bind/mem_fn.html
Peter Dimov 0053801ad2 Data member support added.
[SVN r14640]
2002-07-30 13:01:47 +00:00

394 lines
16 KiB
HTML
Raw Blame History

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Boost: mem_fn.hpp documentation</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="white" style="MARGIN-LEFT: 5%; MARGIN-RIGHT: 5%">
<table border="0" width="100%">
<tr>
<td width="277">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86">
</td>
<td align="middle">
<h1>mem_fn.hpp</h1>
</td>
</tr>
<tr>
<td colspan="2" height="64">&nbsp;</td>
</tr>
</table>
<h2>Contents</h2>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Purpose">Purpose</a></h3>
<h3 style="MARGIN-LEFT: 20pt"><a href="#FAQ">Frequently Asked Questions</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q1">Can <b>mem_fn</b> be used instead of the
standard <b>std::mem_fun[_ref]</b> adaptors?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q2">Should I replace every occurence of <b>std::mem_fun[_ref]</b>
with <b>mem_fn</b> in my existing code?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q3">Does <b>mem_fn</b> work with COM methods?</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Q4">Why isn't BOOST_MEM_FN_ENABLE_STDCALL
defined automatically?</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Interface">Interface</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Synopsis">Synopsis</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#CommonRequirements">Common requirements</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#get_pointer">get_pointer</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#mem_fn">mem_fn</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Implementation">Implementation</a></h3>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Files">Files</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#Dependencies">Dependencies</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#NumberOfArguments">Number of Arguments</a></h4>
<h4 style="MARGIN-LEFT: 40pt"><a href="#stdcall">"__stdcall" and
"__fastcall"&nbsp;Support</a></h4>
<h3 style="MARGIN-LEFT: 20pt"><a href="#Acknowledgements">Acknowledgements</a></h3>
<h2><a name="Purpose">Purpose</a></h2>
<p>
<b>boost::mem_fn</b> is a generalization of the standard functions <b>std::mem_fun</b>
and <b>std::mem_fun_ref</b>. It supports member function pointers with more
than one argument, and the returned function object can take a pointer, a
reference, or a smart pointer to an object instance as its first argument. <STRONG>mem_fn</STRONG>
also supports pointers to data members by treating them as functions taking no
arguments and returning a (const) reference to the member.
</p>
<p>
The purpose of <b>mem_fn</b> is twofold. First, it allows users to invoke a
member function on a container with the familiar
</p>
<pre>
std::for_each(v.begin(), v.end(), boost::mem_fn(&amp;Shape::draw));
</pre>
<p>
syntax, even when the container stores smart pointers.
</p>
<p>
Second, it can be used as a building block by library developers that want to
treat a pointer to member function as a function object. A library might define
an enhanced <b>for_each</b> algorithm with an overload of the form:
</p>
<pre>
template&lt;class It, class R, class T&gt; void for_each(It first, It last, R (T::*pmf) ())
{
std::for_each(first, last, boost::mem_fn(pmf));
}
</pre>
<p>
that will allow the convenient syntax:
</p>
<pre>
for_each(v.begin(), v.end(), &amp;Shape::draw);
</pre>
<p>
When documenting the feature, the library author will simply state:
</p>
<h4 style="MARGIN-LEFT: 20pt">template&lt;class It, class R, class T&gt; void
for_each(It first, It last, R (T::*pmf) ());</h4>
<p style="MARGIN-LEFT: 20pt">
<b>Effects:</b> equivalent to std::for_each(first, last, boost::mem_fn(pmf));
</p>
<p>
where <b>boost::mem_fn</b> can be a link to this page. See <a href="bind.html">the
documentation of <b>bind</b></a> for an example.
</p>
<p>
<b>mem_fn</b> takes one argument, a pointer to a member, and returns a function
object suitable for use with standard or user-defined algorithms:
</p>
<pre>
struct X
{
void f();
};
void g(std::vector&lt;X&gt; &amp; v)
{
std::for_each(v.begin(), v.end(), boost::mem_fn(&amp;X::f));
};
void h(std::vector&lt;X *&gt; const &amp; v)
{
std::for_each(v.begin(), v.end(), boost::mem_fn(&amp;X::f));
};
void k(std::vector&lt;boost::shared_ptr&lt;X&gt; &gt; const &amp; v)
{
std::for_each(v.begin(), v.end(), boost::mem_fn(&amp;X::f));
};
</pre>
<p>
The returned function object takes the same arguments as the input member
function plus a "flexible" first argument that represents the object instance.
</p>
<p>
When the function object is invoked with a first argument <b>x</b> that is
neither a pointer nor a reference to the appropriate class (<b>X</b> in the
example above), it uses <tt>get_pointer(x)</tt> to obtain a pointer from <b>x</b>.
Library authors can "register" their smart pointer classes by supplying an
appropriate <b>get_pointer</b> overload, allowing <b>mem_fn</b> to recognize
and support them.
</p>
<p>
[Note: <b>get_pointer</b> is not restricted to return a pointer. Any object
that can be used in a member function call expression <tt>(x-&gt;*pmf)(...)</tt>
will work.]
</p>
<p>
[Note: the library uses an unqualified call to <b>get_pointer</b>. Therefore,
it will find, through argument-dependent lookup, <b>get_pointer</b> overloads
that are defined in the same namespace as the corresponding smart pointer
class, in addition to any <b>boost::get_pointer</b> overloads.]
</p>
<p>
All function objects returned by <b>mem_fn</b> expose a <b>result_type</b> typedef
that represents the return type of the member function. For data members, <STRONG>result_type</STRONG>
is defined as a const reference to the type of the member.
</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<h3><a name="Q1">Can <b>mem_fn</b> be used instead of the standard <b>std::mem_fun[_ref]</b>
adaptors?</a></h3>
<p>
Yes. For simple uses, <b>mem_fn</b> provides additional functionality that the
standard adaptors do not. Complicated expressions that use <b>std::bind1st</b>, <b>std::bind2nd</b>
or <a href="../compose/index.htm"><b>Boost.Compose</b></a> along with the
standard adaptors can be rewritten using <a href="bind.html"><b>boost::bind</b></a>
that automatically takes advantage of <b>mem_fn</b>.
</p>
<h3><a name="Q2">Should I replace every occurence of <b>std::mem_fun[_ref]</b> with <b>mem_fn</b>
in my existing code?</a></h3>
<p>
No, unless you have good reasons to do so. <b>mem_fn</b> is not 100% compatible
with the standard adaptors, although it comes pretty close. In particular, <b>mem_fn</b>
does not return objects of type <b>std::[const_]mem_fun[1][_ref]_t</b>, as the
standard adaptors do, and it is not possible to fully describe the type of the
first argument using the standard <b>argument_type</b> and <b>first_argument_type</b>
nested typedefs. Libraries that need adaptable function objects in order to
function might not like <b>mem_fn</b>.
</p>
<h3><a name="Q3">Does <b>mem_fn</b> work with COM methods?</a></h3>
<p>
Yes, if you <a href="#stdcall">#define BOOST_MEM_FN_ENABLE_STDCALL</a>.
</p>
<h3><a name="Q4">Why isn't BOOST_MEM_FN_ENABLE_STDCALL defined automatically?</a></h3>
<p>
Non-portable extensions, in general, should default to off to prevent vendor
lock-in. Had BOOST_MEM_FN_ENABLE_STDCALL been defined automatically, you could
have accidentally taken advantage of it without realizing that your code is,
perhaps, no longer portable.
</p>
<h2><a name="Interface">Interface</a></h2>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>
namespace boost
{
template&lt;class T&gt; T * <a href="#get_pointer_1">get_pointer</a>(T * p);
template&lt;class R, class T&gt; <i>unspecified-1</i> <a href="#mem_fn_1">mem_fn</a>(R (T::*pmf) ());
template&lt;class R, class T&gt; <i>unspecified-2</i> <a href="#mem_fn_2">mem_fn</a>(R (T::*pmf) () const);
template&lt;class R, class T&gt; <i>unspecified-2-1</i> <a href="#mem_fn_2_1">mem_fn</a>(R T::*pm);
template&lt;class R, class T, class A1&gt; <i>unspecified-3</i> <a href="#mem_fn_3">mem_fn</a>(R (T::*pmf) (A1));
template&lt;class R, class T, class A1&gt; <i>unspecified-4</i> <a href="#mem_fn_4">mem_fn</a>(R (T::*pmf) (A1) const);
template&lt;class R, class T, class A1, class A2&gt; <i>unspecified-5</i> <a href="#mem_fn_5">mem_fn</a>(R (T::*pmf) (A1, A2));
template&lt;class R, class T, class A1, class A2&gt; <i>unspecified-6</i> <a href="#mem_fn_6">mem_fn</a>(R (T::*pmf) (A1, A2) const);
// implementation defined number of additional overloads for more arguments
}
</pre>
<h3><a name="CommonRequirements">Common requirements</a></h3>
<p>
All <tt><i>unspecified-N</i></tt> types mentioned in the Synopsis are <b>CopyConstructible</b>
and <b>Assignable</b>. Their copy constructors and assignment operators do not
throw exceptions. <tt><i>unspecified-N</i>::result_type</tt> is defined as the
return type of the member function pointer passed as an argument to <b>mem_fn</b>
(<b>R</b> in the Synopsis.) <tt><i>unspecified-2-1</i>::result_type</tt> is
defined as <tt>R const &amp;</tt>.
</p>
<h3><a name="get_pointer">get_pointer</a></h3>
<h4><a name="get_pointer_1">template&lt;class T&gt; T * get_pointer(T * p)</a></h4>
<blockquote>
<p>
<b>Returns:</b> <tt>p</tt>.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h3><a name="mem_fn">mem_fn</a></h3>
<h4><a name="mem_fn_1">template&lt;class R, class T&gt; <i>unspecified-1</i> mem_fn(R
(T::*pmf) ())</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t)</i></tt>
is equivalent to <tt>(t.*pmf)()</tt> when <i>t</i> is an l-value of type <STRONG>T </STRONG>
or derived, <tt>(get_pointer(t)-&gt;*pmf)()</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_2">template&lt;class R, class T&gt; <i>unspecified-2</i> mem_fn(R
(T::*pmf) () const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t)</i></tt>
is equivalent to <tt>(t.*pmf)()</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]<STRONG> </STRONG></EM>or derived, <tt>(get_pointer(t)-&gt;*pmf)()</tt>
otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_2_1">template&lt;class R, class T&gt; <i>unspecified-2-1</i> mem_fn(R
T::*pm)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t)</i></tt>
is equivalent to <tt>t.*pm</tt> when <i>t</i> is of type <STRONG>T</STRONG> <EM>[const]<STRONG>
</STRONG></EM>or derived, <tt>get_pointer(t)-&gt;*pm</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_3">template&lt;class R, class T, class A1&gt; <i>unspecified-3</i> mem_fn(R
(T::*pmf) (A1))</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1)</i></tt>
is equivalent to <tt>(t.*pmf)(a1)</tt> when <i>t</i> is an l-value of type <STRONG>T
</STRONG>or derived, <tt>(get_pointer(t)-&gt;*pmf)(a1)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_4">template&lt;class R, class T, class A1&gt; <i>unspecified-4</i> mem_fn(R
(T::*pmf) (A1) const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1)</i></tt>
is equivalent to <tt>(t.*pmf)(a1)</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]<STRONG> </STRONG></EM>or derived, <tt>(get_pointer(t)-&gt;*pmf)(a1)</tt>
otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_5">template&lt;class R, class T, class A1, class A2&gt; <i>unspecified-5</i>
mem_fn(R (T::*pmf) (A1, A2))</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1, a2)</i></tt>
is equivalent to <tt>(t.*pmf)(a1, a2)</tt> when <i>t</i> is an l-value of type <STRONG>
T</STRONG> or derived, <tt>(get_pointer(t)-&gt;*pmf)(a1, a2)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h4><a name="mem_fn_6">template&lt;class R, class T, class A1, class A2&gt; <i>unspecified-6</i>
mem_fn(R (T::*pmf) (A1, A2) const)</a></h4>
<blockquote>
<p>
<b>Returns:</b> a function object <i>f</i> such that the expression <tt><i>f(t, a1, a2)</i></tt>
is equivalent to <tt>(t.*pmf)(a1, a2)</tt> when <i>t</i> is of type <STRONG>T</STRONG>
<EM>[const]</EM> or derived, <tt>(get_pointer(t)-&gt;*pmf)(a1, a2)</tt> otherwise.
</p>
<p>
<b>Throws:</b> Nothing.
</p>
</blockquote>
<h2><a name="Implementation">Implementation</a></h2>
<h3><a name="Files">Files</a></h3>
<ul>
<li>
<a href="../../boost/mem_fn.hpp">boost/mem_fn.hpp</a>
(main header)
<li>
<a href="../../boost/bind/mem_fn_cc.hpp">boost/bind/mem_fn_cc.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="../../boost/bind/mem_fn_vw.hpp">boost/bind/mem_fn_vw.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="../../boost/bind/mem_fn_template.hpp">boost/bind/mem_fn_template.hpp</a>
(used by mem_fn.hpp, do not include directly)
<li>
<a href="mem_fn_test.cpp">libs/bind/mem_fn_test.cpp</a>
(test)
<li>
<a href="mem_fn_stdcall_test.cpp">libs/bind/mem_fn_stdcall_test.cpp</a>
(test for __stdcall)
<li>
<a href="mem_fn_void_test.cpp">libs/bind/mem_fn_void_test.cpp</a> (test for
void returns)</li>
</ul>
<h3><a name="Dependencies">Dependencies</a></h3>
<ul>
<li>
<a href="../config/config.htm">Boost.Config</a></li>
</ul>
<h3><a name="NumberOfArguments">Number of Arguments</a></h3>
<p>
This implementation supports member functions with up to eight arguments. This
is not an inherent limitation of the design, but an implementation detail.
</p>
<h3><a name="stdcall">"__stdcall" and "__fastcall" Support</a></h3>
<p>
Some platforms allow several types of member functions that differ by their <b>calling
convention</b> (the rules by which the function is invoked: how are
arguments passed, how is the return value handled, and who cleans up the stack
- if any.)
</p>
<p>
For example, Windows API functions and COM interface member functions use a
calling convention known as <b>__stdcall</b>. Borland VCL components use <STRONG>__fastcall</STRONG>.
</p>
<p>
To use <b>mem_fn</b> with <b>__stdcall</b> member functions, <b>#define</b> the
macro <b>BOOST_MEM_FN_ENABLE_STDCALL</b> before including, directly or
indirectly, <b>&lt;boost/mem_fn.hpp&gt;</b>.
</p>
<P>To use <B>mem_fn</B> with <B>__fastcall</B> member functions, <B>#define</B> the
macro <B>BOOST_MEM_FN_ENABLE_FASTCALL</B> before including, directly or
indirectly, <B>&lt;boost/mem_fn.hpp&gt;</B>.
</P>
<P>[Note: this is a non-portable extension. It is not part of the interface.]
</P>
<p>
[Note: Some compilers provide only minimal support for the <b>__stdcall</b> keyword.]
</p>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>
Rene Jager's initial suggestion of using traits classes to make <b>mem_fn</b> adapt
to user-defined smart pointers inspired the <b>get_pointer</b>-based design.
</p>
<p>
Numerous improvements were suggested during the formal review period by Richard
Crossley, Jens Maurer, Ed Brey, and others. Review manager was Darin Adler.
</p>
<p>
Steve Anichini pointed out that COM interfaces use <b>__stdcall</b>.
</p>
<p>
Dave Abrahams modified <b>bind</b> and <b>mem_fn</b> to support void returns on
deficient compilers.
</p>
<p><br>
<br>
<br>
<small>Copyright <20> 2001, 2002&nbsp;by Peter Dimov and Multi Media Ltd. Permission
to copy, use, modify, sell and distribute this document is granted provided
this copyright notice appears in all copies. This document is provided "as is"
without express or implied warranty, and with no claim as to its suitability
for any purpose.</small></p>
</body>
</html>