Urho3D/Source/Samples/45_InverseKinematics/InverseKinematics.cpp
2020-01-05 06:21:40 +00:00

299 lines
12 KiB
C++

//
// Copyright (c) 2008-2020 the Urho3D project.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#include <Urho3D/Core/CoreEvents.h>
#include <Urho3D/Engine/Engine.h>
#include <Urho3D/Graphics/AnimatedModel.h>
#include <Urho3D/Graphics/AnimationController.h>
#include <Urho3D/Graphics/Camera.h>
#include <Urho3D/Graphics/Graphics.h>
#include <Urho3D/Graphics/Material.h>
#include <Urho3D/Graphics/Octree.h>
#include <Urho3D/Graphics/DebugRenderer.h>
#include <Urho3D/Graphics/RibbonTrail.h>
#include <Urho3D/IK/IKEffector.h>
#include <Urho3D/IK/IKSolver.h>
#include <Urho3D/Input/Input.h>
#include <Urho3D/Math/Matrix2.h>
#include <Urho3D/Physics/PhysicsWorld.h>
#include <Urho3D/Physics/CollisionShape.h>
#include <Urho3D/Physics/RigidBody.h>
#include <Urho3D/Resource/ResourceCache.h>
#include <Urho3D/UI/Font.h>
#include <Urho3D/UI/Text.h>
#include <Urho3D/UI/UI.h>
#include <Urho3D/UI/Text3D.h>
#include "InverseKinematics.h"
#include <Urho3D/DebugNew.h>
URHO3D_DEFINE_APPLICATION_MAIN(InverseKinematics)
InverseKinematics::InverseKinematics(Context* context) :
Sample(context)
{
}
void InverseKinematics::Start()
{
// Execute base class startup
Sample::Start();
// Create the scene content
CreateScene();
// Create the UI content
CreateInstructions();
// Setup the viewport for displaying the scene
SetupViewport();
// Hook up to the frame update events
SubscribeToEvents();
// Set the mouse mode to use in the sample
Sample::InitMouseMode(MM_RELATIVE);
GetSubsystem<Input>()->SetMouseVisible(true);
}
void InverseKinematics::CreateScene()
{
auto* cache = GetSubsystem<ResourceCache>();
scene_ = new Scene(context_);
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
scene_->CreateComponent<Octree>();
scene_->CreateComponent<DebugRenderer>();
scene_->CreateComponent<PhysicsWorld>();
// Create scene node & StaticModel component for showing a static plane
floorNode_ = scene_->CreateChild("Plane");
floorNode_->SetScale(Vector3(50.0f, 1.0f, 50.0f));
auto* planeObject = floorNode_->CreateComponent<StaticModel>();
planeObject->SetModel(cache->GetResource<Model>("Models/Plane.mdl"));
planeObject->SetMaterial(cache->GetResource<Material>("Materials/StoneTiled.xml"));
// Set up collision, we need to raycast to determine foot height
floorNode_->CreateComponent<RigidBody>();
auto* col = floorNode_->CreateComponent<CollisionShape>();
col->SetBox(Vector3(1, 0, 1));
// Create a directional light to the world.
Node* lightNode = scene_->CreateChild("DirectionalLight");
lightNode->SetDirection(Vector3(0.6f, -1.0f, 0.8f)); // The direction vector does not need to be normalized
auto* light = lightNode->CreateComponent<Light>();
light->SetLightType(LIGHT_DIRECTIONAL);
light->SetCastShadows(true);
light->SetShadowBias(BiasParameters(0.00005f, 0.5f));
// Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
light->SetShadowCascade(CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f));
// Load Jack model
jackNode_ = scene_->CreateChild("Jack");
jackNode_->SetRotation(Quaternion(0.0f, 270.0f, 0.0f));
auto* jack = jackNode_->CreateComponent<AnimatedModel>();
jack->SetModel(cache->GetResource<Model>("Models/Jack.mdl"));
jack->SetMaterial(cache->GetResource<Material>("Materials/Jack.xml"));
jack->SetCastShadows(true);
// Create animation controller and play walk animation
jackAnimCtrl_ = jackNode_->CreateComponent<AnimationController>();
jackAnimCtrl_->PlayExclusive("Models/Jack_Walk.ani", 0, true, 0.0f);
// We need to attach two inverse kinematic effectors to Jack's feet to
// control the grounding.
leftFoot_ = jackNode_->GetChild("Bip01_L_Foot", true);
rightFoot_ = jackNode_->GetChild("Bip01_R_Foot", true);
leftEffector_ = leftFoot_->CreateComponent<IKEffector>();
rightEffector_ = rightFoot_->CreateComponent<IKEffector>();
// Control 2 segments up to the hips
leftEffector_->SetChainLength(2);
rightEffector_->SetChainLength(2);
// For the effectors to work, an IKSolver needs to be attached to one of
// the parent nodes. Typically, you want to place the solver as close as
// possible to the effectors for optimal performance. Since in this case
// we're solving the legs only, we can place the solver at the spine.
Node* spine = jackNode_->GetChild("Bip01_Spine", true);
solver_ = spine->CreateComponent<IKSolver>();
// Two-bone solver is more efficient and more stable than FABRIK (but only
// works for two bones, obviously).
solver_->SetAlgorithm(IKSolver::TWO_BONE);
// Disable auto-solving, which means we need to call Solve() manually
solver_->SetFeature(IKSolver::AUTO_SOLVE, false);
// Only enable this so the debug draw shows us the pose before solving.
// This should NOT be enabled for any other reason (it does nothing and is
// a waste of performance).
solver_->SetFeature(IKSolver::UPDATE_ORIGINAL_POSE, true);
// Create the camera.
cameraRotateNode_ = scene_->CreateChild("CameraRotate");
cameraNode_ = cameraRotateNode_->CreateChild("Camera");
cameraNode_->CreateComponent<Camera>();
// Set an initial position for the camera scene node above the plane
cameraNode_->SetPosition(Vector3(0, 0, -4));
cameraRotateNode_->SetPosition(Vector3(0, 0.4, 0));
pitch_ = 20;
yaw_ = 50;
}
void InverseKinematics::CreateInstructions()
{
auto* cache = GetSubsystem<ResourceCache>();
auto* ui = GetSubsystem<UI>();
// Construct new Text object, set string to display and font to use
auto* instructionText = ui->GetRoot()->CreateChild<Text>();
instructionText->SetText("Left-Click and drag to look around\nRight-Click and drag to change incline\nPress space to reset floor\nPress D to draw debug geometry");
instructionText->SetFont(cache->GetResource<Font>("Fonts/Anonymous Pro.ttf"), 15);
// Position the text relative to the screen center
instructionText->SetHorizontalAlignment(HA_CENTER);
instructionText->SetVerticalAlignment(VA_CENTER);
instructionText->SetPosition(0, ui->GetRoot()->GetHeight() / 4);
}
void InverseKinematics::SetupViewport()
{
auto* renderer = GetSubsystem<Renderer>();
// Set up a viewport to the Renderer subsystem so that the 3D scene can be seen. We need to define the scene and the camera
// at minimum. Additionally we could configure the viewport screen size and the rendering path (eg. forward / deferred) to
// use, but now we just use full screen and default render path configured in the engine command line options
SharedPtr<Viewport> viewport(new Viewport(context_, scene_, cameraNode_->GetComponent<Camera>()));
renderer->SetViewport(0, viewport);
}
void InverseKinematics::UpdateCameraAndFloor(float /*timeStep*/)
{
// Do not move if the UI has a focused element (the console)
if (GetSubsystem<UI>()->GetFocusElement())
return;
auto* input = GetSubsystem<Input>();
// Mouse sensitivity as degrees per pixel
const float MOUSE_SENSITIVITY = 0.1f;
// Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees
if (input->GetMouseButtonDown(MOUSEB_LEFT))
{
IntVector2 mouseMove = input->GetMouseMove();
yaw_ += MOUSE_SENSITIVITY * mouseMove.x_;
pitch_ += MOUSE_SENSITIVITY * mouseMove.y_;
pitch_ = Clamp(pitch_, -90.0f, 90.0f);
}
if (input->GetMouseButtonDown(MOUSEB_RIGHT))
{
IntVector2 mouseMoveInt = input->GetMouseMove();
Vector2 mouseMove = Matrix2(
-Cos(yaw_), Sin(yaw_),
Sin(yaw_), Cos(yaw_)
) * Vector2(mouseMoveInt.y_, -mouseMoveInt.x_);
floorPitch_ += MOUSE_SENSITIVITY * mouseMove.x_;
floorPitch_ = Clamp(floorPitch_, -90.0f, 90.0f);
floorRoll_ += MOUSE_SENSITIVITY * mouseMove.y_;
}
if (input->GetKeyPress(KEY_SPACE))
{
floorPitch_ = 0;
floorRoll_ = 0;
}
if (input->GetKeyPress(KEY_D))
{
drawDebug_ = !drawDebug_;
}
// Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero
cameraRotateNode_->SetRotation(Quaternion(pitch_, yaw_, 0.0f));
floorNode_->SetRotation(Quaternion(floorPitch_, 0, floorRoll_));
}
void InverseKinematics::SubscribeToEvents()
{
// Subscribe HandleUpdate() function for processing update events
SubscribeToEvent(E_UPDATE, URHO3D_HANDLER(InverseKinematics, HandleUpdate));
SubscribeToEvent(E_POSTRENDERUPDATE, URHO3D_HANDLER(InverseKinematics, HandlePostRenderUpdate));
SubscribeToEvent(E_SCENEDRAWABLEUPDATEFINISHED, URHO3D_HANDLER(InverseKinematics, HandleSceneDrawableUpdateFinished));
}
void InverseKinematics::HandleUpdate(StringHash /*eventType*/, VariantMap& eventData)
{
using namespace Update;
// Take the frame time step, which is stored as a float
float timeStep = eventData[P_TIMESTEP].GetFloat();
// Move the camera, scale movement with time step
UpdateCameraAndFloor(timeStep);
}
void InverseKinematics::HandlePostRenderUpdate(StringHash /*eventType*/, VariantMap& eventData)
{
if (drawDebug_)
solver_->DrawDebugGeometry(false);
}
void InverseKinematics::HandleSceneDrawableUpdateFinished(StringHash /*eventType*/, VariantMap& eventData)
{
auto* phyWorld = scene_->GetComponent<PhysicsWorld>();
Vector3 leftFootPosition = leftFoot_->GetWorldPosition();
Vector3 rightFootPosition = rightFoot_->GetWorldPosition();
// Cast ray down to get the normal of the underlying surface
PhysicsRaycastResult result;
phyWorld->RaycastSingle(result, Ray(leftFootPosition + Vector3(0, 1, 0), Vector3(0, -1, 0)), 2);
if (result.body_)
{
// Cast again, but this time along the normal. Set the target position
// to the ray intersection
phyWorld->RaycastSingle(result, Ray(leftFootPosition + result.normal_, -result.normal_), 2);
// The foot node has an offset relative to the root node
float footOffset = leftFoot_->GetWorldPosition().y_ - jackNode_->GetWorldPosition().y_;
leftEffector_->SetTargetPosition(result.position_ + result.normal_ * footOffset);
// Rotate foot according to normal
leftFoot_->Rotate(Quaternion(Vector3(0, 1, 0), result.normal_), TS_WORLD);
}
// Same deal with the right foot
phyWorld->RaycastSingle(result, Ray(rightFootPosition + Vector3(0, 1, 0), Vector3(0, -1, 0)), 2);
if (result.body_)
{
phyWorld->RaycastSingle(result, Ray(rightFootPosition + result.normal_, -result.normal_), 2);
float footOffset = rightFoot_->GetWorldPosition().y_ - jackNode_->GetWorldPosition().y_;
rightEffector_->SetTargetPosition(result.position_ + result.normal_ * footOffset);
rightFoot_->Rotate(Quaternion(Vector3(0, 1, 0), result.normal_), TS_WORLD);
}
solver_->Solve();
}