Urho3D/bin/Data/Scripts/10_RenderToTexture.as
2017-04-09 22:17:34 +03:00

248 lines
11 KiB
ActionScript

// Render to texture example
// This sample demonstrates:
// - Creating two 3D scenes and rendering the other into a texture
// - Creating rendertarget texture and material programmatically
#include "Scripts/Utilities/Sample.as"
Scene@ rttScene_;
Node@ rttCameraNode;
void Start()
{
// Execute the common startup for samples
SampleStart();
// Create the scene content
CreateScene();
// Create the UI content
CreateInstructions();
// Setup the viewport for displaying the scene
SetupViewport();
// Set the mouse mode to use in the sample
SampleInitMouseMode(MM_RELATIVE);
// Hook up to the frame update events
SubscribeToEvents();
}
void CreateScene()
{
{
// Create the scene which will be rendered to a texture
rttScene_ = Scene();
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
rttScene_.CreateComponent("Octree");
// Create a Zone for ambient light & fog control
Node@ zoneNode = rttScene_.CreateChild("Zone");
Zone@ zone = zoneNode.CreateComponent("Zone");
// Set same volume as the Octree, set a close bluish fog and some ambient light
zone.boundingBox = BoundingBox(-1000.0f, 1000.0f);
zone.ambientColor = Color(0.05f, 0.1f, 0.15f);
zone.fogColor = Color(0.1f, 0.2f, 0.3f);
zone.fogStart = 10.0f;
zone.fogEnd = 100.0f;
// Create randomly positioned and oriented box StaticModels in the scene
const uint NUM_OBJECTS = 2000;
for (uint i = 0; i < NUM_OBJECTS; ++i)
{
Node@ boxNode = rttScene_.CreateChild("Box");
boxNode.position = Vector3(Random(200.0f) - 100.0f, Random(200.0f) - 100.0f, Random(200.0f) - 100.0f);
// Orient using random pitch, yaw and roll Euler angles
boxNode.rotation = Quaternion(Random(360.0f), Random(360.0f), Random(360.0f));
StaticModel@ boxObject = boxNode.CreateComponent("StaticModel");
boxObject.model = cache.GetResource("Model", "Models/Box.mdl");
boxObject.material = cache.GetResource("Material", "Materials/Stone.xml");
// Add our custom Rotator component which will rotate the scene node each frame, when the scene sends its update event.
// Simply set same rotation speed for all objects
Rotator@ rotator = cast<Rotator>(boxNode.CreateScriptObject(scriptFile, "Rotator"));
rotator.rotationSpeed = Vector3(10.0f, 20.0f, 30.0f);
}
// Create a camera for the render-to-texture scene. Simply leave it at the world origin and let it observe the scene
rttCameraNode = rttScene_.CreateChild("Camera");
Camera@ camera = rttCameraNode.CreateComponent("Camera");
camera.farClip = 100.0f;
// Create a point light to the camera scene node
Light@ light = rttCameraNode.CreateComponent("Light");
light.lightType = LIGHT_POINT;
light.range = 30.0f;
}
{
// Create the scene in which we move around
scene_ = Scene();
// Create octree, use also default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
scene_.CreateComponent("Octree");
// Create a Zone component for ambient lighting & fog control
Node@ zoneNode = scene_.CreateChild("Zone");
Zone@ zone = zoneNode.CreateComponent("Zone");
zone.boundingBox = BoundingBox(-1000.0f, 1000.0f);
zone.ambientColor = Color(0.1f, 0.1f, 0.1f);
zone.fogStart = 100.0f;
zone.fogEnd = 300.0f;
// Create a directional light without shadows
Node@ lightNode = scene_.CreateChild("DirectionalLight");
lightNode.direction = Vector3(0.5f, -1.0f, 0.5f);
Light@ light = lightNode.CreateComponent("Light");
light.lightType = LIGHT_DIRECTIONAL;
light.color = Color(0.2f, 0.2f, 0.2f);
light.specularIntensity = 1.0f;
// Create a "floor" consisting of several tiles
for (int y = -5; y <= 5; ++y)
{
for (int x = -5; x <= 5; ++x)
{
Node@ floorNode = scene_.CreateChild("FloorTile");
floorNode.position = Vector3(x * 20.5f, -0.5f, y * 20.5f);
floorNode.scale = Vector3(20.0f, 1.0f, 20.f);
StaticModel@ floorObject = floorNode.CreateComponent("StaticModel");
floorObject.model = cache.GetResource("Model", "Models/Box.mdl");
floorObject.material = cache.GetResource("Material", "Materials/Stone.xml");
}
}
// Create a "screen" like object for viewing the second scene. Construct it from two StaticModels, a box for the frame
// and a plane for the actual view
{
Node@ boxNode = scene_.CreateChild("ScreenBox");
boxNode.position = Vector3(0.0f, 10.0f, 0.0f);
boxNode.scale = Vector3(21.0f, 16.0f, 0.5f);
StaticModel@ boxObject = boxNode.CreateComponent("StaticModel");
boxObject.model = cache.GetResource("Model", "Models/Box.mdl");
boxObject.material = cache.GetResource("Material", "Materials/Stone.xml");
Node@ screenNode = scene_.CreateChild("Screen");
screenNode.position = Vector3(0.0f, 10.0f, -0.27f);
screenNode.rotation = Quaternion(-90.0f, 0.0f, 0.0f);
screenNode.scale = Vector3(20.0f, 0.0f, 15.0f);
StaticModel@ screenObject = screenNode.CreateComponent("StaticModel");
screenObject.model = cache.GetResource("Model", "Models/Plane.mdl");
// Create a renderable texture (1024x768, RGB format), enable bilinear filtering on it
Texture2D@ renderTexture = Texture2D();
renderTexture.SetSize(1024, 768, GetRGBFormat(), TEXTURE_RENDERTARGET);
renderTexture.filterMode = FILTER_BILINEAR;
// Create a new material from scratch, use the diffuse unlit technique, assign the render texture
// as its diffuse texture, then assign the material to the screen plane object
Material@ renderMaterial = Material();
renderMaterial.SetTechnique(0, cache.GetResource("Technique", "Techniques/DiffUnlit.xml"));
renderMaterial.textures[TU_DIFFUSE] = renderTexture;
// Since the screen material is on top of the box model and may Z-fight, use negative depth bias
// to push it forward (particularly necessary on mobiles with possibly less Z resolution)
renderMaterial.depthBias = BiasParameters(-0.001, 0.0);
screenObject.material = renderMaterial;
// Get the texture's RenderSurface object (exists when the texture has been created in rendertarget mode)
// and define the viewport for rendering the second scene, similarly as how backbuffer viewports are defined
// to the Renderer subsystem. By default the texture viewport will be updated when the texture is visible
// in the main view
RenderSurface@ surface = renderTexture.renderSurface;
Viewport@ rttViewport = Viewport(rttScene_, rttCameraNode.GetComponent("Camera"));
surface.viewports[0] = rttViewport;
}
// Create the camera which we will move around. Limit far clip distance to match the fog
cameraNode = scene_.CreateChild("Camera");
Camera@ camera = cameraNode.CreateComponent("Camera");
camera.farClip = 300.0f;
// Set an initial position for the camera scene node above the plane
cameraNode.position = Vector3(0.0f, 7.0f, -30.0f);
}
}
void CreateInstructions()
{
// Construct new Text object, set string to display and font to use
Text@ instructionText = ui.root.CreateChild("Text");
instructionText.text = "Use WASD keys and mouse to move";
instructionText.SetFont(cache.GetResource("Font", "Fonts/Anonymous Pro.ttf"), 15);
// Position the text relative to the screen center
instructionText.horizontalAlignment = HA_CENTER;
instructionText.verticalAlignment = VA_CENTER;
instructionText.SetPosition(0, ui.root.height / 4);
}
void SetupViewport()
{
// Set up a viewport to the Renderer subsystem so that the 3D scene can be seen
Viewport@ viewport = Viewport(scene_, cameraNode.GetComponent("Camera"));
renderer.viewports[0] = viewport;
}
void MoveCamera(float timeStep)
{
// Do not move if the UI has a focused element (the console)
if (ui.focusElement !is null)
return;
// Movement speed as world units per second
const float MOVE_SPEED = 20.0f;
// Mouse sensitivity as degrees per pixel
const float MOUSE_SENSITIVITY = 0.1f;
// Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees
IntVector2 mouseMove = input.mouseMove;
yaw += MOUSE_SENSITIVITY * mouseMove.x;
pitch += MOUSE_SENSITIVITY * mouseMove.y;
pitch = Clamp(pitch, -90.0f, 90.0f);
// Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero
cameraNode.rotation = Quaternion(pitch, yaw, 0.0f);
// Read WASD keys and move the camera scene node to the corresponding direction if they are pressed
if (input.keyDown[KEY_W])
cameraNode.Translate(Vector3::FORWARD * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_S])
cameraNode.Translate(Vector3::BACK * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_A])
cameraNode.Translate(Vector3::LEFT * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_D])
cameraNode.Translate(Vector3::RIGHT * MOVE_SPEED * timeStep);
}
void SubscribeToEvents()
{
// Subscribe HandleUpdate() function for processing update events
SubscribeToEvent("Update", "HandleUpdate");
}
void HandleUpdate(StringHash eventType, VariantMap& eventData)
{
// Take the frame time step, which is stored as a float
float timeStep = eventData["TimeStep"].GetFloat();
// Move the camera, scale movement with time step
MoveCamera(timeStep);
}
// Rotator script object class. Script objects to be added to a scene node must implement the empty ScriptObject interface
class Rotator : ScriptObject
{
Vector3 rotationSpeed;
// Update is called during the variable timestep scene update
void Update(float timeStep)
{
node.Rotate(Quaternion(rotationSpeed.x * timeStep, rotationSpeed.y * timeStep, rotationSpeed.z * timeStep));
}
}
// Create XML patch instructions for screen joystick layout specific to this sample app
String patchInstructions = "";