Urho3D/bin/Data/Scripts/31_MaterialAnimation.as
2017-04-09 22:17:34 +03:00

164 lines
7.4 KiB
ActionScript

// Material animation example.
// This sample is base on StaticScene, and it demonstrates:
// - Usage of material shader animation for mush room material
#include "Scripts/Utilities/Sample.as"
void Start()
{
// Execute the common startup for samples
SampleStart();
// Create the scene content
CreateScene();
// Create the UI content
CreateInstructions();
// Setup the viewport for displaying the scene
SetupViewport();
// Set the mouse mode to use in the sample
SampleInitMouseMode(MM_RELATIVE);
// Hook up to the frame update events
SubscribeToEvents();
}
void CreateScene()
{
scene_ = Scene();
// Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will
// show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it
// is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically
// optimizing manner
scene_.CreateComponent("Octree");
// Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple
// plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger
// (100 x 100 world units)
Node@ planeNode = scene_.CreateChild("Plane");
planeNode.scale = Vector3(100.0f, 1.0f, 100.0f);
StaticModel@ planeObject = planeNode.CreateComponent("StaticModel");
planeObject.model = cache.GetResource("Model", "Models/Plane.mdl");
planeObject.material = cache.GetResource("Material", "Materials/StoneTiled.xml");
// Create a directional light to the world so that we can see something. The light scene node's orientation controls the
// light direction; we will use the SetDirection() function which calculates the orientation from a forward direction vector.
// The light will use default settings (white light, no shadows)
Node@ lightNode = scene_.CreateChild("DirectionalLight");
lightNode.direction = Vector3(0.6f, -1.0f, 0.8f); // The direction vector does not need to be normalized
Light@ light = lightNode.CreateComponent("Light");
light.lightType = LIGHT_DIRECTIONAL;
// Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a
// quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains
// LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll
// see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the
// same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the
// scene.
Material@ mushroomMat = cache.GetResource("Material", "Materials/Mushroom.xml");
// Apply shader parameter animation to material
ValueAnimation@ specColorAnimation = ValueAnimation();
specColorAnimation.SetKeyFrame(0.0f, Variant(Color(0.1f, 0.1f, 0.1f, 16.0f)));
specColorAnimation.SetKeyFrame(1.0f, Variant(Color(1.0f, 0.0f, 0.0f, 2.0f)));
specColorAnimation.SetKeyFrame(2.0f, Variant(Color(1.0f, 1.0f, 0.0f, 2.0f)));
specColorAnimation.SetKeyFrame(3.0f, Variant(Color(0.1f, 0.1f, 0.1f, 16.0f)));
// Optionally associate material with scene to make sure shader parameter animation respects scene time scale
mushroomMat.scene = scene_;
mushroomMat.SetShaderParameterAnimation("MatSpecColor", specColorAnimation);
const uint NUM_OBJECTS = 200;
for (uint i = 0; i < NUM_OBJECTS; ++i)
{
Node@ mushroomNode = scene_.CreateChild("Mushroom");
mushroomNode.position = Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f);
mushroomNode.rotation = Quaternion(0.0f, Random(360.0f), 0.0f);
mushroomNode.SetScale(0.5f + Random(2.0f));
StaticModel@ mushroomObject = mushroomNode.CreateComponent("StaticModel");
mushroomObject.model = cache.GetResource("Model", "Models/Mushroom.mdl");
mushroomObject.material = mushroomMat;
}
// Create a scene node for the camera, which we will move around
// The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically)
cameraNode = scene_.CreateChild("Camera");
cameraNode.CreateComponent("Camera");
// Set an initial position for the camera scene node above the plane
cameraNode.position = Vector3(0.0f, 5.0f, 0.0f);
}
void CreateInstructions()
{
// Construct new Text object, set string to display and font to use
Text@ instructionText = ui.root.CreateChild("Text");
instructionText.text = "Use WASD keys and mouse to move";
instructionText.SetFont(cache.GetResource("Font", "Fonts/Anonymous Pro.ttf"), 15);
// Position the text relative to the screen center
instructionText.horizontalAlignment = HA_CENTER;
instructionText.verticalAlignment = VA_CENTER;
instructionText.SetPosition(0, ui.root.height / 4);
}
void SetupViewport()
{
// Set up a viewport to the Renderer subsystem so that the 3D scene can be seen. We need to define the scene and the camera
// at minimum. Additionally we could configure the viewport screen size and the rendering path (eg. forward / deferred) to
// use, but now we just use full screen and default render path configured in the engine command line options
Viewport@ viewport = Viewport(scene_, cameraNode.GetComponent("Camera"));
renderer.viewports[0] = viewport;
}
void MoveCamera(float timeStep)
{
// Do not move if the UI has a focused element (the console)
if (ui.focusElement !is null)
return;
// Movement speed as world units per second
const float MOVE_SPEED = 20.0f;
// Mouse sensitivity as degrees per pixel
const float MOUSE_SENSITIVITY = 0.1f;
// Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees
IntVector2 mouseMove = input.mouseMove;
yaw += MOUSE_SENSITIVITY * mouseMove.x;
pitch += MOUSE_SENSITIVITY * mouseMove.y;
pitch = Clamp(pitch, -90.0f, 90.0f);
// Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero
cameraNode.rotation = Quaternion(pitch, yaw, 0.0f);
// Read WASD keys and move the camera scene node to the corresponding direction if they are pressed
// Use the Translate() function (default local space) to move relative to the node's orientation.
if (input.keyDown[KEY_W])
cameraNode.Translate(Vector3::FORWARD * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_S])
cameraNode.Translate(Vector3::BACK * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_A])
cameraNode.Translate(Vector3::LEFT * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_D])
cameraNode.Translate(Vector3::RIGHT * MOVE_SPEED * timeStep);
}
void SubscribeToEvents()
{
// Subscribe HandleUpdate() function for processing update events
SubscribeToEvent("Update", "HandleUpdate");
}
void HandleUpdate(StringHash eventType, VariantMap& eventData)
{
// Take the frame time step, which is stored as a float
float timeStep = eventData["TimeStep"].GetFloat();
// Move the camera, scale movement with time step
MoveCamera(timeStep);
}
// Create XML patch instructions for screen joystick layout specific to this sample app
String patchInstructions = "";