Four new protocol classes have been added:
- asio::generic::datagram_protocol
- asio::generic::raw_protocol
- asio::generic::seq_packet_protocol
- asio::generic::stream_protocol
These classes implement the Protocol type requirements, but allow the
user to specify the address family (e.g. AF_INET) and protocol type
(e.g. IPPROTO_TCP) at runtime.
A new endpoint class template, asio::generic::basic_endpoint, has been
added to support these new protocol classes. This endpoint can hold any
other endpoint type, provided its native representation fits into a
sockaddr_storage object.
When using C++11, it is now possible to perform move construction from a
socket (or acceptor) object to convert to the more generic protocol's
socket (or acceptor) type. If the protocol conversion is valid:
Protocol1 p1 = ...;
Protocol2 p2(p1);
then the corresponding socket conversion is allowed:
Protocol1::socket socket1(io_service);
...
Protocol2::socket socket2(std::move(socket1));
For example, one possible conversion is from a TCP socket to a generic
stream-oriented socket:
asio::ip::tcp::socket socket1(io_service);
...
asio::generic::stream_protocol::socket socket2(std::move(socket1));
The conversion is also available for move-assignment. Note that these
conversions are not limited to the newly added generic protocol classes.
User-defined protocols may take advantage of this feature by similarly
ensuring the conversion from Protocol1 to Protocol2 is valid, as above.
As a convenience, the socket acceptor's accept() and async_accept()
functions have been changed so that they can directly accept into a
different protocol's socket type, provided the protocol conversion is
valid. For example, the following is now possible:
asio::ip::tcp::acceptor acceptor(io_service);
...
asio::generic::stream_protocol::socket socket1(io_service);
acceptor.accept(socket1);
[SVN r84363]
Added new buffer-based interfaces:
add_certificate_authority, use_certificate, use_certificate_chain,
use_private_key, use_rsa_private_key, use_tmp_dh.
Thanks go to Nick Jones <nick dot fa dot jones at gmail dot com>, on
whose work this commit is based.
[SVN r84325]
Thanks go to Alvin Cheung <alvin dot cheung at alumni dot ust dot hk>
and Nick Jones <nick dot fa dot jones at gmail dot com>, on whose work
this is based.
[SVN r84320]
Add new overloads of the SSL stream's handshake() and async_handshake()
functions, that accepts a ConstBufferSequence to be used as initial
input to the ssl engine for the handshake procedure.
Thanks go to Nick Jones <nick dot fa dot jones at gmail dot com>, on
whose work this commit is partially based.
[SVN r84319]
Asynchronous operations may represent a continuation of the asynchronous
control flow associated with the current handler. Asio's implementation
can use this knowledge to optimise scheduling of the handler.
The asio_handler_is_continuation hook returns true to indicate whether a
completion handler represents a continuation of the current call
context. The default implementation of the hook returns false, and
applications may customise the hook when necessary. The hook has already
been customised within Asio to return true for the following cases:
- Handlers returned by strand.wrap(), when the corresponding
asynchronous operation is being initiated from within the strand.
- The internal handlers used to implement the asio::spawn() function's
stackful coroutines.
- When an intermediate handler of a composed operation (e.g.
asio::async_read(), asio::async_write(), asio::async_connect(),
ssl::stream<>, etc.) starts a new asynchronous operation due to the
composed operation not being complete.
To support this optimisation, a new running_in_this_thread() member
function has been added to the io_service::strand class. This function
returns true when called from within a strand.
[SVN r84314]
for returning a C++11 std::future from an asynchronous operation's
initiating function.
To use asio::use_future, pass it to an asynchronous operation instead of
a normal completion handler. For example:
std::future<std::size_t> length =
my_socket.async_read_some(my_buffer, asio::use_future);
Where a completion handler signature has the form:
void handler(error_code ec, result_type result);
the initiating function returns a std::future templated on result_type.
In the above example, this is std::size_t. If the asynchronous operation
fails, the error_code is converted into a system_error exception and
passed back to the caller through the future.
Where a completion handler signature has the form:
void handler(error_code ec);
the initiating function returns std::future<void>. As above, an error
is passed back in the future as a system_error exception.
[SVN r84313]
stackful coroutines. It is based on the Boost.Coroutine library.
Here is an example of its use:
asio::spawn(my_strand, do_echo);
// ...
void do_echo(asio::yield_context yield)
{
try
{
char data[128];
for (;;)
{
std::size_t length =
my_socket.async_read_some(
asio::buffer(data), yield);
asio::async_write(my_socket,
asio::buffer(data, length), yield);
}
}
catch (std::exception& e)
{
// ...
}
}
The first argument to asio::spawn() may be a strand, io_service or
completion handler. This argument determines the context in which the
coroutine is permitted to execute. For example, a server's per-client
object may consist of multiple coroutines; they should all run on the
same strand so that no explicit synchronisation is required.
The second argument is a function object with signature (**):
void coroutine(asio::yield_context yield);
that specifies the code to be run as part of the coroutine. The
parameter yield may be passed to an asynchronous operation in place of
the completion handler, as in:
std::size_t length =
my_socket.async_read_some(
asio::buffer(data), yield);
This starts the asynchronous operation and suspends the coroutine. The
coroutine will be resumed automatically when the asynchronous operation
completes.
Where a completion handler signature has the form:
void handler(error_code ec, result_type result);
the initiating function returns the result_type. In the async_read_some
example above, this is std::size_t. If the asynchronous operation fails,
the error_code is converted into a system_error exception and thrown.
Where a completion handler signature has the form:
void handler(error_code ec);
the initiating function returns void. As above, an error is passed back
to the coroutine as a system_error exception.
To collect the error_code from an operation, rather than have it throw
an exception, associate the output variable with the yield_context as
follows:
error_code ec;
std::size_t length =
my_socket.async_read_some(
asio::buffer(data), yield[ec]);
**Note: if asio::spawn() is used with a custom completion handler of
type Handler, the function object signature is actually:
void coroutine(asio::basic_yield_context<Handler> yield);
[SVN r84311]
* Fix some 64-to-32-bit conversion warnings. Fixes#7459
* Fix typos in comments. Fixes#7761
* Fix error in example embedded in basic_socket::get_option's documentation. Fixes#7562
* Use long rather than int for SSL_CTX options, to match OpenSSL. Fixes#7209
* Use _snwprintf to address a compile error due to the changed swprintf signature in recent versions of MinGW. Fixes#7373
* Fix deadlock that can occur on Windows when shutting down a pool of io_service threads due to running out of work. Fixes#7552
* Enable noexcept qualifier for error categories. Fixes#7797
* Treat errors from accept as non-fatal. Fixes#7488
* Add a small block recycling optimisation.
* Version bump.
* Regenerate documentation.
[SVN r82290]
* Decorate GCC attribute names with underscores to prevent interaction with user-defined macros. Fixes#6415
* Add missing #include of <cctype>, needed for some versions of MinGW.
* Use gcc's atomic builtins on arm, when available. Fixes#7140.
[SVN r79694]
* Make strand destruction a no-op, to allow strand objects to be destroyed after their associated io_service has been destroyed.
* Use the __thread keyword extension when compiling with gcc on linux x86.
* Avoid calling work_finished() if a completion handler creates more work.
* Eliminate redundant call to call_stack::contains(this) when dispatching a completion handler.
* Add support for some newer versions of glibc which provide the epoll_create1 function but always fail with ENOSYS. Fixes#7012
* Use SSE2 load and store fences.
* Throw exception if SSL engine initialisation fails. Fixes#6303
* Fix another regression in buffered_write_stream. Fixes#6310
[SVN r79549]