x7fffffff); // Hide objects with only bit 31 in the viewmask (the water plane)
reflectionCamera->SetAutoAspectRatio(false);
reflectionCamera->SetUseReflection(true);
reflectionCamera->SetReflectionPlane(waterPlane_);
reflectionCamera->SetUseClipping(true); // Enable clipping of geometry behind water plane
reflectionCamera->SetClipPlane(waterClipPlane_);
// The water reflection texture is rectangular. Set reflection camera aspect ratio to match
reflectionCamera->SetAspectRatio((float)graphics->GetWidth() / (float)graphics->GetHeight());
// View override flags could be used to optimize reflection rendering. For example disable shadows
//reflectionCamera->SetViewOverrideFlags(VO_DISABLE_SHADOWS);
// Create a texture and setup viewport for water reflection. Assign the reflection texture to the diffuse
// texture unit of the water material
int texSize = 1024;
SharedPtr<Texture2D> renderTexture(new Texture2D(context_));
renderTexture->SetSize(texSize, texSize, Graphics::GetRGBFormat(), TEXTURE_RENDERTARGET);
renderTexture->SetFilterMode(FILTER_BILINEAR);
RenderSurface* surface = renderTexture->GetRenderSurface();
SharedPtr<Viewport> rttViewport(new Viewport(context_, scene_, reflectionCamera));
surface->SetViewport(0, rttViewport);
auto* waterMat = cache->GetResource<Material>("Materials/Water.xml");
waterMat->SetTexture(TU_DIFFUSE, renderTexture);
}
void Water::SubscribeToEvents()
{
// Subscribe HandleUpdate() function for processing update events
SubscribeToEvent(E_UPDATE, URHO3D_HANDLER(Water, HandleUpdate));
}
void Water::MoveCamera(float timeStep)
{
// Do not move if the UI has a focused element (the console)
if (GetSubsystem<UI>()->GetFocusElement())
return;
auto* input = GetSubsystem<Input>();
// Movement speed as world units per second
const float MOVE_SPEED = 20.0f;
// Mouse sensitivity as degrees per pixel
const float MOUSE_SENSITIVITY = 0.1f;
// Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees
IntVector2 mouseMove = input->GetMouseMove();
yaw_ += MOUSE_SENSITIVITY * mouseMove.x_;
pitch_ += MOUSE_SENSITIVITY * mouseMove.y_;
pitch_ = Clamp(pitch_, -90.0f, 90.0f);
// Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero
cameraNode_->SetRotation(Quaternion(pitch_, yaw_, 0.0f));
// Read WASD keys and move the camera scene node to the corresponding direction if they are pressed
if (input->GetKeyDown(KEY_W))
cameraNode_->Translate(Vector3::FORWARD * MOVE_SPEED * timeStep);
if (input->GetKeyDown(KEY_S))
cameraNode_->Translate(Vector3::BACK * MOVE_SPEED * timeStep);
if (input->GetKeyDown(KEY_A))
cameraNode_->Translate(Vector3::LEFT * MOVE_SPEED * timeStep);
if (input->GetKeyDown(KEY_D))
cameraNode_->Translate(Vector3::RIGHT * MOVE_SPEED * timeStep);
// In case resolution has changed, adjust the reflection camera aspect ratio
auto* graphics = GetSubsystem<Graphics>();
auto* reflectionCamera = reflectionCameraNode_->GetComponent<Camera>();
reflectionCamera->SetAspectRatio((float)graphics->GetWidth() / (float)graphics->GetHeight());
}
void Water::HandleUpdate(StringHash eventType, VariantMap& eventData)
{
using namespace Update;
// Take the frame time step, which is stored as a float
float timeStep = eventData[P_TIMESTEP].GetFloat();
// Move the camera, scale movement with time step
MoveCamera(timeStep);
}