191 lines
7.8 KiB
C++
191 lines
7.8 KiB
C++
/*
|
|
Open Asset Import Library (assimp)
|
|
----------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2017, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the
|
|
following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
----------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file IFCProfile.cpp
|
|
* @brief Read profile and curves entities from IFC files
|
|
*/
|
|
|
|
|
|
|
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
|
#include "IFCUtil.h"
|
|
|
|
namespace Assimp {
|
|
namespace IFC {
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessPolyLine(const IfcPolyline& def, TempMesh& meshout, ConversionData& /*conv*/)
|
|
{
|
|
// this won't produce a valid mesh, it just spits out a list of vertices
|
|
IfcVector3 t;
|
|
for(const IfcCartesianPoint& cp : def.Points) {
|
|
ConvertCartesianPoint(t,cp);
|
|
meshout.verts.push_back(t);
|
|
}
|
|
meshout.vertcnt.push_back(static_cast<unsigned int>(meshout.verts.size()));
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessCurve(const IfcCurve& curve, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
std::unique_ptr<const Curve> cv(Curve::Convert(curve,conv));
|
|
if (!cv) {
|
|
IFCImporter::LogWarn("skipping unknown IfcCurve entity, type is " + curve.GetClassName());
|
|
return false;
|
|
}
|
|
|
|
// we must have a bounded curve at this point
|
|
if (const BoundedCurve* bc = dynamic_cast<const BoundedCurve*>(cv.get())) {
|
|
try {
|
|
bc->SampleDiscrete(meshout);
|
|
}
|
|
catch(const CurveError& cv) {
|
|
IFCImporter::LogError(cv.s+ " (error occurred while processing curve)");
|
|
return false;
|
|
}
|
|
meshout.vertcnt.push_back(static_cast<unsigned int>(meshout.verts.size()));
|
|
return true;
|
|
}
|
|
|
|
IFCImporter::LogError("cannot use unbounded curve as profile");
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessClosedProfile(const IfcArbitraryClosedProfileDef& def, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
ProcessCurve(def.OuterCurve,meshout,conv);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessOpenProfile(const IfcArbitraryOpenProfileDef& def, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
ProcessCurve(def.Curve,meshout,conv);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
void ProcessParametrizedProfile(const IfcParameterizedProfileDef& def, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
if(const IfcRectangleProfileDef* const cprofile = def.ToPtr<IfcRectangleProfileDef>()) {
|
|
const IfcFloat x = cprofile->XDim*0.5f, y = cprofile->YDim*0.5f;
|
|
|
|
meshout.verts.reserve(meshout.verts.size()+4);
|
|
meshout.verts.push_back( IfcVector3( x, y, 0.f ));
|
|
meshout.verts.push_back( IfcVector3(-x, y, 0.f ));
|
|
meshout.verts.push_back( IfcVector3(-x,-y, 0.f ));
|
|
meshout.verts.push_back( IfcVector3( x,-y, 0.f ));
|
|
meshout.vertcnt.push_back(4);
|
|
}
|
|
else if( const IfcCircleProfileDef* const circle = def.ToPtr<IfcCircleProfileDef>()) {
|
|
if(def.ToPtr<IfcCircleHollowProfileDef>()) {
|
|
// TODO
|
|
}
|
|
const size_t segments = conv.settings.cylindricalTessellation;
|
|
const IfcFloat delta = AI_MATH_TWO_PI_F/segments, radius = circle->Radius;
|
|
|
|
meshout.verts.reserve(segments);
|
|
|
|
IfcFloat angle = 0.f;
|
|
for(size_t i = 0; i < segments; ++i, angle += delta) {
|
|
meshout.verts.push_back( IfcVector3( std::cos(angle)*radius, std::sin(angle)*radius, 0.f ));
|
|
}
|
|
|
|
meshout.vertcnt.push_back(static_cast<unsigned int>(segments));
|
|
}
|
|
else if( const IfcIShapeProfileDef* const ishape = def.ToPtr<IfcIShapeProfileDef>()) {
|
|
// construct simplified IBeam shape
|
|
const IfcFloat offset = (ishape->OverallWidth - ishape->WebThickness) / 2;
|
|
const IfcFloat inner_height = ishape->OverallDepth - ishape->FlangeThickness * 2;
|
|
|
|
meshout.verts.reserve(12);
|
|
meshout.verts.push_back(IfcVector3(0,0,0));
|
|
meshout.verts.push_back(IfcVector3(0,ishape->FlangeThickness,0));
|
|
meshout.verts.push_back(IfcVector3(offset,ishape->FlangeThickness,0));
|
|
meshout.verts.push_back(IfcVector3(offset,ishape->FlangeThickness + inner_height,0));
|
|
meshout.verts.push_back(IfcVector3(0,ishape->FlangeThickness + inner_height,0));
|
|
meshout.verts.push_back(IfcVector3(0,ishape->OverallDepth,0));
|
|
meshout.verts.push_back(IfcVector3(ishape->OverallWidth,ishape->OverallDepth,0));
|
|
meshout.verts.push_back(IfcVector3(ishape->OverallWidth,ishape->FlangeThickness + inner_height,0));
|
|
meshout.verts.push_back(IfcVector3(offset+ishape->WebThickness,ishape->FlangeThickness + inner_height,0));
|
|
meshout.verts.push_back(IfcVector3(offset+ishape->WebThickness,ishape->FlangeThickness,0));
|
|
meshout.verts.push_back(IfcVector3(ishape->OverallWidth,ishape->FlangeThickness,0));
|
|
meshout.verts.push_back(IfcVector3(ishape->OverallWidth,0,0));
|
|
|
|
meshout.vertcnt.push_back(12);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcParameterizedProfileDef entity, type is " + def.GetClassName());
|
|
return;
|
|
}
|
|
|
|
IfcMatrix4 trafo;
|
|
ConvertAxisPlacement(trafo, *def.Position);
|
|
meshout.Transform(trafo);
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
bool ProcessProfile(const IfcProfileDef& prof, TempMesh& meshout, ConversionData& conv)
|
|
{
|
|
if(const IfcArbitraryClosedProfileDef* const cprofile = prof.ToPtr<IfcArbitraryClosedProfileDef>()) {
|
|
ProcessClosedProfile(*cprofile,meshout,conv);
|
|
}
|
|
else if(const IfcArbitraryOpenProfileDef* const copen = prof.ToPtr<IfcArbitraryOpenProfileDef>()) {
|
|
ProcessOpenProfile(*copen,meshout,conv);
|
|
}
|
|
else if(const IfcParameterizedProfileDef* const cparam = prof.ToPtr<IfcParameterizedProfileDef>()) {
|
|
ProcessParametrizedProfile(*cparam,meshout,conv);
|
|
}
|
|
else {
|
|
IFCImporter::LogWarn("skipping unknown IfcProfileDef entity, type is " + prof.GetClassName());
|
|
return false;
|
|
}
|
|
meshout.RemoveAdjacentDuplicates();
|
|
if (!meshout.vertcnt.size() || meshout.vertcnt.front() <= 1) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // ! IFC
|
|
} // ! Assimp
|
|
|
|
#endif
|