Urho3D/Source/Tools/OgreImporter/OgreImporter.cpp
2020-01-05 06:21:40 +00:00

1238 lines
48 KiB
C++

//
// Copyright (c) 2008-2020 the Urho3D project.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
#include <Urho3D/Core/Context.h>
#include <Urho3D/Core/ProcessUtils.h>
#include <Urho3D/Core/StringUtils.h>
#include <Urho3D/Graphics/Tangent.h>
#include <Urho3D/IO/File.h>
#include <Urho3D/IO/FileSystem.h>
#include <Urho3D/Resource/XMLFile.h>
#include "OgreImporterUtils.h"
#ifdef WIN32
#include <windows.h>
#endif
#include <Urho3D/DebugNew.h>
static const int VERTEX_CACHE_SIZE = 32;
SharedPtr<Context> context_(new Context());
SharedPtr<XMLFile> meshFile_(new XMLFile(context_));
SharedPtr<XMLFile> skelFile_(new XMLFile(context_));
Vector<ModelIndexBuffer> indexBuffers_;
Vector<ModelVertexBuffer> vertexBuffers_;
Vector<Vector<ModelSubGeometryLodLevel> > subGeometries_;
Vector<Vector3> subGeometryCenters_;
Vector<ModelBone> bones_;
Vector<ModelMorph> morphs_;
Vector<String> materialNames_;
BoundingBox boundingBox_;
unsigned maxBones_ = 64;
unsigned numSubMeshes_ = 0;
bool useOneBuffer_ = true;
int main(int argc, char** argv);
void Run(const Vector<String>& arguments);
void LoadSkeleton(const String& skeletonFileName);
void LoadMesh(const String& inputFileName, bool generateTangents, bool splitSubMeshes, bool exportMorphs);
void WriteOutput(const String& outputFileName, bool exportAnimations, bool rotationsOnly, bool saveMaterialList);
void OptimizeIndices(ModelSubGeometryLodLevel* subGeom, ModelVertexBuffer* vb, ModelIndexBuffer* ib);
void CalculateScore(ModelVertex& vertex);
String SanitateAssetName(const String& name);
int main(int argc, char** argv)
{
Vector<String> arguments;
#ifdef WIN32
arguments = ParseArguments(GetCommandLineW());
#else
arguments = ParseArguments(argc, argv);
#endif
Run(arguments);
return 0;
}
void Run(const Vector<String>& arguments)
{
if (arguments.Size() < 2)
{
ErrorExit(
"Usage: OgreImporter <input file> <output file> [options]\n\n"
"Options:\n"
"-l Output a material list file\n"
"-na Do not output animations\n"
"-nm Do not output morphs\n"
"-r Output only rotations from animations\n"
"-s Split each submesh into own vertex buffer\n"
"-t Generate tangents\n"
"-mb <x> Maximum number of bones per submesh, default 64\n"
);
}
bool generateTangents = false;
bool splitSubMeshes = false;
bool exportAnimations = true;
bool exportMorphs = true;
bool rotationsOnly = false;
bool saveMaterialList = false;
if (arguments.Size() > 2)
{
for (unsigned i = 2; i < arguments.Size(); ++i)
{
if (arguments[i].Length() > 1 && arguments[i][0] == '-')
{
String argument = arguments[i].Substring(1).ToLower();
if (argument == "l")
saveMaterialList = true;
else if (argument == "r")
rotationsOnly = true;
else if (argument == "s")
splitSubMeshes = true;
else if (argument == "t")
generateTangents = true;
else if (argument.Length() == 2 && argument[0] == 'n')
{
switch (tolower(argument[1]))
{
case 'a':
exportAnimations = false;
break;
case 'm':
exportMorphs = false;
break;
}
break;
}
else if (argument == "mb" && i < arguments.Size() - 1)
{
maxBones_ = ToUInt(arguments[i + 1]);
if (maxBones_ < 1)
maxBones_ = 1;
++i;
}
}
}
}
LoadMesh(arguments[0], generateTangents, splitSubMeshes, exportMorphs);
WriteOutput(arguments[1], exportAnimations, rotationsOnly, saveMaterialList);
PrintLine("Finished");
}
void LoadSkeleton(const String& skeletonFileName)
{
// Process skeleton first (if found)
XMLElement skeletonRoot;
File skeletonFileSource(context_);
skeletonFileSource.Open(skeletonFileName);
if (!skelFile_->Load(skeletonFileSource))
PrintLine("Failed to load skeleton " + skeletonFileName);
skeletonRoot = skelFile_->GetRoot();
if (skeletonRoot)
{
XMLElement bonesRoot = skeletonRoot.GetChild("bones");
XMLElement bone = bonesRoot.GetChild("bone");
while (bone)
{
unsigned index = bone.GetInt("id");
String name = bone.GetAttribute("name");
if (index >= bones_.Size())
bones_.Resize(index + 1);
// Convert from right- to left-handed
XMLElement position = bone.GetChild("position");
float x = position.GetFloat("x");
float y = position.GetFloat("y");
float z = position.GetFloat("z");
Vector3 pos(x, y, -z);
XMLElement rotation = bone.GetChild("rotation");
XMLElement axis = rotation.GetChild("axis");
float angle = -rotation.GetFloat("angle") * M_RADTODEG;
x = axis.GetFloat("x");
y = axis.GetFloat("y");
z = axis.GetFloat("z");
Vector3 axisVec(x, y, -z);
Quaternion rot(angle, axisVec);
bones_[index].name_ = name;
bones_[index].parentIndex_ = index; // Fill in the correct parent later
bones_[index].bindPosition_ = pos;
bones_[index].bindRotation_ = rot;
bones_[index].bindScale_ = Vector3::ONE;
bones_[index].collisionMask_ = 0;
bones_[index].radius_ = 0.0f;
bone = bone.GetNext("bone");
}
// Go through the bone hierarchy
XMLElement boneHierarchy = skeletonRoot.GetChild("bonehierarchy");
XMLElement boneParent = boneHierarchy.GetChild("boneparent");
while (boneParent)
{
String bone = boneParent.GetAttribute("bone");
String parent = boneParent.GetAttribute("parent");
unsigned i = 0, j = 0;
for (i = 0; i < bones_.Size() && bones_[i].name_ != bone; ++i);
for (j = 0; j < bones_.Size() && bones_[j].name_ != parent; ++j);
if (i >= bones_.Size() || j >= bones_.Size())
ErrorExit("Found indeterminate parent bone assignment");
bones_[i].parentIndex_ = j;
boneParent = boneParent.GetNext("boneparent");
}
// Calculate bone derived positions
for (unsigned i = 0; i < bones_.Size(); ++i)
{
Vector3 derivedPosition = bones_[i].bindPosition_;
Quaternion derivedRotation = bones_[i].bindRotation_;
Vector3 derivedScale = bones_[i].bindScale_;
unsigned index = bones_[i].parentIndex_;
if (index != i)
{
for (;;)
{
derivedPosition = bones_[index].bindPosition_ + (bones_[index].bindRotation_ * (bones_[index].bindScale_ * derivedPosition));
derivedRotation = bones_[index].bindRotation_ * derivedRotation;
derivedScale = bones_[index].bindScale_ * derivedScale;
if (bones_[index].parentIndex_ != index)
index = bones_[index].parentIndex_;
else
break;
}
}
bones_[i].derivedPosition_ = derivedPosition;
bones_[i].derivedRotation_ = derivedRotation;
bones_[i].derivedScale_ = derivedScale;
bones_[i].worldTransform_ = Matrix3x4(derivedPosition, derivedRotation, derivedScale);
bones_[i].inverseWorldTransform_ = bones_[i].worldTransform_.Inverse();
}
PrintLine("Processed skeleton");
}
}
void LoadMesh(const String& inputFileName, bool generateTangents, bool splitSubMeshes, bool exportMorphs)
{
File meshFileSource(context_);
meshFileSource.Open(inputFileName);
if (!meshFile_->Load(meshFileSource))
ErrorExit("Could not load input file " + inputFileName);
XMLElement root = meshFile_->GetRoot("mesh");
XMLElement subMeshes = root.GetChild("submeshes");
XMLElement skeletonLink = root.GetChild("skeletonlink");
if (root.IsNull())
ErrorExit("Could not load input file " + inputFileName);
String skeletonName = skeletonLink.GetAttribute("name");
if (!skeletonName.Empty())
LoadSkeleton(GetPath(inputFileName) + GetFileName(skeletonName) + ".skeleton.xml");
// Check whether there's benefit of avoiding 32bit indices by splitting each submesh into own buffer
XMLElement subMesh = subMeshes.GetChild("submesh");
unsigned totalVertices = 0;
unsigned maxSubMeshVertices = 0;
while (subMesh)
{
materialNames_.Push(subMesh.GetAttribute("material"));
XMLElement geometry = subMesh.GetChild("geometry");
if (geometry)
{
unsigned vertices = geometry.GetInt("vertexcount");
totalVertices += vertices;
if (maxSubMeshVertices < vertices)
maxSubMeshVertices = vertices;
}
++numSubMeshes_;
subMesh = subMesh.GetNext("submesh");
}
XMLElement sharedGeometry = root.GetChild("sharedgeometry");
if (sharedGeometry)
{
unsigned vertices = sharedGeometry.GetInt("vertexcount");
totalVertices += vertices;
if (maxSubMeshVertices < vertices)
maxSubMeshVertices = vertices;
}
if (!sharedGeometry && (splitSubMeshes || (totalVertices > 65535 && maxSubMeshVertices <= 65535)))
{
useOneBuffer_ = false;
vertexBuffers_.Resize(numSubMeshes_);
indexBuffers_.Resize(numSubMeshes_);
}
else
{
vertexBuffers_.Resize(1);
indexBuffers_.Resize(1);
}
subMesh = subMeshes.GetChild("submesh");
unsigned indexStart = 0;
unsigned vertexStart = 0;
unsigned subMeshIndex = 0;
PODVector<unsigned> vertexStarts;
vertexStarts.Resize(numSubMeshes_);
while (subMesh)
{
XMLElement geometry = subMesh.GetChild("geometry");
XMLElement faces = subMesh.GetChild("faces");
// If no submesh vertexbuffer, process the shared geometry, but do it only once
unsigned vertices = 0;
if (!geometry)
{
vertexStart = 0;
if (!subMeshIndex)
geometry = root.GetChild("sharedgeometry");
}
if (geometry)
vertices = geometry.GetInt("vertexcount");
ModelSubGeometryLodLevel subGeometryLodLevel;
ModelVertexBuffer* vBuf;
ModelIndexBuffer* iBuf;
if (useOneBuffer_)
{
vBuf = &vertexBuffers_[0];
if (vertices)
vBuf->vertices_.Resize(vertexStart + vertices);
iBuf = &indexBuffers_[0];
subGeometryLodLevel.vertexBuffer_ = 0;
subGeometryLodLevel.indexBuffer_ = 0;
}
else
{
vertexStart = 0;
indexStart = 0;
vBuf = &vertexBuffers_[subMeshIndex];
vBuf->vertices_.Resize(vertices);
iBuf = &indexBuffers_[subMeshIndex];
subGeometryLodLevel.vertexBuffer_ = subMeshIndex;
subGeometryLodLevel.indexBuffer_ = subMeshIndex;
}
// Store the start vertex for later use
vertexStarts[subMeshIndex] = vertexStart;
// Ogre may have multiple buffers in one submesh. These will be merged into one
XMLElement bufferDef;
if (geometry)
bufferDef = geometry.GetChild("vertexbuffer");
while (bufferDef)
{
if (bufferDef.HasAttribute("positions"))
vBuf->elementMask_ |= MASK_POSITION;
if (bufferDef.HasAttribute("normals"))
vBuf->elementMask_ |= MASK_NORMAL;
if (bufferDef.HasAttribute("texture_coords"))
{
vBuf->elementMask_ |= MASK_TEXCOORD1;
if (bufferDef.GetInt("texture_coords") > 1)
vBuf->elementMask_ |= MASK_TEXCOORD2;
}
unsigned vertexNum = vertexStart;
if (vertices)
{
XMLElement vertex = bufferDef.GetChild("vertex");
while (vertex)
{
XMLElement position = vertex.GetChild("position");
if (position)
{
// Convert from right- to left-handed
float x = position.GetFloat("x");
float y = position.GetFloat("y");
float z = position.GetFloat("z");
Vector3 vec(x, y, -z);
vBuf->vertices_[vertexNum].position_ = vec;
boundingBox_.Merge(vec);
}
XMLElement normal = vertex.GetChild("normal");
if (normal)
{
// Convert from right- to left-handed
float x = normal.GetFloat("x");
float y = normal.GetFloat("y");
float z = normal.GetFloat("z");
Vector3 vec(x, y, -z);
vBuf->vertices_[vertexNum].normal_ = vec;
}
XMLElement uv = vertex.GetChild("texcoord");
if (uv)
{
float x = uv.GetFloat("u");
float y = uv.GetFloat("v");
Vector2 vec(x, y);
vBuf->vertices_[vertexNum].texCoord1_ = vec;
if (vBuf->elementMask_ & MASK_TEXCOORD2)
{
uv = uv.GetNext("texcoord");
if (uv)
{
float x = uv.GetFloat("u");
float y = uv.GetFloat("v");
Vector2 vec(x, y);
vBuf->vertices_[vertexNum].texCoord2_ = vec;
}
}
}
vertexNum++;
vertex = vertex.GetNext("vertex");
}
}
bufferDef = bufferDef.GetNext("vertexbuffer");
}
unsigned triangles = faces.GetInt("count");
unsigned indices = triangles * 3;
XMLElement triangle = faces.GetChild("face");
while (triangle)
{
unsigned v1 = triangle.GetInt("v1");
unsigned v2 = triangle.GetInt("v2");
unsigned v3 = triangle.GetInt("v3");
iBuf->indices_.Push(v3 + vertexStart);
iBuf->indices_.Push(v2 + vertexStart);
iBuf->indices_.Push(v1 + vertexStart);
triangle = triangle.GetNext("face");
}
subGeometryLodLevel.indexStart_ = indexStart;
subGeometryLodLevel.indexCount_ = indices;
if (vertexStart + vertices > 65535)
iBuf->indexSize_ = sizeof(unsigned);
XMLElement boneAssignments = subMesh.GetChild("boneassignments");
if (bones_.Size())
{
if (boneAssignments)
{
XMLElement boneAssignment = boneAssignments.GetChild("vertexboneassignment");
while (boneAssignment)
{
unsigned vertex = boneAssignment.GetInt("vertexindex") + vertexStart;
unsigned bone = boneAssignment.GetInt("boneindex");
float weight = boneAssignment.GetFloat("weight");
BoneWeightAssignment assign{static_cast<unsigned char>(bone), weight};
// Source data might have 0 weights. Disregard these
if (assign.weight_ > 0.0f)
{
subGeometryLodLevel.boneWeights_[vertex].Push(assign);
// Require skinning weight to be sufficiently large before vertex contributes to bone hitbox
if (assign.weight_ > 0.33f)
{
// Check distance of vertex from bone to get bone max. radius information
Vector3 bonePos = bones_[bone].derivedPosition_;
Vector3 vertexPos = vBuf->vertices_[vertex].position_;
float distance = (bonePos - vertexPos).Length();
if (distance > bones_[bone].radius_)
{
bones_[bone].collisionMask_ |= 1;
bones_[bone].radius_ = distance;
}
// Build the hitbox for the bone
bones_[bone].boundingBox_.Merge(bones_[bone].inverseWorldTransform_ * (vertexPos));
bones_[bone].collisionMask_ |= 2;
}
}
boneAssignment = boneAssignment.GetNext("vertexboneassignment");
}
}
if ((subGeometryLodLevel.boneWeights_.Size()) && bones_.Size())
{
vBuf->elementMask_ |= MASK_BLENDWEIGHTS | MASK_BLENDINDICES;
bool sorted = false;
// If amount of bones is larger than supported by HW skinning, must remap per submesh
if (bones_.Size() > maxBones_)
{
HashMap<unsigned, unsigned> usedBoneMap;
unsigned remapIndex = 0;
for (HashMap<unsigned, PODVector<BoneWeightAssignment> >::Iterator i =
subGeometryLodLevel.boneWeights_.Begin(); i != subGeometryLodLevel.boneWeights_.End(); ++i)
{
// Sort the bone assigns by weight
Sort(i->second_.Begin(), i->second_.End(), CompareWeights);
// Use only the first 4 weights
for (unsigned j = 0; j < i->second_.Size() && j < 4; ++j)
{
unsigned originalIndex = i->second_[j].boneIndex_;
if (!usedBoneMap.Contains(originalIndex))
{
usedBoneMap[originalIndex] = remapIndex;
remapIndex++;
}
i->second_[j].boneIndex_ = usedBoneMap[originalIndex];
}
}
// If still too many bones in one subgeometry, error
if (usedBoneMap.Size() > maxBones_)
ErrorExit("Too many bones (limit " + String(maxBones_) + ") in submesh " + String(subMeshIndex + 1));
// Write mapping of vertex buffer bone indices to original bone indices
subGeometryLodLevel.boneMapping_.Resize(usedBoneMap.Size());
for (HashMap<unsigned, unsigned>::Iterator j = usedBoneMap.Begin(); j != usedBoneMap.End(); ++j)
subGeometryLodLevel.boneMapping_[j->second_] = j->first_;
sorted = true;
}
for (HashMap<unsigned, PODVector<BoneWeightAssignment> >::Iterator i = subGeometryLodLevel.boneWeights_.Begin();
i != subGeometryLodLevel.boneWeights_.End(); ++i)
{
// Sort the bone assigns by weight, if not sorted yet in bone remapping pass
if (!sorted)
Sort(i->second_.Begin(), i->second_.End(), CompareWeights);
float totalWeight = 0.0f;
float normalizationFactor = 0.0f;
// Calculate normalization factor in case there are more than 4 blend weights, or they do not add up to 1
for (unsigned j = 0; j < i->second_.Size() && j < 4; ++j)
totalWeight += i->second_[j].weight_;
if (totalWeight > 0.0f)
normalizationFactor = 1.0f / totalWeight;
for (unsigned j = 0; j < i->second_.Size() && j < 4; ++j)
{
vBuf->vertices_[i->first_].blendIndices_[j] = i->second_[j].boneIndex_;
vBuf->vertices_[i->first_].blendWeights_[j] = i->second_[j].weight_ * normalizationFactor;
}
// If there are less than 4 blend weights, fill rest with zero
for (unsigned j = i->second_.Size(); j < 4; ++j)
{
vBuf->vertices_[i->first_].blendIndices_[j] = 0;
vBuf->vertices_[i->first_].blendWeights_[j] = 0.0f;
}
vBuf->vertices_[i->first_].hasBlendWeights_ = true;
}
}
}
else if (boneAssignments)
PrintLine("No skeleton loaded, skipping skinning information");
// Calculate center for the subgeometry
Vector3 center = Vector3::ZERO;
for (unsigned i = 0; i < iBuf->indices_.Size(); i += 3)
{
center += vBuf->vertices_[iBuf->indices_[i]].position_;
center += vBuf->vertices_[iBuf->indices_[i + 1]].position_;
center += vBuf->vertices_[iBuf->indices_[i + 2]].position_;
}
if (iBuf->indices_.Size())
center /= (float)iBuf->indices_.Size();
subGeometryCenters_.Push(center);
indexStart += indices;
vertexStart += vertices;
OptimizeIndices(&subGeometryLodLevel, vBuf, iBuf);
PrintLine("Processed submesh " + String(subMeshIndex + 1) + ": " + String(vertices) + " vertices " +
String(triangles) + " triangles");
Vector<ModelSubGeometryLodLevel> thisSubGeometry;
thisSubGeometry.Push(subGeometryLodLevel);
subGeometries_.Push(thisSubGeometry);
subMesh = subMesh.GetNext("submesh");
subMeshIndex++;
}
// Process LOD levels, if any
XMLElement lods = root.GetChild("levelofdetail");
if (lods)
{
try
{
// For now, support only generated LODs, where the vertices are the same
XMLElement lod = lods.GetChild("lodgenerated");
while (lod)
{
float distance = M_EPSILON;
if (lod.HasAttribute("fromdepthsquared"))
distance = sqrtf(lod.GetFloat("fromdepthsquared"));
if (lod.HasAttribute("value"))
distance = lod.GetFloat("value");
XMLElement lodSubMesh = lod.GetChild("lodfacelist");
while (lodSubMesh)
{
unsigned subMeshIndex = lodSubMesh.GetInt("submeshindex");
unsigned triangles = lodSubMesh.GetInt("numfaces");
ModelSubGeometryLodLevel newLodLevel;
ModelSubGeometryLodLevel& originalLodLevel = subGeometries_[subMeshIndex][0];
// Copy all initial values
newLodLevel = originalLodLevel;
ModelVertexBuffer* vBuf;
ModelIndexBuffer* iBuf;
if (useOneBuffer_)
{
vBuf = &vertexBuffers_[0];
iBuf = &indexBuffers_[0];
}
else
{
vBuf = &vertexBuffers_[subMeshIndex];
iBuf = &indexBuffers_[subMeshIndex];
}
unsigned indexStart = iBuf->indices_.Size();
unsigned indexCount = triangles * 3;
unsigned vertexStart = vertexStarts[subMeshIndex];
newLodLevel.distance_ = distance;
newLodLevel.indexStart_ = indexStart;
newLodLevel.indexCount_ = indexCount;
// Append indices to the original index buffer
XMLElement triangle = lodSubMesh.GetChild("face");
while (triangle)
{
unsigned v1 = triangle.GetInt("v1");
unsigned v2 = triangle.GetInt("v2");
unsigned v3 = triangle.GetInt("v3");
iBuf->indices_.Push(v3 + vertexStart);
iBuf->indices_.Push(v2 + vertexStart);
iBuf->indices_.Push(v1 + vertexStart);
triangle = triangle.GetNext("face");
}
OptimizeIndices(&newLodLevel, vBuf, iBuf);
subGeometries_[subMeshIndex].Push(newLodLevel);
PrintLine("Processed LOD level for submesh " + String(subMeshIndex + 1) + ": distance " + String(distance));
lodSubMesh = lodSubMesh.GetNext("lodfacelist");
}
lod = lod.GetNext("lodgenerated");
}
}
catch (...) {}
}
// Process poses/morphs
// First find out all pose definitions
if (exportMorphs)
{
try
{
Vector<XMLElement> poses;
XMLElement posesRoot = root.GetChild("poses");
if (posesRoot)
{
XMLElement pose = posesRoot.GetChild("pose");
while (pose)
{
poses.Push(pose);
pose = pose.GetNext("pose");
}
}
// Then process animations using the poses
XMLElement animsRoot = root.GetChild("animations");
if (animsRoot)
{
XMLElement anim = animsRoot.GetChild("animation");
while (anim)
{
String name = anim.GetAttribute("name");
float length = anim.GetFloat("length");
HashSet<unsigned> usedPoses;
XMLElement tracks = anim.GetChild("tracks");
if (tracks)
{
XMLElement track = tracks.GetChild("track");
while (track)
{
XMLElement keyframes = track.GetChild("keyframes");
if (keyframes)
{
XMLElement keyframe = keyframes.GetChild("keyframe");
while (keyframe)
{
float time = keyframe.GetFloat("time");
XMLElement poseref = keyframe.GetChild("poseref");
// Get only the end pose
if (poseref && time == length)
usedPoses.Insert(poseref.GetInt("poseindex"));
keyframe = keyframe.GetNext("keyframe");
}
}
track = track.GetNext("track");
}
}
if (usedPoses.Size())
{
ModelMorph newMorph;
newMorph.name_ = name;
if (useOneBuffer_)
newMorph.buffers_.Resize(1);
else
newMorph.buffers_.Resize(usedPoses.Size());
unsigned bufIndex = 0;
for (HashSet<unsigned>::Iterator i = usedPoses.Begin(); i != usedPoses.End(); ++i)
{
XMLElement pose = poses[*i];
unsigned targetSubMesh = pose.GetInt("index");
XMLElement poseOffset = pose.GetChild("poseoffset");
if (useOneBuffer_)
newMorph.buffers_[bufIndex].vertexBuffer_ = 0;
else
newMorph.buffers_[bufIndex].vertexBuffer_ = targetSubMesh;
newMorph.buffers_[bufIndex].elementMask_ = MASK_POSITION;
ModelVertexBuffer* vBuf = &vertexBuffers_[newMorph.buffers_[bufIndex].vertexBuffer_];
while (poseOffset)
{
// Convert from right- to left-handed
unsigned vertexIndex = poseOffset.GetInt("index") + vertexStarts[targetSubMesh];
float x = poseOffset.GetFloat("x");
float y = poseOffset.GetFloat("y");
float z = poseOffset.GetFloat("z");
Vector3 vec(x, y, -z);
if (vBuf->morphCount_ == 0)
{
vBuf->morphStart_ = vertexIndex;
vBuf->morphCount_ = 1;
}
else
{
unsigned first = vBuf->morphStart_;
unsigned last = first + vBuf->morphCount_ - 1;
if (vertexIndex < first)
first = vertexIndex;
if (vertexIndex > last)
last = vertexIndex;
vBuf->morphStart_ = first;
vBuf->morphCount_ = last - first + 1;
}
ModelVertex newVertex;
newVertex.position_ = vec;
newMorph.buffers_[bufIndex].vertices_.Push(MakePair(vertexIndex, newVertex));
poseOffset = poseOffset.GetNext("poseoffset");
}
if (!useOneBuffer_)
++bufIndex;
}
morphs_.Push(newMorph);
PrintLine("Processed morph " + name + " with " + String(usedPoses.Size()) + " sub-poses");
}
anim = anim.GetNext("animation");
}
}
}
catch (...) {}
}
// Check any of the buffers for vertices with missing blend weight assignments
for (unsigned i = 0; i < vertexBuffers_.Size(); ++i)
{
if (vertexBuffers_[i].elementMask_ & MASK_BLENDWEIGHTS)
{
for (unsigned j = 0; j < vertexBuffers_[i].vertices_.Size(); ++j)
if (!vertexBuffers_[i].vertices_[j].hasBlendWeights_)
ErrorExit("Found a vertex with missing skinning information");
}
}
// Tangent generation
if (generateTangents)
{
for (unsigned i = 0; i < subGeometries_.Size(); ++i)
{
for (unsigned j = 0; j < subGeometries_[i].Size(); ++j)
{
ModelVertexBuffer& vBuf = vertexBuffers_[subGeometries_[i][j].vertexBuffer_];
ModelIndexBuffer& iBuf = indexBuffers_[subGeometries_[i][j].indexBuffer_];
unsigned indexStart = subGeometries_[i][j].indexStart_;
unsigned indexCount = subGeometries_[i][j].indexCount_;
// If already has tangents, do not regenerate
if (vBuf.elementMask_ & MASK_TANGENT || vBuf.vertices_.Empty() || iBuf.indices_.Empty())
continue;
vBuf.elementMask_ |= MASK_TANGENT;
if ((vBuf.elementMask_ & (MASK_POSITION | MASK_NORMAL | MASK_TEXCOORD1)) != (MASK_POSITION | MASK_NORMAL |
MASK_TEXCOORD1))
ErrorExit("To generate tangents, positions normals and texcoords are required");
GenerateTangents(&vBuf.vertices_[0], sizeof(ModelVertex), &iBuf.indices_[0], sizeof(unsigned), indexStart,
indexCount, offsetof(ModelVertex, normal_), offsetof(ModelVertex, texCoord1_), offsetof(ModelVertex,
tangent_));
PrintLine("Generated tangents");
}
}
}
}
void WriteOutput(const String& outputFileName, bool exportAnimations, bool rotationsOnly, bool saveMaterialList)
{
/// \todo Use save functions of Model & Animation classes
// Begin serialization
{
File dest(context_);
if (!dest.Open(outputFileName, FILE_WRITE))
ErrorExit("Could not open output file " + outputFileName);
// ID
dest.WriteFileID("UMD2");
// Vertexbuffers
dest.WriteUInt(vertexBuffers_.Size());
for (unsigned i = 0; i < vertexBuffers_.Size(); ++i)
vertexBuffers_[i].WriteData(dest);
// Indexbuffers
dest.WriteUInt(indexBuffers_.Size());
for (unsigned i = 0; i < indexBuffers_.Size(); ++i)
indexBuffers_[i].WriteData(dest);
// Subgeometries
dest.WriteUInt(subGeometries_.Size());
for (unsigned i = 0; i < subGeometries_.Size(); ++i)
{
// Write bone mapping info from the first LOD level. It does not change for further LODs
dest.WriteUInt(subGeometries_[i][0].boneMapping_.Size());
for (unsigned k = 0; k < subGeometries_[i][0].boneMapping_.Size(); ++k)
dest.WriteUInt(subGeometries_[i][0].boneMapping_[k]);
// Lod levels for this subgeometry
dest.WriteUInt(subGeometries_[i].Size());
for (unsigned j = 0; j < subGeometries_[i].Size(); ++j)
{
dest.WriteFloat(subGeometries_[i][j].distance_);
dest.WriteUInt((unsigned)subGeometries_[i][j].primitiveType_);
dest.WriteUInt(subGeometries_[i][j].vertexBuffer_);
dest.WriteUInt(subGeometries_[i][j].indexBuffer_);
dest.WriteUInt(subGeometries_[i][j].indexStart_);
dest.WriteUInt(subGeometries_[i][j].indexCount_);
}
}
// Morphs
dest.WriteUInt(morphs_.Size());
for (unsigned i = 0; i < morphs_.Size(); ++i)
morphs_[i].WriteData(dest);
// Skeleton
dest.WriteUInt(bones_.Size());
for (unsigned i = 0; i < bones_.Size(); ++i)
{
dest.WriteString(bones_[i].name_);
dest.WriteUInt(bones_[i].parentIndex_);
dest.WriteVector3(bones_[i].bindPosition_);
dest.WriteQuaternion(bones_[i].bindRotation_);
dest.WriteVector3(bones_[i].bindScale_);
Matrix3x4 offsetMatrix(bones_[i].derivedPosition_, bones_[i].derivedRotation_, bones_[i].derivedScale_);
offsetMatrix = offsetMatrix.Inverse();
dest.Write(offsetMatrix.Data(), sizeof(Matrix3x4));
dest.WriteUByte(bones_[i].collisionMask_);
if (bones_[i].collisionMask_ & 1u)
dest.WriteFloat(bones_[i].radius_);
if (bones_[i].collisionMask_ & 2u)
dest.WriteBoundingBox(bones_[i].boundingBox_);
}
// Bounding box
dest.WriteBoundingBox(boundingBox_);
// Geometry centers
for (unsigned i = 0; i < subGeometryCenters_.Size(); ++i)
dest.WriteVector3(subGeometryCenters_[i]);
}
if (saveMaterialList)
{
String materialListName = ReplaceExtension(outputFileName, ".txt");
File listFile(context_);
if (listFile.Open(materialListName, FILE_WRITE))
{
for (unsigned i = 0; i < materialNames_.Size(); ++i)
{
// Assume the materials will be located inside the standard Materials subdirectory
listFile.WriteLine("Materials/" + ReplaceExtension(SanitateAssetName(materialNames_[i]), ".xml"));
}
}
else
PrintLine("Warning: could not write material list file " + materialListName);
}
XMLElement skeletonRoot = skelFile_->GetRoot("skeleton");
if (skeletonRoot && exportAnimations)
{
// Go through animations
XMLElement animationsRoot = skeletonRoot.GetChild("animations");
if (animationsRoot)
{
XMLElement animation = animationsRoot.GetChild("animation");
while (animation)
{
ModelAnimation newAnimation;
newAnimation.name_ = animation.GetAttribute("name");
newAnimation.length_ = animation.GetFloat("length");
XMLElement tracksRoot = animation.GetChild("tracks");
XMLElement track = tracksRoot.GetChild("track");
while (track)
{
String trackName = track.GetAttribute("bone");
ModelBone* bone = nullptr;
for (unsigned i = 0; i < bones_.Size(); ++i)
{
if (bones_[i].name_ == trackName)
{
bone = &bones_[i];
break;
}
}
if (!bone)
ErrorExit("Found animation track for unknown bone " + trackName);
AnimationTrack newAnimationTrack;
newAnimationTrack.name_ = trackName;
if (!rotationsOnly)
newAnimationTrack.channelMask_ = CHANNEL_POSITION | CHANNEL_ROTATION;
else
newAnimationTrack.channelMask_ = CHANNEL_ROTATION;
XMLElement keyFramesRoot = track.GetChild("keyframes");
XMLElement keyFrame = keyFramesRoot.GetChild("keyframe");
while (keyFrame)
{
AnimationKeyFrame newKeyFrame;
// Convert from right- to left-handed
XMLElement position = keyFrame.GetChild("translate");
float x = position.GetFloat("x");
float y = position.GetFloat("y");
float z = position.GetFloat("z");
Vector3 pos(x, y, -z);
XMLElement rotation = keyFrame.GetChild("rotate");
XMLElement axis = rotation.GetChild("axis");
float angle = -rotation.GetFloat("angle") * M_RADTODEG;
x = axis.GetFloat("x");
y = axis.GetFloat("y");
z = axis.GetFloat("z");
Vector3 axisVec(x, y, -z);
Quaternion rot(angle, axisVec);
// Transform from bind-pose relative into absolute
pos = bone->bindPosition_ + pos;
rot = bone->bindRotation_ * rot;
newKeyFrame.time_ = keyFrame.GetFloat("time");
newKeyFrame.position_ = pos;
newKeyFrame.rotation_ = rot;
newAnimationTrack.keyFrames_.Push(newKeyFrame);
keyFrame = keyFrame.GetNext("keyframe");
}
// Make sure keyframes are sorted from beginning to end
Sort(newAnimationTrack.keyFrames_.Begin(), newAnimationTrack.keyFrames_.End(), CompareKeyFrames);
// Do not add tracks with no keyframes
if (newAnimationTrack.keyFrames_.Size())
newAnimation.tracks_.Push(newAnimationTrack);
track = track.GetNext("track");
}
// Write each animation into a separate file
String animationFileName = outputFileName.Replaced(".mdl", "");
animationFileName += "_" + newAnimation.name_ + ".ani";
File dest(context_);
if (!dest.Open(animationFileName, FILE_WRITE))
ErrorExit("Could not open output file " + animationFileName);
dest.WriteFileID("UANI");
dest.WriteString(newAnimation.name_);
dest.WriteFloat(newAnimation.length_);
dest.WriteUInt(newAnimation.tracks_.Size());
for (unsigned i = 0; i < newAnimation.tracks_.Size(); ++i)
{
AnimationTrack& track = newAnimation.tracks_[i];
dest.WriteString(track.name_);
dest.WriteUByte(track.channelMask_);
dest.WriteUInt(track.keyFrames_.Size());
for (unsigned j = 0; j < track.keyFrames_.Size(); ++j)
{
AnimationKeyFrame& keyFrame = track.keyFrames_[j];
dest.WriteFloat(keyFrame.time_);
if (track.channelMask_ & CHANNEL_POSITION)
dest.WriteVector3(keyFrame.position_);
if (track.channelMask_ & CHANNEL_ROTATION)
dest.WriteQuaternion(keyFrame.rotation_);
if (track.channelMask_ & CHANNEL_SCALE)
dest.WriteVector3(keyFrame.scale_);
}
}
animation = animation.GetNext("animation");
PrintLine("Processed animation " + newAnimation.name_);
}
}
}
}
void OptimizeIndices(ModelSubGeometryLodLevel* subGeom, ModelVertexBuffer* vb, ModelIndexBuffer* ib)
{
PODVector<Triangle> oldTriangles;
PODVector<Triangle> newTriangles;
if (subGeom->indexCount_ % 3)
{
PrintLine("Index count is not divisible by 3, skipping index optimization");
return;
}
for (unsigned i = 0; i < vb->vertices_.Size(); ++i)
{
vb->vertices_[i].useCount_ = 0;
vb->vertices_[i].cachePosition_ = -1;
}
for (unsigned i = subGeom->indexStart_; i < subGeom->indexStart_ + subGeom->indexCount_; i += 3)
{
Triangle triangle{ib->indices_[i], ib->indices_[i + 1], ib->indices_[i + 2]};
vb->vertices_[triangle.v0_].useCount_++;
vb->vertices_[triangle.v1_].useCount_++;
vb->vertices_[triangle.v2_].useCount_++;
oldTriangles.Push(triangle);
}
for (unsigned i = 0; i < vb->vertices_.Size(); ++i)
CalculateScore(vb->vertices_[i]);
PODVector<unsigned> vertexCache;
while (oldTriangles.Size())
{
unsigned bestTriangle = M_MAX_UNSIGNED;
float bestTriangleScore = -1.0f;
// Find the best triangle at this point
for (unsigned i = 0; i < oldTriangles.Size(); ++i)
{
Triangle& triangle = oldTriangles[i];
float triangleScore =
vb->vertices_[triangle.v0_].score_ +
vb->vertices_[triangle.v1_].score_ +
vb->vertices_[triangle.v2_].score_;
if (triangleScore > bestTriangleScore)
{
bestTriangle = i;
bestTriangleScore = triangleScore;
}
}
if (bestTriangle == M_MAX_UNSIGNED)
{
PrintLine("Could not find next triangle, aborting index optimization");
return;
}
// Add the best triangle
Triangle triangleCopy = oldTriangles[bestTriangle];
newTriangles.Push(triangleCopy);
oldTriangles.Erase(oldTriangles.Begin() + bestTriangle);
// Reduce the use count
vb->vertices_[triangleCopy.v0_].useCount_--;
vb->vertices_[triangleCopy.v1_].useCount_--;
vb->vertices_[triangleCopy.v2_].useCount_--;
// Model the LRU cache behaviour
// Erase the triangle vertices from the middle of the cache, if they were there
for (unsigned i = 0; i < vertexCache.Size(); ++i)
{
if ((vertexCache[i] == triangleCopy.v0_) ||
(vertexCache[i] == triangleCopy.v1_) ||
(vertexCache[i] == triangleCopy.v2_))
{
vertexCache.Erase(vertexCache.Begin() + i);
--i;
}
}
// Then push them to the front
vertexCache.Insert(vertexCache.Begin(), triangleCopy.v0_);
vertexCache.Insert(vertexCache.Begin(), triangleCopy.v1_);
vertexCache.Insert(vertexCache.Begin(), triangleCopy.v2_);
// Update positions & scores of all vertices in the cache
// Give position -1 if vertex is going to be erased
for (unsigned i = 0; i < vertexCache.Size(); ++i)
{
ModelVertex& vertex = vb->vertices_[vertexCache[i]];
if (i >= VERTEX_CACHE_SIZE)
vertex.cachePosition_ = -1;
else
vertex.cachePosition_ = i;
CalculateScore(vertex);
}
// Finally erase the extra vertices
if (vertexCache.Size() > VERTEX_CACHE_SIZE)
vertexCache.Resize(VERTEX_CACHE_SIZE);
}
// Rewrite the index data now
unsigned i = subGeom->indexStart_;
for (unsigned j = 0; j < newTriangles.Size(); ++j)
{
ib->indices_[i++] = newTriangles[j].v0_;
ib->indices_[i++] = newTriangles[j].v1_;
ib->indices_[i++] = newTriangles[j].v2_;
}
}
void CalculateScore(ModelVertex& vertex)
{
// Linear-Speed Vertex Cache Optimisation by Tom Forsyth from
// http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html
const float cacheDecayPower = 1.5f;
const float lastTriScore = 0.75f;
const float valenceBoostScale = 2.0f;
const float valenceBoostPower = 0.5f;
if (vertex.useCount_ == 0)
{
// No tri needs this vertex!
vertex.score_ = -1.0f;
return;
}
float score = 0.0f;
int cachePosition = vertex.cachePosition_;
if (cachePosition < 0)
{
// Vertex is not in FIFO cache - no score.
}
else
{
if (cachePosition < 3)
{
// This vertex was used in the last triangle,
// so it has a fixed score, whichever of the three
// it's in. Otherwise, you can get very different
// answers depending on whether you add
// the triangle 1,2,3 or 3,1,2 - which is silly.
score = lastTriScore;
}
else
{
// Points for being high in the cache.
const float scaler = 1.0f / (VERTEX_CACHE_SIZE - 3);
score = 1.0f - (cachePosition - 3) * scaler;
score = powf(score, cacheDecayPower);
}
}
// Bonus points for having a low number of tris still to
// use the vert, so we get rid of lone verts quickly.
float valenceBoost = powf((float)vertex.useCount_, -valenceBoostPower);
score += valenceBoostScale * valenceBoost;
vertex.score_ = score;
}
String SanitateAssetName(const String& name)
{
String fixedName = name;
fixedName.Replace("<", "");
fixedName.Replace(">", "");
fixedName.Replace("?", "");
fixedName.Replace("*", "");
fixedName.Replace(":", "");
fixedName.Replace("\"", "");
fixedName.Replace("/", "");
fixedName.Replace("\\", "");
fixedName.Replace("|", "");
return fixedName;
}