Urho3D/bin/Data/Scripts/23_Water.as
2020-10-28 19:18:41 +08:00

230 lines
10 KiB
ActionScript

// Water example.
// This sample demonstrates:
// - Creating a large plane to represent a water body for rendering
// - Setting up a second camera to render reflections on the water surface
#include "Scripts/Utilities/Sample.as"
Node@ reflectionCameraNode;
Node@ waterNode;
Plane waterPlane;
Plane waterClipPlane;
void Start()
{
// Execute the common startup for samples
SampleStart();
// Create the scene content
CreateScene();
// Create the UI content
CreateInstructions();
// Setup the viewports for displaying the scene and rendering the water reflection
SetupViewports();
// Set the mouse mode to use in the sample
SampleInitMouseMode(MM_RELATIVE);
// Hook up to the frame update and render post-update events
SubscribeToEvents();
}
void CreateScene()
{
scene_ = Scene();
// Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
scene_.CreateComponent("Octree");
scene_.CreateComponent("DebugRenderer");
// Create a Zone component for ambient lighting & fog control
Node@ zoneNode = scene_.CreateChild("Zone");
Zone@ zone = zoneNode.CreateComponent("Zone");
zone.boundingBox = BoundingBox(-1000.0f, 1000.0f);
zone.ambientColor = Color(0.15f, 0.15f, 0.15f);
zone.fogColor = Color(1.0f, 1.0f, 1.0f);
zone.fogStart = 500.0f;
zone.fogEnd = 750.0f;
// Create a directional light to the world. Enable cascaded shadows on it
Node@ lightNode = scene_.CreateChild("DirectionalLight");
lightNode.direction = Vector3(0.3f, -0.5f, 0.425f);
Light@ light = lightNode.CreateComponent("Light");
light.lightType = LIGHT_DIRECTIONAL;
light.castShadows = true;
light.shadowBias = BiasParameters(0.00025f, 0.5f);
light.shadowCascade = CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);
light.specularIntensity = 0.5f;
// Apply slightly overbright lighting to match the skybox
light.color = Color(1.2f, 1.2f, 1.2f);
// Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
// illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
// generate the necessary 3D texture coordinates for cube mapping
Node@ skyNode = scene_.CreateChild("Sky");
skyNode.SetScale(500.0); // The scale actually does not matter
Skybox@ skybox = skyNode.CreateComponent("Skybox");
skybox.model = cache.GetResource("Model", "Models/Box.mdl");
skybox.material = cache.GetResource("Material", "Materials/Skybox.xml");
// Create heightmap terrain
Node@ terrainNode = scene_.CreateChild("Terrain");
terrainNode.position = Vector3(0.0f, 0.0f, 0.0f);
Terrain@ terrain = terrainNode.CreateComponent("Terrain");
terrain.patchSize = 64;
terrain.spacing = Vector3(2.0f, 0.5f, 2.0f); // Spacing between vertices and vertical resolution of the height map
terrain.smoothing = true;
terrain.heightMap = cache.GetResource("Image", "Textures/HeightMap.png");
terrain.material = cache.GetResource("Material", "Materials/Terrain.xml");
// The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
// terrain patches and other objects behind it
terrain.occluder = true;
// Create 1000 boxes in the terrain. Always face outward along the terrain normal
const uint NUM_OBJECTS = 1000;
for (uint i = 0; i < NUM_OBJECTS; ++i)
{
Node@ objectNode = scene_.CreateChild("Box");
Vector3 position(Random(2000.0f) - 1000.0f, 0.0f, Random(2000.0f) - 1000.0f);
position.y = terrain.GetHeight(position) + 2.25f;
objectNode.position = position;
// Create a rotation quaternion from up vector to terrain normal
objectNode.rotation = Quaternion(Vector3(0.0f, 1.0f, 0.0f), terrain.GetNormal(position));
objectNode.SetScale(5.0f);
StaticModel@ object = objectNode.CreateComponent("StaticModel");
object.model = cache.GetResource("Model", "Models/Box.mdl");
object.material = cache.GetResource("Material", "Materials/Stone.xml");
object.castShadows = true;
}
// Create a water plane object that is as large as the terrain
waterNode = scene_.CreateChild("Water");
waterNode.scale = Vector3(2048.0f, 1.0f, 2048.0f);
waterNode.position = Vector3(0.0f, 5.0f, 0.0f);
StaticModel@ water = waterNode.CreateComponent("StaticModel");
water.model = cache.GetResource("Model", "Models/Plane.mdl");
water.material = cache.GetResource("Material", "Materials/Water.xml");
// Set a different viewmask on the water plane to be able to hide it from the reflection camera
water.viewMask = 0x80000000;
// Create the camera. Set far clip to match the fog. Note: now we actually create the camera node outside
// the scene, because we want it to be unaffected by scene load / save
cameraNode = Node();
Camera@ camera = cameraNode.CreateComponent("Camera");
camera.farClip = 750.0f;
// Set an initial position for the camera scene node above the ground
cameraNode.position = Vector3(0.0f, 7.0f, -20.0f);
}
void CreateInstructions()
{
// Construct new Text object, set string to display and font to use
Text@ instructionText = ui.root.CreateChild("Text");
instructionText.text = "Use WASD keys and mouse to move";
instructionText.SetFont(cache.GetResource("Font", "Fonts/Anonymous Pro.ttf"), 15);
instructionText.textAlignment = HA_CENTER;
// Position the text relative to the screen center
instructionText.horizontalAlignment = HA_CENTER;
instructionText.verticalAlignment = VA_CENTER;
instructionText.SetPosition(0, ui.root.height / 4);
}
void SetupViewports()
{
// Set up a viewport to the Renderer subsystem so that the 3D scene can be seen
Viewport@ viewport = Viewport(scene_, cameraNode.GetComponent("Camera"));
renderer.viewports[0] = viewport;
// Create a mathematical plane to represent the water in calculations
waterPlane = Plane(waterNode.worldRotation * Vector3(0.0f, 1.0f, 0.0f), waterNode.worldPosition);
// Create a downward biased plane for reflection view clipping. Biasing is necessary to avoid too aggressive clipping
waterClipPlane = Plane(waterNode.worldRotation * Vector3(0.0f, 1.0f, 0.0f), waterNode.worldPosition -
Vector3(0.0f, 0.1f, 0.0f));
// Create camera for water reflection
// It will have the same farclip and position as the main viewport camera, but uses a reflection plane to modify
// its position when rendering
reflectionCameraNode = cameraNode.CreateChild();
Camera@ reflectionCamera = reflectionCameraNode.CreateComponent("Camera");
reflectionCamera.farClip = 750.0;
reflectionCamera.viewMask = 0x7fffffff; // Hide objects with only bit 31 in the viewmask (the water plane)
reflectionCamera.autoAspectRatio = false;
reflectionCamera.useReflection = true;
reflectionCamera.reflectionPlane = waterPlane;
reflectionCamera.useClipping = true; // Enable clipping of geometry behind water plane
reflectionCamera.clipPlane = waterClipPlane;
// The water reflection texture is rectangular. Set reflection camera aspect ratio to match
reflectionCamera.aspectRatio = float(graphics.width) / float(graphics.height);
// View override flags could be used to optimize reflection rendering. For example disable shadows
//reflectionCamera.viewOverrideFlags = VO_DISABLE_SHADOWS;
// Create a texture and setup viewport for water reflection. Assign the reflection texture to the diffuse
// texture unit of the water material
int texSize = 1024;
Texture2D@ renderTexture = Texture2D();
renderTexture.SetSize(texSize, texSize, Graphics::GetRGBFormat(), TEXTURE_RENDERTARGET);
renderTexture.filterMode = FILTER_BILINEAR;
RenderSurface@ surface = renderTexture.renderSurface;
Viewport@ rttViewport = Viewport(scene_, reflectionCamera);
surface.viewports[0] = rttViewport;
Material@ waterMat = cache.GetResource("Material", "Materials/Water.xml");
waterMat.textures[TU_DIFFUSE] = renderTexture;
}
void SubscribeToEvents()
{
// Subscribe HandleUpdate() function for processing update events
SubscribeToEvent("Update", "HandleUpdate");
}
void MoveCamera(float timeStep)
{
// Do not move if the UI has a focused element (the console)
if (ui.focusElement !is null)
return;
// Movement speed as world units per second
const float MOVE_SPEED = 30.0;
// Mouse sensitivity as degrees per pixel
const float MOUSE_SENSITIVITY = 0.1;
// Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees
IntVector2 mouseMove = input.mouseMove;
yaw += MOUSE_SENSITIVITY * mouseMove.x;
pitch += MOUSE_SENSITIVITY * mouseMove.y;
pitch = Clamp(pitch, -90.0, 90.0);
// Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero
cameraNode.rotation = Quaternion(pitch, yaw, 0.0);
// Read WASD keys and move the camera scene node to the corresponding direction if they are pressed
if (input.keyDown[KEY_W])
cameraNode.Translate(Vector3::FORWARD * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_S])
cameraNode.Translate(Vector3::BACK * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_A])
cameraNode.Translate(Vector3::LEFT * MOVE_SPEED * timeStep);
if (input.keyDown[KEY_D])
cameraNode.Translate(Vector3::RIGHT * MOVE_SPEED * timeStep);
// In case resolution has changed, adjust the reflection camera aspect ratio
Camera@ reflectionCamera = reflectionCameraNode.GetComponent("Camera");
reflectionCamera.aspectRatio = float(graphics.width) / float(graphics.height);
}
void HandleUpdate(StringHash eventType, VariantMap& eventData)
{
// Take the frame time step, which is stored as a float
float timeStep = eventData["TimeStep"].GetFloat();
// Move the camera, scale movement with time step
MoveCamera(timeStep);
}
// Create XML patch instructions for screen joystick layout specific to this sample app
String patchInstructions = "";