1015 lines
33 KiB
C++
1015 lines
33 KiB
C++
/*
|
|
---------------------------------------------------------------------------
|
|
Open Asset Import Library (assimp)
|
|
---------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2006-2017, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
with or without modification, are permitted provided that the following
|
|
conditions are met:
|
|
|
|
* Redistributions of source code must retain the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the
|
|
following disclaimer in the documentation and/or other
|
|
materials provided with the distribution.
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
contributors may be used to endorse or promote products
|
|
derived from this software without specific prior
|
|
written permission of the assimp team.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
---------------------------------------------------------------------------
|
|
*/
|
|
|
|
/** @file PlyLoader.cpp
|
|
* @brief Implementation of the PLY importer class
|
|
*/
|
|
|
|
#ifndef ASSIMP_BUILD_NO_PLY_IMPORTER
|
|
|
|
// internal headers
|
|
#include "PlyLoader.h"
|
|
#include "IOStreamBuffer.h"
|
|
#include "Macros.h"
|
|
#include <memory>
|
|
#include <assimp/IOSystem.hpp>
|
|
#include <assimp/scene.h>
|
|
#include <assimp/importerdesc.h>
|
|
|
|
using namespace Assimp;
|
|
|
|
static const aiImporterDesc desc = {
|
|
"Stanford Polygon Library (PLY) Importer",
|
|
"",
|
|
"",
|
|
"",
|
|
aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportTextFlavour,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
"ply"
|
|
};
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Internal stuff
|
|
namespace
|
|
{
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Checks that property index is within range
|
|
template <class T>
|
|
const T &GetProperty(const std::vector<T> &props, int idx)
|
|
{
|
|
if (static_cast<size_t>(idx) >= props.size()) {
|
|
throw DeadlyImportError("Invalid .ply file: Property index is out of range.");
|
|
}
|
|
|
|
return props[idx];
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Constructor to be privately used by Importer
|
|
PLYImporter::PLYImporter()
|
|
: mBuffer()
|
|
, pcDOM()
|
|
, mGeneratedMesh(NULL){
|
|
// empty
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Destructor, private as well
|
|
PLYImporter::~PLYImporter() {
|
|
// empty
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Returns whether the class can handle the format of the given file.
|
|
bool PLYImporter::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const
|
|
{
|
|
const std::string extension = GetExtension(pFile);
|
|
|
|
if (extension == "ply")
|
|
return true;
|
|
else if (!extension.length() || checkSig)
|
|
{
|
|
if (!pIOHandler)return true;
|
|
const char* tokens[] = { "ply" };
|
|
return SearchFileHeaderForToken(pIOHandler, pFile, tokens, 1);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
const aiImporterDesc* PLYImporter::GetInfo() const
|
|
{
|
|
return &desc;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
static bool isBigEndian(const char* szMe) {
|
|
ai_assert(NULL != szMe);
|
|
|
|
// binary_little_endian
|
|
// binary_big_endian
|
|
bool isBigEndian(false);
|
|
#if (defined AI_BUILD_BIG_ENDIAN)
|
|
if ( 'l' == *szMe || 'L' == *szMe ) {
|
|
isBigEndian = true;
|
|
}
|
|
#else
|
|
if ('b' == *szMe || 'B' == *szMe) {
|
|
isBigEndian = true;
|
|
}
|
|
#endif // ! AI_BUILD_BIG_ENDIAN
|
|
|
|
return isBigEndian;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Imports the given file into the given scene structure.
|
|
void PLYImporter::InternReadFile(const std::string& pFile,
|
|
aiScene* pScene, IOSystem* pIOHandler)
|
|
{
|
|
static const std::string mode = "rb";
|
|
std::unique_ptr<IOStream> fileStream(pIOHandler->Open(pFile, mode));
|
|
if (!fileStream.get()) {
|
|
throw DeadlyImportError("Failed to open file " + pFile + ".");
|
|
}
|
|
|
|
// Get the file-size
|
|
size_t fileSize = fileStream->FileSize();
|
|
if ( 0 == fileSize ) {
|
|
throw DeadlyImportError("File " + pFile + " is empty.");
|
|
}
|
|
|
|
IOStreamBuffer<char> streamedBuffer(1024 * 1024);
|
|
streamedBuffer.open(fileStream.get());
|
|
|
|
// the beginning of the file must be PLY - magic, magic
|
|
std::vector<char> headerCheck;
|
|
streamedBuffer.getNextLine(headerCheck);
|
|
|
|
if ((headerCheck.size() < 3) ||
|
|
(headerCheck[0] != 'P' && headerCheck[0] != 'p') ||
|
|
(headerCheck[1] != 'L' && headerCheck[1] != 'l') ||
|
|
(headerCheck[2] != 'Y' && headerCheck[2] != 'y') )
|
|
{
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Magic number \'ply\' is no there");
|
|
}
|
|
|
|
std::vector<char> mBuffer2;
|
|
streamedBuffer.getNextLine(mBuffer2);
|
|
mBuffer = (unsigned char*)&mBuffer2[0];
|
|
|
|
char* szMe = (char*)&this->mBuffer[0];
|
|
SkipSpacesAndLineEnd(szMe, (const char**)&szMe);
|
|
|
|
// determine the format of the file data and construct the aimesh
|
|
PLY::DOM sPlyDom;
|
|
this->pcDOM = &sPlyDom;
|
|
|
|
if (TokenMatch(szMe, "format", 6)) {
|
|
if (TokenMatch(szMe, "ascii", 5)) {
|
|
SkipLine(szMe, (const char**)&szMe);
|
|
if (!PLY::DOM::ParseInstance(streamedBuffer, &sPlyDom, this))
|
|
{
|
|
if (mGeneratedMesh != NULL)
|
|
delete(mGeneratedMesh);
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Unable to build DOM (#1)");
|
|
}
|
|
}
|
|
else if (!::strncmp(szMe, "binary_", 7))
|
|
{
|
|
szMe += 7;
|
|
const bool bIsBE(isBigEndian(szMe));
|
|
|
|
// skip the line, parse the rest of the header and build the DOM
|
|
if (!PLY::DOM::ParseInstanceBinary(streamedBuffer, &sPlyDom, this, bIsBE))
|
|
{
|
|
if (mGeneratedMesh != NULL)
|
|
delete(mGeneratedMesh);
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Unable to build DOM (#2)");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (mGeneratedMesh != NULL)
|
|
delete(mGeneratedMesh);
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Unknown file format");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
AI_DEBUG_INVALIDATE_PTR(this->mBuffer);
|
|
if (mGeneratedMesh != NULL)
|
|
delete(mGeneratedMesh);
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Missing format specification");
|
|
}
|
|
|
|
//free the file buffer
|
|
streamedBuffer.close();
|
|
|
|
if (mGeneratedMesh == NULL)
|
|
{
|
|
throw DeadlyImportError("Invalid .ply file: Unable to extract mesh data ");
|
|
}
|
|
|
|
// if no face list is existing we assume that the vertex
|
|
// list is containing a list of points
|
|
bool pointsOnly = mGeneratedMesh->mFaces == NULL ? true : false;
|
|
if (pointsOnly)
|
|
{
|
|
if (mGeneratedMesh->mNumVertices < 3)
|
|
{
|
|
if (mGeneratedMesh != NULL)
|
|
delete(mGeneratedMesh);
|
|
|
|
streamedBuffer.close();
|
|
throw DeadlyImportError("Invalid .ply file: Not enough "
|
|
"vertices to build a proper face list. ");
|
|
}
|
|
|
|
const unsigned int iNum = (unsigned int)mGeneratedMesh->mNumVertices / 3;
|
|
mGeneratedMesh->mNumFaces = iNum;
|
|
mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces];
|
|
|
|
for (unsigned int i = 0; i < iNum; ++i)
|
|
{
|
|
mGeneratedMesh->mFaces[i].mNumIndices = 3;
|
|
mGeneratedMesh->mFaces[i].mIndices = new unsigned int[3];
|
|
mGeneratedMesh->mFaces[i].mIndices[0] = (i * 3);
|
|
mGeneratedMesh->mFaces[i].mIndices[1] = (i * 3) + 1;
|
|
mGeneratedMesh->mFaces[i].mIndices[2] = (i * 3) + 2;
|
|
}
|
|
}
|
|
|
|
// now load a list of all materials
|
|
std::vector<aiMaterial*> avMaterials;
|
|
std::string defaultTexture;
|
|
LoadMaterial(&avMaterials, defaultTexture, pointsOnly);
|
|
|
|
// now generate the output scene object. Fill the material list
|
|
pScene->mNumMaterials = (unsigned int)avMaterials.size();
|
|
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
|
|
for (unsigned int i = 0; i < pScene->mNumMaterials; ++i) {
|
|
pScene->mMaterials[i] = avMaterials[i];
|
|
}
|
|
|
|
// fill the mesh list
|
|
pScene->mNumMeshes = 1;
|
|
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
|
|
pScene->mMeshes[0] = mGeneratedMesh;
|
|
|
|
// generate a simple node structure
|
|
pScene->mRootNode = new aiNode();
|
|
pScene->mRootNode->mNumMeshes = pScene->mNumMeshes;
|
|
pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes];
|
|
|
|
for (unsigned int i = 0; i < pScene->mRootNode->mNumMeshes; ++i) {
|
|
pScene->mRootNode->mMeshes[i] = i;
|
|
}
|
|
}
|
|
|
|
void PLYImporter::LoadVertex(const PLY::Element* pcElement, const PLY::ElementInstance* instElement, unsigned int pos) {
|
|
ai_assert(NULL != pcElement);
|
|
ai_assert(NULL != instElement);
|
|
|
|
ai_uint aiPositions[3] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
|
|
PLY::EDataType aiTypes[3] = { EDT_Char, EDT_Char, EDT_Char };
|
|
|
|
ai_uint aiNormal[3] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
|
|
PLY::EDataType aiNormalTypes[3] = { EDT_Char, EDT_Char, EDT_Char };
|
|
|
|
unsigned int aiColors[4] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF };
|
|
PLY::EDataType aiColorsTypes[4] = { EDT_Char, EDT_Char, EDT_Char, EDT_Char };
|
|
|
|
unsigned int aiTexcoord[2] = { 0xFFFFFFFF, 0xFFFFFFFF };
|
|
PLY::EDataType aiTexcoordTypes[2] = { EDT_Char, EDT_Char };
|
|
|
|
// now check whether which normal components are available
|
|
unsigned int _a( 0 ), cnt( 0 );
|
|
for ( std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
|
|
a != pcElement->alProperties.end(); ++a, ++_a) {
|
|
if ((*a).bIsList) {
|
|
continue;
|
|
}
|
|
|
|
// Positions
|
|
if (PLY::EST_XCoord == (*a).Semantic) {
|
|
++cnt;
|
|
aiPositions[0] = _a;
|
|
aiTypes[0] = (*a).eType;
|
|
} else if (PLY::EST_YCoord == (*a).Semantic) {
|
|
++cnt;
|
|
aiPositions[1] = _a;
|
|
aiTypes[1] = (*a).eType;
|
|
} else if (PLY::EST_ZCoord == (*a).Semantic) {
|
|
++cnt;
|
|
aiPositions[2] = _a;
|
|
aiTypes[2] = (*a).eType;
|
|
} else if (PLY::EST_XNormal == (*a).Semantic) {
|
|
// Normals
|
|
++cnt;
|
|
aiNormal[0] = _a;
|
|
aiNormalTypes[0] = (*a).eType;
|
|
} else if (PLY::EST_YNormal == (*a).Semantic) {
|
|
++cnt;
|
|
aiNormal[1] = _a;
|
|
aiNormalTypes[1] = (*a).eType;
|
|
} else if (PLY::EST_ZNormal == (*a).Semantic) {
|
|
++cnt;
|
|
aiNormal[2] = _a;
|
|
aiNormalTypes[2] = (*a).eType;
|
|
} else if (PLY::EST_Red == (*a).Semantic) {
|
|
// Colors
|
|
++cnt;
|
|
aiColors[0] = _a;
|
|
aiColorsTypes[0] = (*a).eType;
|
|
} else if (PLY::EST_Green == (*a).Semantic) {
|
|
++cnt;
|
|
aiColors[1] = _a;
|
|
aiColorsTypes[1] = (*a).eType;
|
|
} else if (PLY::EST_Blue == (*a).Semantic) {
|
|
++cnt;
|
|
aiColors[2] = _a;
|
|
aiColorsTypes[2] = (*a).eType;
|
|
} else if (PLY::EST_Alpha == (*a).Semantic) {
|
|
++cnt;
|
|
aiColors[3] = _a;
|
|
aiColorsTypes[3] = (*a).eType;
|
|
} else if (PLY::EST_UTextureCoord == (*a).Semantic) {
|
|
// Texture coordinates
|
|
++cnt;
|
|
aiTexcoord[0] = _a;
|
|
aiTexcoordTypes[0] = (*a).eType;
|
|
} else if (PLY::EST_VTextureCoord == (*a).Semantic) {
|
|
++cnt;
|
|
aiTexcoord[1] = _a;
|
|
aiTexcoordTypes[1] = (*a).eType;
|
|
}
|
|
}
|
|
|
|
// check whether we have a valid source for the vertex data
|
|
if (0 != cnt) {
|
|
// Position
|
|
aiVector3D vOut;
|
|
if (0xFFFFFFFF != aiPositions[0]) {
|
|
vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiPositions[0]).avList.front(), aiTypes[0]);
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiPositions[1]) {
|
|
vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiPositions[1]).avList.front(), aiTypes[1]);
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiPositions[2]) {
|
|
vOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiPositions[2]).avList.front(), aiTypes[2]);
|
|
}
|
|
|
|
// Normals
|
|
aiVector3D nOut;
|
|
bool haveNormal = false;
|
|
if (0xFFFFFFFF != aiNormal[0]) {
|
|
nOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiNormal[0]).avList.front(), aiNormalTypes[0]);
|
|
haveNormal = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiNormal[1]) {
|
|
nOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiNormal[1]).avList.front(), aiNormalTypes[1]);
|
|
haveNormal = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiNormal[2]) {
|
|
nOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiNormal[2]).avList.front(), aiNormalTypes[2]);
|
|
haveNormal = true;
|
|
}
|
|
|
|
//Colors
|
|
aiColor4D cOut;
|
|
bool haveColor = false;
|
|
if (0xFFFFFFFF != aiColors[0]) {
|
|
cOut.r = NormalizeColorValue(GetProperty(instElement->alProperties,
|
|
aiColors[0]).avList.front(), aiColorsTypes[0]);
|
|
haveColor = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiColors[1]) {
|
|
cOut.g = NormalizeColorValue(GetProperty(instElement->alProperties,
|
|
aiColors[1]).avList.front(), aiColorsTypes[1]);
|
|
haveColor = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiColors[2]) {
|
|
cOut.b = NormalizeColorValue(GetProperty(instElement->alProperties,
|
|
aiColors[2]).avList.front(), aiColorsTypes[2]);
|
|
haveColor = true;
|
|
}
|
|
|
|
// assume 1.0 for the alpha channel ifit is not set
|
|
if (0xFFFFFFFF == aiColors[3]) {
|
|
cOut.a = 1.0;
|
|
} else {
|
|
cOut.a = NormalizeColorValue(GetProperty(instElement->alProperties,
|
|
aiColors[3]).avList.front(), aiColorsTypes[3]);
|
|
|
|
haveColor = true;
|
|
}
|
|
|
|
//Texture coordinates
|
|
aiVector3D tOut;
|
|
tOut.z = 0;
|
|
bool haveTextureCoords = false;
|
|
if (0xFFFFFFFF != aiTexcoord[0]) {
|
|
tOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiTexcoord[0]).avList.front(), aiTexcoordTypes[0]);
|
|
haveTextureCoords = true;
|
|
}
|
|
|
|
if (0xFFFFFFFF != aiTexcoord[1]) {
|
|
tOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
|
|
GetProperty(instElement->alProperties, aiTexcoord[1]).avList.front(), aiTexcoordTypes[1]);
|
|
haveTextureCoords = true;
|
|
}
|
|
|
|
//create aiMesh if needed
|
|
if ( nullptr == mGeneratedMesh ) {
|
|
mGeneratedMesh = new aiMesh();
|
|
mGeneratedMesh->mMaterialIndex = 0;
|
|
}
|
|
|
|
if (nullptr == mGeneratedMesh->mVertices) {
|
|
mGeneratedMesh->mNumVertices = pcElement->NumOccur;
|
|
mGeneratedMesh->mVertices = new aiVector3D[mGeneratedMesh->mNumVertices];
|
|
}
|
|
|
|
mGeneratedMesh->mVertices[pos] = vOut;
|
|
|
|
if (haveNormal) {
|
|
if (nullptr == mGeneratedMesh->mNormals)
|
|
mGeneratedMesh->mNormals = new aiVector3D[mGeneratedMesh->mNumVertices];
|
|
mGeneratedMesh->mNormals[pos] = nOut;
|
|
}
|
|
|
|
if (haveColor) {
|
|
if (nullptr == mGeneratedMesh->mColors[0])
|
|
mGeneratedMesh->mColors[0] = new aiColor4D[mGeneratedMesh->mNumVertices];
|
|
mGeneratedMesh->mColors[0][pos] = cOut;
|
|
}
|
|
|
|
if (haveTextureCoords) {
|
|
if (nullptr == mGeneratedMesh->mTextureCoords[0]) {
|
|
mGeneratedMesh->mNumUVComponents[0] = 2;
|
|
mGeneratedMesh->mTextureCoords[0] = new aiVector3D[mGeneratedMesh->mNumVertices];
|
|
}
|
|
mGeneratedMesh->mTextureCoords[0][pos] = tOut;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Convert a color component to [0...1]
|
|
ai_real PLYImporter::NormalizeColorValue(PLY::PropertyInstance::ValueUnion val,
|
|
PLY::EDataType eType)
|
|
{
|
|
switch (eType)
|
|
{
|
|
case EDT_Float:
|
|
return val.fFloat;
|
|
case EDT_Double:
|
|
return (ai_real)val.fDouble;
|
|
|
|
case EDT_UChar:
|
|
return (ai_real)val.iUInt / (ai_real)0xFF;
|
|
case EDT_Char:
|
|
return (ai_real)(val.iInt + (0xFF / 2)) / (ai_real)0xFF;
|
|
case EDT_UShort:
|
|
return (ai_real)val.iUInt / (ai_real)0xFFFF;
|
|
case EDT_Short:
|
|
return (ai_real)(val.iInt + (0xFFFF / 2)) / (ai_real)0xFFFF;
|
|
case EDT_UInt:
|
|
return (ai_real)val.iUInt / (ai_real)0xFFFF;
|
|
case EDT_Int:
|
|
return ((ai_real)val.iInt / (ai_real)0xFF) + 0.5f;
|
|
default:;
|
|
};
|
|
return 0.0f;
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Try to extract proper faces from the PLY DOM
|
|
void PLYImporter::LoadFace(const PLY::Element* pcElement, const PLY::ElementInstance* instElement, unsigned int pos)
|
|
{
|
|
ai_assert(NULL != pcElement);
|
|
ai_assert(NULL != instElement);
|
|
|
|
if (mGeneratedMesh == NULL)
|
|
throw DeadlyImportError("Invalid .ply file: Vertices should be declared before faces");
|
|
|
|
bool bOne = false;
|
|
|
|
// index of the vertex index list
|
|
unsigned int iProperty = 0xFFFFFFFF;
|
|
PLY::EDataType eType = EDT_Char;
|
|
bool bIsTriStrip = false;
|
|
|
|
// index of the material index property
|
|
//unsigned int iMaterialIndex = 0xFFFFFFFF;
|
|
//PLY::EDataType eType2 = EDT_Char;
|
|
|
|
// texture coordinates
|
|
unsigned int iTextureCoord = 0xFFFFFFFF;
|
|
PLY::EDataType eType3 = EDT_Char;
|
|
|
|
// face = unique number of vertex indices
|
|
if (PLY::EEST_Face == pcElement->eSemantic)
|
|
{
|
|
unsigned int _a = 0;
|
|
for (std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
|
|
a != pcElement->alProperties.end(); ++a, ++_a)
|
|
{
|
|
if (PLY::EST_VertexIndex == (*a).Semantic)
|
|
{
|
|
// must be a dynamic list!
|
|
if (!(*a).bIsList)
|
|
continue;
|
|
|
|
iProperty = _a;
|
|
bOne = true;
|
|
eType = (*a).eType;
|
|
}
|
|
/*else if (PLY::EST_MaterialIndex == (*a).Semantic)
|
|
{
|
|
if ((*a).bIsList)
|
|
continue;
|
|
iMaterialIndex = _a;
|
|
bOne = true;
|
|
eType2 = (*a).eType;
|
|
}*/
|
|
else if (PLY::EST_TextureCoordinates == (*a).Semantic)
|
|
{
|
|
// must be a dynamic list!
|
|
if (!(*a).bIsList)
|
|
continue;
|
|
iTextureCoord = _a;
|
|
bOne = true;
|
|
eType3 = (*a).eType;
|
|
}
|
|
}
|
|
}
|
|
// triangle strip
|
|
// TODO: triangle strip and material index support???
|
|
else if (PLY::EEST_TriStrip == pcElement->eSemantic)
|
|
{
|
|
unsigned int _a = 0;
|
|
for (std::vector<PLY::Property>::const_iterator a = pcElement->alProperties.begin();
|
|
a != pcElement->alProperties.end(); ++a, ++_a)
|
|
{
|
|
// must be a dynamic list!
|
|
if (!(*a).bIsList)
|
|
continue;
|
|
iProperty = _a;
|
|
bOne = true;
|
|
bIsTriStrip = true;
|
|
eType = (*a).eType;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// check whether we have at least one per-face information set
|
|
if (bOne)
|
|
{
|
|
if (mGeneratedMesh->mFaces == NULL)
|
|
{
|
|
mGeneratedMesh->mNumFaces = pcElement->NumOccur;
|
|
mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces];
|
|
}
|
|
|
|
if (!bIsTriStrip)
|
|
{
|
|
// parse the list of vertex indices
|
|
if (0xFFFFFFFF != iProperty)
|
|
{
|
|
const unsigned int iNum = (unsigned int)GetProperty(instElement->alProperties, iProperty).avList.size();
|
|
mGeneratedMesh->mFaces[pos].mNumIndices = iNum;
|
|
mGeneratedMesh->mFaces[pos].mIndices = new unsigned int[iNum];
|
|
|
|
std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator p =
|
|
GetProperty(instElement->alProperties, iProperty).avList.begin();
|
|
|
|
for (unsigned int a = 0; a < iNum; ++a, ++p)
|
|
{
|
|
mGeneratedMesh->mFaces[pos].mIndices[a] = PLY::PropertyInstance::ConvertTo<unsigned int>(*p, eType);
|
|
}
|
|
}
|
|
|
|
// parse the material index
|
|
// cannot be handled without processing the whole file first
|
|
/*if (0xFFFFFFFF != iMaterialIndex)
|
|
{
|
|
mGeneratedMesh->mFaces[pos]. = PLY::PropertyInstance::ConvertTo<unsigned int>(
|
|
GetProperty(instElement->alProperties, iMaterialIndex).avList.front(), eType2);
|
|
}*/
|
|
|
|
if (0xFFFFFFFF != iTextureCoord)
|
|
{
|
|
const unsigned int iNum = (unsigned int)GetProperty(instElement->alProperties, iTextureCoord).avList.size();
|
|
|
|
//should be 6 coords
|
|
std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator p =
|
|
GetProperty(instElement->alProperties, iTextureCoord).avList.begin();
|
|
|
|
if ((iNum / 3) == 2) // X Y coord
|
|
{
|
|
for (unsigned int a = 0; a < iNum; ++a, ++p)
|
|
{
|
|
unsigned int vindex = mGeneratedMesh->mFaces[pos].mIndices[a / 2];
|
|
if (vindex < mGeneratedMesh->mNumVertices)
|
|
{
|
|
if (mGeneratedMesh->mTextureCoords[0] == NULL)
|
|
{
|
|
mGeneratedMesh->mNumUVComponents[0] = 2;
|
|
mGeneratedMesh->mTextureCoords[0] = new aiVector3D[mGeneratedMesh->mNumVertices];
|
|
}
|
|
|
|
if (a % 2 == 0)
|
|
mGeneratedMesh->mTextureCoords[0][vindex].x = PLY::PropertyInstance::ConvertTo<ai_real>(*p, eType3);
|
|
else
|
|
mGeneratedMesh->mTextureCoords[0][vindex].y = PLY::PropertyInstance::ConvertTo<ai_real>(*p, eType3);
|
|
|
|
mGeneratedMesh->mTextureCoords[0][vindex].z = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else // triangle strips
|
|
{
|
|
// normally we have only one triangle strip instance where
|
|
// a value of -1 indicates a restart of the strip
|
|
bool flip = false;
|
|
const std::vector<PLY::PropertyInstance::ValueUnion>& quak = GetProperty(instElement->alProperties, iProperty).avList;
|
|
//pvOut->reserve(pvOut->size() + quak.size() + (quak.size()>>2u)); //Limits memory consumption
|
|
|
|
int aiTable[2] = { -1, -1 };
|
|
for (std::vector<PLY::PropertyInstance::ValueUnion>::const_iterator a = quak.begin(); a != quak.end(); ++a) {
|
|
const int p = PLY::PropertyInstance::ConvertTo<int>(*a, eType);
|
|
|
|
if (-1 == p) {
|
|
// restart the strip ...
|
|
aiTable[0] = aiTable[1] = -1;
|
|
flip = false;
|
|
continue;
|
|
}
|
|
if (-1 == aiTable[0]) {
|
|
aiTable[0] = p;
|
|
continue;
|
|
}
|
|
if (-1 == aiTable[1]) {
|
|
aiTable[1] = p;
|
|
continue;
|
|
}
|
|
|
|
if (mGeneratedMesh->mFaces == NULL)
|
|
{
|
|
mGeneratedMesh->mNumFaces = pcElement->NumOccur;
|
|
mGeneratedMesh->mFaces = new aiFace[mGeneratedMesh->mNumFaces];
|
|
}
|
|
|
|
mGeneratedMesh->mFaces[pos].mNumIndices = 3;
|
|
mGeneratedMesh->mFaces[pos].mIndices = new unsigned int[3];
|
|
mGeneratedMesh->mFaces[pos].mIndices[0] = aiTable[0];
|
|
mGeneratedMesh->mFaces[pos].mIndices[1] = aiTable[1];
|
|
mGeneratedMesh->mFaces[pos].mIndices[2] = p;
|
|
|
|
if ((flip = !flip)) {
|
|
std::swap(mGeneratedMesh->mFaces[pos].mIndices[0], mGeneratedMesh->mFaces[pos].mIndices[1]);
|
|
}
|
|
|
|
aiTable[0] = aiTable[1];
|
|
aiTable[1] = p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Get a RGBA color in [0...1] range
|
|
void PLYImporter::GetMaterialColor(const std::vector<PLY::PropertyInstance>& avList,
|
|
unsigned int aiPositions[4],
|
|
PLY::EDataType aiTypes[4],
|
|
aiColor4D* clrOut)
|
|
{
|
|
ai_assert(NULL != clrOut);
|
|
|
|
if (0xFFFFFFFF == aiPositions[0])clrOut->r = 0.0f;
|
|
else
|
|
{
|
|
clrOut->r = NormalizeColorValue(GetProperty(avList,
|
|
aiPositions[0]).avList.front(), aiTypes[0]);
|
|
}
|
|
|
|
if (0xFFFFFFFF == aiPositions[1])clrOut->g = 0.0f;
|
|
else
|
|
{
|
|
clrOut->g = NormalizeColorValue(GetProperty(avList,
|
|
aiPositions[1]).avList.front(), aiTypes[1]);
|
|
}
|
|
|
|
if (0xFFFFFFFF == aiPositions[2])clrOut->b = 0.0f;
|
|
else
|
|
{
|
|
clrOut->b = NormalizeColorValue(GetProperty(avList,
|
|
aiPositions[2]).avList.front(), aiTypes[2]);
|
|
}
|
|
|
|
// assume 1.0 for the alpha channel ifit is not set
|
|
if (0xFFFFFFFF == aiPositions[3])clrOut->a = 1.0f;
|
|
else
|
|
{
|
|
clrOut->a = NormalizeColorValue(GetProperty(avList,
|
|
aiPositions[3]).avList.front(), aiTypes[3]);
|
|
}
|
|
}
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
// Extract a material from the PLY DOM
|
|
void PLYImporter::LoadMaterial(std::vector<aiMaterial*>* pvOut, std::string &defaultTexture, const bool pointsOnly)
|
|
{
|
|
ai_assert(NULL != pvOut);
|
|
|
|
// diffuse[4], specular[4], ambient[4]
|
|
// rgba order
|
|
unsigned int aaiPositions[3][4] = {
|
|
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
{ 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF },
|
|
};
|
|
|
|
PLY::EDataType aaiTypes[3][4] = {
|
|
{ EDT_Char, EDT_Char, EDT_Char, EDT_Char },
|
|
{ EDT_Char, EDT_Char, EDT_Char, EDT_Char },
|
|
{ EDT_Char, EDT_Char, EDT_Char, EDT_Char }
|
|
};
|
|
PLY::ElementInstanceList* pcList = NULL;
|
|
|
|
unsigned int iPhong = 0xFFFFFFFF;
|
|
PLY::EDataType ePhong = EDT_Char;
|
|
|
|
unsigned int iOpacity = 0xFFFFFFFF;
|
|
PLY::EDataType eOpacity = EDT_Char;
|
|
|
|
// search in the DOM for a vertex entry
|
|
unsigned int _i = 0;
|
|
for (std::vector<PLY::Element>::const_iterator i = this->pcDOM->alElements.begin();
|
|
i != this->pcDOM->alElements.end(); ++i, ++_i)
|
|
{
|
|
if (PLY::EEST_Material == (*i).eSemantic)
|
|
{
|
|
pcList = &this->pcDOM->alElementData[_i];
|
|
|
|
// now check whether which coordinate sets are available
|
|
unsigned int _a = 0;
|
|
for (std::vector<PLY::Property>::const_iterator
|
|
a = (*i).alProperties.begin();
|
|
a != (*i).alProperties.end(); ++a, ++_a)
|
|
{
|
|
if ((*a).bIsList)continue;
|
|
|
|
// pohng specularity -----------------------------------
|
|
if (PLY::EST_PhongPower == (*a).Semantic)
|
|
{
|
|
iPhong = _a;
|
|
ePhong = (*a).eType;
|
|
}
|
|
|
|
// general opacity -----------------------------------
|
|
if (PLY::EST_Opacity == (*a).Semantic)
|
|
{
|
|
iOpacity = _a;
|
|
eOpacity = (*a).eType;
|
|
}
|
|
|
|
// diffuse color channels -----------------------------------
|
|
if (PLY::EST_DiffuseRed == (*a).Semantic)
|
|
{
|
|
aaiPositions[0][0] = _a;
|
|
aaiTypes[0][0] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_DiffuseGreen == (*a).Semantic)
|
|
{
|
|
aaiPositions[0][1] = _a;
|
|
aaiTypes[0][1] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_DiffuseBlue == (*a).Semantic)
|
|
{
|
|
aaiPositions[0][2] = _a;
|
|
aaiTypes[0][2] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_DiffuseAlpha == (*a).Semantic)
|
|
{
|
|
aaiPositions[0][3] = _a;
|
|
aaiTypes[0][3] = (*a).eType;
|
|
}
|
|
// specular color channels -----------------------------------
|
|
else if (PLY::EST_SpecularRed == (*a).Semantic)
|
|
{
|
|
aaiPositions[1][0] = _a;
|
|
aaiTypes[1][0] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_SpecularGreen == (*a).Semantic)
|
|
{
|
|
aaiPositions[1][1] = _a;
|
|
aaiTypes[1][1] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_SpecularBlue == (*a).Semantic)
|
|
{
|
|
aaiPositions[1][2] = _a;
|
|
aaiTypes[1][2] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_SpecularAlpha == (*a).Semantic)
|
|
{
|
|
aaiPositions[1][3] = _a;
|
|
aaiTypes[1][3] = (*a).eType;
|
|
}
|
|
// ambient color channels -----------------------------------
|
|
else if (PLY::EST_AmbientRed == (*a).Semantic)
|
|
{
|
|
aaiPositions[2][0] = _a;
|
|
aaiTypes[2][0] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_AmbientGreen == (*a).Semantic)
|
|
{
|
|
aaiPositions[2][1] = _a;
|
|
aaiTypes[2][1] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_AmbientBlue == (*a).Semantic)
|
|
{
|
|
aaiPositions[2][2] = _a;
|
|
aaiTypes[2][2] = (*a).eType;
|
|
}
|
|
else if (PLY::EST_AmbientAlpha == (*a).Semantic)
|
|
{
|
|
aaiPositions[2][3] = _a;
|
|
aaiTypes[2][3] = (*a).eType;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
else if (PLY::EEST_TextureFile == (*i).eSemantic)
|
|
{
|
|
defaultTexture = (*i).szName;
|
|
}
|
|
}
|
|
// check whether we have a valid source for the material data
|
|
if (NULL != pcList) {
|
|
for (std::vector<ElementInstance>::const_iterator i = pcList->alInstances.begin(); i != pcList->alInstances.end(); ++i) {
|
|
aiColor4D clrOut;
|
|
aiMaterial* pcHelper = new aiMaterial();
|
|
|
|
// build the diffuse material color
|
|
GetMaterialColor((*i).alProperties, aaiPositions[0], aaiTypes[0], &clrOut);
|
|
pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
|
|
// build the specular material color
|
|
GetMaterialColor((*i).alProperties, aaiPositions[1], aaiTypes[1], &clrOut);
|
|
pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
|
|
// build the ambient material color
|
|
GetMaterialColor((*i).alProperties, aaiPositions[2], aaiTypes[2], &clrOut);
|
|
pcHelper->AddProperty<aiColor4D>(&clrOut, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
|
|
// handle phong power and shading mode
|
|
int iMode = (int)aiShadingMode_Gouraud;
|
|
if (0xFFFFFFFF != iPhong) {
|
|
ai_real fSpec = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(), ePhong);
|
|
|
|
// if shininess is 0 (and the pow() calculation would therefore always
|
|
// become 1, not depending on the angle), use gouraud lighting
|
|
if (fSpec) {
|
|
// scale this with 15 ... hopefully this is correct
|
|
fSpec *= 15;
|
|
pcHelper->AddProperty<ai_real>(&fSpec, 1, AI_MATKEY_SHININESS);
|
|
|
|
iMode = (int)aiShadingMode_Phong;
|
|
}
|
|
}
|
|
pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);
|
|
|
|
// handle opacity
|
|
if (0xFFFFFFFF != iOpacity) {
|
|
ai_real fOpacity = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(), eOpacity);
|
|
pcHelper->AddProperty<ai_real>(&fOpacity, 1, AI_MATKEY_OPACITY);
|
|
}
|
|
|
|
// The face order is absolutely undefined for PLY, so we have to
|
|
// use two-sided rendering to be sure it's ok.
|
|
const int two_sided = 1;
|
|
pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);
|
|
|
|
//default texture
|
|
if (!defaultTexture.empty())
|
|
{
|
|
const aiString name(defaultTexture.c_str());
|
|
pcHelper->AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE, 0);
|
|
}
|
|
|
|
if (!pointsOnly)
|
|
{
|
|
const int two_sided = 1;
|
|
pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);
|
|
}
|
|
|
|
//set to wireframe, so when using this material info we can switch to points rendering
|
|
if (pointsOnly)
|
|
{
|
|
const int wireframe = 1;
|
|
pcHelper->AddProperty(&wireframe, 1, AI_MATKEY_ENABLE_WIREFRAME);
|
|
}
|
|
|
|
// add the newly created material instance to the list
|
|
pvOut->push_back(pcHelper);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// generate a default material
|
|
aiMaterial* pcHelper = new aiMaterial();
|
|
|
|
// fill in a default material
|
|
int iMode = (int)aiShadingMode_Gouraud;
|
|
pcHelper->AddProperty<int>(&iMode, 1, AI_MATKEY_SHADING_MODEL);
|
|
|
|
//generate white material most 3D engine just multiply ambient / diffuse color with actual ambient / light color
|
|
aiColor3D clr;
|
|
clr.b = clr.g = clr.r = 1.0f;
|
|
pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_DIFFUSE);
|
|
pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_SPECULAR);
|
|
|
|
clr.b = clr.g = clr.r = 1.0f;
|
|
pcHelper->AddProperty<aiColor3D>(&clr, 1, AI_MATKEY_COLOR_AMBIENT);
|
|
|
|
// The face order is absolutely undefined for PLY, so we have to
|
|
// use two-sided rendering to be sure it's ok.
|
|
if (!pointsOnly)
|
|
{
|
|
const int two_sided = 1;
|
|
pcHelper->AddProperty(&two_sided, 1, AI_MATKEY_TWOSIDED);
|
|
}
|
|
|
|
//default texture
|
|
if (!defaultTexture.empty())
|
|
{
|
|
const aiString name(defaultTexture.c_str());
|
|
pcHelper->AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, aiTextureType_DIFFUSE, 0);
|
|
}
|
|
|
|
//set to wireframe, so when using this material info we can switch to points rendering
|
|
if (pointsOnly)
|
|
{
|
|
const int wireframe = 1;
|
|
pcHelper->AddProperty(&wireframe, 1, AI_MATKEY_ENABLE_WIREFRAME);
|
|
}
|
|
|
|
pvOut->push_back(pcHelper);
|
|
}
|
|
}
|
|
|
|
#endif // !! ASSIMP_BUILD_NO_PLY_IMPORTER
|