chrono/doc/time2_demo.html
Vicente J. Botet Escriba 3fea28a46c Chrono: import from Trunk
[SVN r70370]
2011-03-21 21:58:51 +00:00

4040 lines
164 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html><head>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1">
<title>time2_demo</title>
</head><body>
<pre><font color="#c80000">/*
Copyright (c) 2008 Howard Hinnant
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
A prototype of a proposal for a time/duration/clock library for the C++ standard.
It is intended that this be a solid foundation upon which higher level libraries
can be based. Examples of such libraries include a date/time library and a
physical quantities library.
Two general purpose facilities are proposed:
common_type
ratio
And 5 time/duration/clock facilities are proposed
duration
time_point
system_clock
monotonic_clock <font color="#c80000">// optional</font>
high_resolution_clock <font color="#c80000">// optional</font>
Much thanks to Andrei Alexandrescu,
Walter Brown,
Peter Dimov,
Jeff Garland,
Terry Golubiewski,
Daniel Krügler,
Anthony Williams.
Synopsis
namespace std
{
<font color="#c80000">// &lt;type_traits&gt;</font>
<font color="#c80000">// common_type</font>
<font color="#c80000">// common_type is ageneral purpose trait that can be specialized for user-defined types.</font>
<font color="#c80000">// The semantics are intended to be identical to finding the resulting type of a</font>
<font color="#c80000">// the conditional operator.</font>
<font color="#c80000">// The client may need to specialize common_type if he wishes to convert to or from</font>
<font color="#c80000">// another type only explicitly. It is used to determine the result type</font>
<font color="#c80000">// in "mixed-mode" duration and time_point arithmetic. It will also find use in</font>
<font color="#c80000">// similar "mixed-mode" arithmetic applications.</font>
template &lt;class T, class U&gt;
struct common_type
{
private:
static T t();
static U u();
public:
typedef decltype(true ? t() : u()) type;
};
<font color="#c80000">// or...</font>
template &lt;class ...T&gt; struct common_type;
template &lt;class T&gt;
struct common_type&lt;T&gt;
{
typedef T type;
};
template &lt;class T, class U&gt;
struct common_type&lt;T, U&gt;
{
private:
static T t();
static U u();
public:
typedef decltype(true ? t() : u()) type;
};
template &lt;class T, class U, class ...V&gt;
struct common_type&lt;T, U, V...&gt;
{
typedef typename common_type&lt;typename common_type&lt;T, U&gt;::type, V...&gt;::type type;
};
<font color="#c80000">// This alternative variadic formulation of common_type has some advantages:</font>
<font color="#c80000">//</font>
<font color="#c80000">// 1. The obvious advantage is that it can handle 3 or more arguments seamlessly.</font>
<font color="#c80000">// This can come in handy when writing template functions that take more than</font>
<font color="#c80000">// two arguments, such as fma(x, y, z).</font>
<font color="#c80000">//</font>
<font color="#c80000">// 2. We could just get rid of identity (avoiding the legacy conflict) and use</font>
<font color="#c80000">// common_type&lt;T&gt;::type in the one place we use identity&lt;T&gt;::type today.</font>
<font color="#c80000">//</font>
<font color="#c80000">// 3. For clients that need to specialize common_type (such as duration and time_point),</font>
<font color="#c80000">// the client still needs to specialize only the two-argument version. The default</font>
<font color="#c80000">// definition of the higher-order common_type will automatically use the client's</font>
<font color="#c80000">// specialized two-argument version.</font>
<font color="#c80000">// For example:</font>
<font color="#c80000">// common_type&lt;duration&lt;double&gt;, hours, microseconds&gt;::type is duration&lt;double, micro&gt;</font>
<font color="#c80000">// ... end or</font>
<font color="#c80000">// The cost of not including either version of common_type is that it is very likely that</font>
<font color="#c80000">// the implementation would include it anyway, but spell it __common_type instead. This</font>
<font color="#c80000">// would prevent authors of arithmetic emulators from using their classes as representations</font>
<font color="#c80000">// with durations unless the emulator had exactly one implicit conversion to or from an</font>
<font color="#c80000">// arithmetic type. This would be a large loss of functionality from the client's point</font>
<font color="#c80000">// of view, possibly mandating a less safe interface for the client's arithmetic emulator.</font>
<font color="#c80000">// ratio</font>
<font color="#c80000">// ratio is a general purpose type allowing one to easily and safely compute integral</font>
<font color="#c80000">// ratio values at compile time. The ratio class catches all errors (such as divide by</font>
<font color="#c80000">// zero and overflow) at compile time. It is used in the duration and time_point libraries</font>
<font color="#c80000">// to efficiently create units of time. It can also be used in other "quantity"</font>
<font color="#c80000">// libraries (both std-defined and user-defined), or anywhere there is an integral</font>
<font color="#c80000">// ratio which is known at compile time. The use of this utility can greatly reduce</font>
<font color="#c80000">// the chances of run time overflow because the ratio (and any ratios resulting from</font>
<font color="#c80000">// ratio arithmetic) are always reduced to lowest terms.</font>
<font color="#c80000">// The cost of not including ratio would mean that the implementor would likely have this</font>
<font color="#c80000">// functionality anyway, but spell it __ratio instead. This would prevent the client from</font>
<font color="#c80000">// using ratio in his own code as demonstrated in the "User1" example. Furthermore duration</font>
<font color="#c80000">// would have to be templated on two long long's instead of on ratio like so:</font>
<font color="#c80000">//</font>
<font color="#c80000">// template &lt;class Rep, long long N, long long D&gt; duration.</font>
<font color="#c80000">//</font>
<font color="#c80000">// This would mean that clients wanting to build a custom duration type (say a nanosecond</font>
<font color="#c80000">// represented by a double) would have to write:</font>
<font color="#c80000">//</font>
<font color="#c80000">// duration&lt;double, 1, 1000000000LL&gt;</font>
<font color="#c80000">//</font>
<font color="#c80000">// instead of:</font>
<font color="#c80000">//</font>
<font color="#c80000">// duration&lt;double, nano&gt;</font>
<font color="#c80000">//</font>
<font color="#c80000">// This lack of syntatic niceness, along with the loss of functionality in the reuse of</font>
<font color="#c80000">// ratio in user-written code seems to indicate that the loss of ratio would be a sizeable</font>
<font color="#c80000">// loss to client code.</font>
template &lt;intmax_t N, intmax_t D = 1&gt;
class ratio
{
<font color="#c80000">// For every possible value of N and D, abs(N) &gt;= 0 and abs(D) &gt; 0</font>
static_assert(__static_abs&lt;N&gt;::value &gt;= 0, "ratio numerator is out of range");
static_assert(__static_abs&lt;D&gt;::value &gt; 0, "ratio denominator is out of range");
public:
static const intmax_t num; <font color="#c80000">// Reduced by greatest common divisor of N and D, has sign of sign(N) * sign(D)</font>
static const intmax_t den; <font color="#c80000">// Reduced by greatest common divisor of N and D, always positive</font>
<font color="#c80000">// When num == 0, den == 1</font>
};
<font color="#c80000">// The static_asserts in ratio are there to catch any values which have a negative absolute value.</font>
<font color="#c80000">// In a typical 2's complement representation this is only LLONG_MIN. The reason for prohibiting</font>
<font color="#c80000">// this value is because ratio must take the absolute values of its arguments and generally depends</font>
<font color="#c80000">// on that number being non-negative in order to maintain invariants such as den &gt; 0.</font>
<font color="#c80000">// convenience typedefs</font>
typedef ratio&lt;1, 1000000000000000000000000&gt; yocto; <font color="#c80000">// conditionally supported</font>
typedef ratio&lt;1, 1000000000000000000000&gt; zepto; <font color="#c80000">// conditionally supported</font>
typedef ratio&lt;1, 1000000000000000000&gt; atto;
typedef ratio&lt;1, 1000000000000000&gt; femto;
typedef ratio&lt;1, 1000000000000&gt; pico;
typedef ratio&lt;1, 1000000000&gt; nano;
typedef ratio&lt;1, 1000000&gt; micro;
typedef ratio&lt;1, 1000&gt; milli;
typedef ratio&lt;1, 100&gt; centi;
typedef ratio&lt;1, 10&gt; deci;
typedef ratio&lt; 10, 1&gt; deca;
typedef ratio&lt; 100, 1&gt; hecto;
typedef ratio&lt; 1000, 1&gt; kilo;
typedef ratio&lt; 1000000, 1&gt; mega;
typedef ratio&lt; 1000000000, 1&gt; giga;
typedef ratio&lt; 1000000000000, 1&gt; tera;
typedef ratio&lt; 1000000000000000, 1&gt; peta;
typedef ratio&lt; 1000000000000000000, 1&gt; exa;
typedef ratio&lt; 1000000000000000000000, 1&gt; zetta; <font color="#c80000">// conditionally supported</font>
typedef ratio&lt;1000000000000000000000000, 1&gt; yotta; <font color="#c80000">// conditionally supported</font>
<font color="#c80000">// Compile time arithmetic and comparisons should either avoid overflow or not compile</font>
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_add
{
typedef ratio&lt;pseudo code: R1 + R2&gt; type;
};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_subtract
{
typedef ratio&lt;pseudo code: R1 - R2&gt; type;
};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_multiply
{
typedef ratio&lt;pseudo code: R1 * R2&gt; type;
};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_divide
{
typedef ratio&lt;pseudo code: R1 / R2&gt; type;
};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_equal
: public integral_constant&lt;bool, pseudo code: R1 == R2&gt; {};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_not_equal
: public integral_constant&lt;bool, !ratio_equal&lt;R1, R2&gt;::value&gt; {};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_less
: public integral_constant&lt;bool, pseudo code: R1 &lt; R2&gt; {};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_less_equal
: public integral_constant&lt;bool, !ratio_less&lt;R2, R1&gt;::value&gt; {};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_greater
: public integral_constant&lt;bool, ratio_less&lt;R2, R1&gt;::value&gt; {};
template &lt;class R1, class R2&gt;
requires R1 and R2 are instantiations of ratio
struct ratio_greater_equal
: public integral_constant&lt;bool, !ratio_less&lt;R1, R2&gt;::value&gt; {};
namespace datetime
{
<font color="#c80000">// duration customization traits</font>
<font color="#c80000">// Authors of arithmetic emulation types should specialize treat_as_floating_point</font>
<font color="#c80000">// if their class emulates floating point and they want to use it as a duration's</font>
<font color="#c80000">// representation.</font>
template &lt;class Rep&gt; struct treat_as_floating_point
: is_floating_point&lt;Rep&gt; {};
<font color="#c80000">// Authors of arithmetic emulation types should specialize duration_values</font>
<font color="#c80000">// if they want to use it as a duration's representation, and the default</font>
<font color="#c80000">// definition of duration_values does not have the correct behavior.</font>
template &lt;class Rep&gt;
struct duration_values
{
public:
static constexpr Rep zero() {return Rep(0);}
static constexpr Rep max() {return numeric_limits&lt;Rep&gt;::max();}
static constexpr Rep min() {return -max();}
};
<font color="#c80000">// Note: Rep(0) instead of Rep() is used for zero() because the author of Rep may</font>
<font color="#c80000">// chose to have Rep() refer to an inderminant or unitialized value.</font>
<font color="#c80000">// duration</font>
<font color="#c80000">// A duration has a representation and a period.</font>
<font color="#c80000">// </font>
<font color="#c80000">// The representation is an arithmetic type, or a class emulating an arithmetic type.</font>
<font color="#c80000">//</font>
<font color="#c80000">// The period is the rational number of seconds between "ticks" of the duration. The</font>
<font color="#c80000">// duration simply holds a count of the elapsed number of ticks (using the</font>
<font color="#c80000">// representation), and that is related to seconds by multiplying by the period.</font>
<font color="#c80000">// Note, this multiplication is only required when one needs to convert between</font>
<font color="#c80000">// durations with different tick periods (e.g. milliseconds to microseconds).</font>
<font color="#c80000">// </font>
<font color="#c80000">// A duration has defalt construction and default copy semantics. One can also explicitly</font>
<font color="#c80000">// construct a duration from its representation or something implicitly convertible to</font>
<font color="#c80000">// its representation. If the representation is integral (or emulated integral) the</font>
<font color="#c80000">// duration may not be constructed from a floating point (or emulated floating point)</font>
<font color="#c80000">// type, even if that type is impilcitly convertible to the representation (the client</font>
<font color="#c80000">// must explicitly convert such an argument as they pass it to the constructor if such</font>
<font color="#c80000">// a conversion is desired).</font>
<font color="#c80000">// </font>
<font color="#c80000">// A duration may be implicitly constructible from another duration if the representations</font>
<font color="#c80000">// of the two durations meet certain requirements. Let the representation of this duration</font>
<font color="#c80000">// be Rep1 and the representation of the other duration be Rep2. Example representations</font>
<font color="#c80000">// include int, long long, double, or a user-defined class which emulates one of these</font>
<font color="#c80000">// arithmetic types. To qualify for implicit constructability Rep1 must be explicitly</font>
<font color="#c80000">// constructible from Rep2. Note that implicit constructibility of Rep1 from Rep2 is not</font>
<font color="#c80000">// required for this implicit construction between durations. Additionally the trait</font>
<font color="#c80000">// common_type&lt;Rep1, Rep2&gt;::type must be well defined. If a conditional expression involving</font>
<font color="#c80000">// these two types isn't valid, there must exist a common_type specialization which makes</font>
<font color="#c80000">// the trait valid.</font>
<font color="#c80000">// </font>
<font color="#c80000">// The requirements put on the relationship between Rep1 and Rep2 are intended to be minimal,</font>
<font color="#c80000">// and not require implicit conversions (which could be considered error prone by the author</font>
<font color="#c80000">// of either of these representations).</font>
<font color="#c80000">// </font>
<font color="#c80000">// In addition to the above relationship between the representations, implicit constructability</font>
<font color="#c80000">// also depends on whether the representation is considered floating point (or emulated floating</font>
<font color="#c80000">// point) or integral (or emulated integral).</font>
<font color="#c80000">// </font>
<font color="#c80000">// If a duration has a floating point (or emulated floating point) representation it</font>
<font color="#c80000">// is implicitly constructible from all other durations of any period (as long as</font>
<font color="#c80000">// the representations are compatible as described above).</font>
<font color="#c80000">// </font>
<font color="#c80000">// If a duration has an integral (or emulated integral) representation it is implicitly</font>
<font color="#c80000">// constructible from other integral-based durations which have a period which will exactly convert</font>
<font color="#c80000">// to the period of this duration with no truncation error. More specifically, if the</font>
<font color="#c80000">// period of this duration is P1, and the period of the other duration is P2, this</font>
<font color="#c80000">// duration is implicitly constructible from the other duration if P2/P1 is a whole number</font>
<font color="#c80000">// (as long as the representations are compatible as described above). Example:</font>
<font color="#c80000">// microseconds has a period p1 = 1/1000000 seconds. milliseconds has a period</font>
<font color="#c80000">// P2 = 1/1000 seconds. P2/P1 is (1/1000)/(1/1000000) = 1000000/1000 = 1000.</font>
<font color="#c80000">// Therefore microseconds will implicitly construct from milliseconds (but not vice-versa).</font>
<font color="#c80000">//</font>
<font color="#c80000">// These rules involving integral representations are meant to prevent accidental truncatation</font>
<font color="#c80000">// error. If truncation error is desired, a duration_cast facility is available to force it.</font>
<font color="#c80000">// Example:</font>
<font color="#c80000">// milliseconds ms(3); // ok, ms.count() == 3, which is 0.003 seconds</font>
<font color="#c80000">// microseconds us = ms; // ok, us.count() == 3000 which is 0.003000 seconds</font>
<font color="#c80000">// ++us; // ok, us.count() == 3001 which is 0.003001 seconds</font>
<font color="#c80000">// ms = us; // won't compile, might truncate</font>
<font color="#c80000">// ms = duration_cast&lt;milliseconds&gt;(us); // ok, ms.count() = 3, truncated a microsecond</font>
<font color="#c80000">// </font>
<font color="#c80000">// A duration has a single observer: rep count() const; which returns the stored</font>
<font color="#c80000">// representation which holds the number of elapsed "ticks".</font>
<font color="#c80000">// </font>
<font color="#c80000">// A duration supports the following member arithmetic:</font>
<font color="#c80000">// </font>
<font color="#c80000">// duration operator+() const;</font>
<font color="#c80000">// duration operator-() const;</font>
<font color="#c80000">// duration&amp; operator++();</font>
<font color="#c80000">// duration operator++(int);</font>
<font color="#c80000">// duration&amp; operator--();</font>
<font color="#c80000">// duration operator--(int);</font>
<font color="#c80000">// </font>
<font color="#c80000">// duration&amp; operator+=(duration d);</font>
<font color="#c80000">// duration&amp; operator-=(duration d);</font>
<font color="#c80000">// </font>
<font color="#c80000">// duration&amp; operator*=(rep rhs);</font>
<font color="#c80000">// duration&amp; operator/=(rep rhs);</font>
<font color="#c80000">//</font>
<font color="#c80000">// The arithmetic simply manipulates the "tick" count in the obvious way (e.g. operator++</font>
<font color="#c80000">// increments the tick count by 1).</font>
<font color="#c80000">// </font>
<font color="#c80000">// A duration supports the following non-member arithmetic.</font>
<font color="#c80000">// Let D1 represent duration&lt;Rep1, Period1&gt; and D2 represent duration&lt;Rep2, Period2&gt;.</font>
<font color="#c80000">// </font>
<font color="#c80000">// common_type&lt;D1, D2&gt;::type operator+( D1, D2); // returns a duration</font>
<font color="#c80000">// common_type&lt;D1, D2&gt;::type operator-( D1, D2); // returns a duration</font>
<font color="#c80000">// duration&lt;common_type&lt;D1::rep,Rep2&gt;::type, D1::period&gt; operator*( D1, Rep2); // returns a duration</font>
<font color="#c80000">// duration&lt;common_type&lt;D1::rep,Rep2&gt;::type, D1::period&gt; operator*(Rep2, D1); // returns a duration</font>
<font color="#c80000">// duration&lt;common_type&lt;D1::rep,Rep2&gt;::type, D1::period&gt; operator/( D1, Rep2); // returns a duration</font>
<font color="#c80000">// common_type&lt;D1::rep, D2::rep&gt;::type operator/( D1, D2); // returns a scalar</font>
<font color="#c80000">// </font>
<font color="#c80000">// A duration D1 is fully equality and less-than comparable with any other duration D2, as</font>
<font color="#c80000">// long as common_type&lt;D1::rep, D2::rep&gt; is well defined.</font>
<font color="#c80000">// Example:</font>
<font color="#c80000">// milliseconds ms(3); // ms.count() == 3, which is 0.003 seconds</font>
<font color="#c80000">// microseconds us = ms; // us.count() == 3000 which is 0.003000 seconds</font>
<font color="#c80000">// --us; // us.count() == 2999 which is 0.002999 seconds</font>
<font color="#c80000">// assert(ms != us); // 3 milliseconds is not equal to 2999 microseconds</font>
<font color="#c80000">// assert(ms &gt; us); // 3 milliseconds is greater than 2999 microseconds</font>
<font color="#c80000">// ++us; // us.count() == 3000 which is 0.003000 seconds</font>
<font color="#c80000">// assert(ms == us); // 3 milliseconds is equal to 3000 microseconds</font>
<font color="#c80000">//</font>
<font color="#c80000">// Durations based on floating point representations are subject to round off error precisely the</font>
<font color="#c80000">// same way their representations are.</font>
<font color="#c80000">// </font>
<font color="#c80000">// Arithmetic and comparisons among integral-based durations is not subject to truncation error or</font>
<font color="#c80000">// round off error. If truncation error would result from the arithmetic (say</font>
<font color="#c80000">// by converting a smaller period duration to a larger one) the expression will</font>
<font color="#c80000">// not compile (unless duration_cast is used). If one performs arithmetic</font>
<font color="#c80000">// involving the duration's representation (such as division), then truncation</font>
<font color="#c80000">// will happen implicitly.</font>
<font color="#c80000">// </font>
<font color="#c80000">// Overflow error may silently happen with a duration. The std-defined durations</font>
<font color="#c80000">// have a minimum range of +/- 292 years.</font>
<font color="#c80000">// </font>
<font color="#c80000">// A duration is a thin wrapper around its representation. sizeof(duration&lt;Rep, Period&gt;) == sizeof(Rep).</font>
<font color="#c80000">// </font>
<font color="#c80000">// A duration can represent units as small as 10^-18 seconds (attoseconds) and as large as 10^18 seconds</font>
<font color="#c80000">// (about 30 billion years). The range of a duration is based on the range of its representation</font>
<font color="#c80000">// combined with its period.</font>
<font color="#c80000">// The cost of not including the flexibility to represent different "tick periods" in the duration</font>
<font color="#c80000">// type would be a great loss of both flexibility, convenience and safety for the client. For example</font>
<font color="#c80000">// if had just one duration type which counted nanoseconds (no matter how that count was represented),</font>
<font color="#c80000">// then clients could never have the ability to traffic in picoseconds. And the only hope of reaching</font>
<font color="#c80000">// beyond a +/- 292 year range with nanoseconds is to increase the number of bits in the representation</font>
<font color="#c80000">// (such as a long long). Furthermore, if the client wanted to traffic in units larger than a nanosecond</font>
<font color="#c80000">// (e.g. seconds) for convience, they would likely need to set up their own conversion constants and</font>
<font color="#c80000">// convert manually.</font>
<font color="#c80000">//</font>
<font color="#c80000">// If the conversion constants are specified at run time, rather than as compile time integral constants,</font>
<font color="#c80000">// then the client suffers a significant performance penalty as for every conversion one will have to</font>
<font color="#c80000">// perform both a multiplication and a division. In contrast, when converting among any two units of</font>
<font color="#c80000">// the set (hours, minutes, seconds, milliseconds, microseconds, nanoseconds), there need be only a</font>
<font color="#c80000">// single multiplication *or* division (never both). This proposal makes every unit conversion as</font>
<font color="#c80000">// efficient as if it had been coded by hand (see duration_cast). Furthermore duration_cast encapsulates</font>
<font color="#c80000">// all unit conversions within a single uniform-syntax function which is easily used in generic code. There</font>
<font color="#c80000">// is no need (or motivation) to set up a "hub-and-spoke" conversion regimen, so that the number of conversion</font>
<font color="#c80000">// functions is O(N) rather than O(N^2).</font>
template &lt;class Rep, class Period = ratio&lt;1&gt;&gt;
requires Rep is an arithmetic type, or a class emulating an arithmetic type,
and not an instantiation of duration
requires Period is an instantiation of ratio and represents a positive fraction
class duration
{
public:
typedef Rep rep;
typedef Period period;
private:
rep rep_; <font color="#c80000">// exposition only</font>
public:
<font color="#c80000">// construction / destruction</font>
duration() = default;
template &lt;class Rep2&gt;
requires is_convertible&lt;Rep2, rep&gt;::value &amp;&amp;
(treat_as_floating_point&lt;rep&gt;::value ||
!treat_as_floating_point&lt;rep&gt;::value &amp;&amp; !treat_as_floating_point&lt;Rep2&gt;::value)
explicit duration(const Rep2&amp; r);
~duration() = default;
<font color="#c80000">// copy semantics</font>
duration(const duration&amp;) = default;
duration&amp; operator=(const duration&amp;) = default;
<font color="#c80000">// conversions</font>
template &lt;class Rep2, class Period2&gt;
requires Rep2 is explicitly convertible to rep &amp;&amp;
(treat_as_floating_point&lt;rep&gt;::value ||
!treat_as_floating_point&lt;Rep2&gt;::value &amp;&amp; ratio_divide&lt;Period2, period&gt;::type::den == 1)
duration(const duration&lt;Rep2, Period2&gt;&amp; d);
<font color="#c80000">// observer</font>
rep count() const;
<font color="#c80000">// arithmetic</font>
duration operator+() const;
duration operator-() const;
duration&amp; operator++();
duration operator++(int);
duration&amp; operator--();
duration operator--(int);
duration&amp; operator+=(const duration&amp; d);
duration&amp; operator-=(const duration&amp; d);
duration&amp; operator*=(const rep&amp; rhs);
duration&amp; operator/=(const rep&amp; rhs);
<font color="#c80000">// special values</font>
static constexpr duration zero();
static constexpr duration min();
static constexpr duration max();
};
<font color="#c80000">// convenience typedefs</font>
typedef duration&lt;int_least64_t, nano&gt; nanoseconds; <font color="#c80000">// 10^-9 seconds</font>
typedef duration&lt;int_least55_t, micro&gt; microseconds; <font color="#c80000">// 10^-6 seconds</font>
typedef duration&lt;int_least45_t, milli&gt; milliseconds; <font color="#c80000">// 10^-3 seconds</font>
typedef duration&lt;int_least35_t &gt; seconds; <font color="#c80000">// 1 second</font>
typedef duration&lt;int_least29_t, ratio&lt; 60&gt;&gt; minutes; <font color="#c80000">// 60 seconds</font>
typedef duration&lt;int_least23_t, ratio&lt;3600&gt;&gt; hours; <font color="#c80000">// 3600 seconds</font>
<font color="#c80000">// duration_cast can be used to force a conversion between two durations (assuming</font>
<font color="#c80000">// the source representation can be explicitly converted to the target representation).</font>
<font color="#c80000">// Not all integral-based durations are implicitly convertible to another (to</font>
<font color="#c80000">// avoid accidental truncation error). When truncation error is desired, the client</font>
<font color="#c80000">// uses duration_cast to explicitly request the non-exact conversion. When</font>
<font color="#c80000">// duration_cast is used to convert between durations which have an implicit conversion,</font>
<font color="#c80000">// the behavior and performance of the conversion using duration_cast is identical to</font>
<font color="#c80000">// that of the implicit conversion.</font>
template &lt;class ToDuration, class Rep, class Period&gt;
requires ToDuration is an instantiation of duration
ToDuration duration_cast(const duration&lt;Rep, Period&gt;&amp; fd);
<font color="#c80000">// Examples:</font>
<font color="#c80000">// microseconds us(3500); // 3500 microseconds</font>
<font color="#c80000">// milliseconds ms = us; // Does not compile (implicit truncation)</font>
<font color="#c80000">// milliseconds ms = duration_cast&lt;milliseconds&gt;(us); // 3 milliseconds (explicit truncation)</font>
<font color="#c80000">// us = ms; // 3000 microseconds</font>
<font color="#c80000">// us = duration_cast&lt;microseconds&gt;(ms); // 3000 microseconds</font>
} <font color="#c80000">// datetime</font>
<font color="#c80000">// Given two durations: duration&lt;Rep1, Period1&gt; and duration&lt;Rep2, Period2&gt;, the common_type</font>
<font color="#c80000">// of those two durations is a duration with a representation of common_type&lt;Rep1, Rep2&gt;,</font>
<font color="#c80000">// and a period which is the "greatest common period" of Period1 and Period2. The GCP</font>
<font color="#c80000">// (Greatest Common Period) of Period1 and Period2 is the largest period which will divide</font>
<font color="#c80000">// both Period1 and Period2 evenly (and is often equivalent to the minimum of Period1 and</font>
<font color="#c80000">// Period2). This can be computed (by the implementation at compile time) by</font>
<font color="#c80000">// GCD(Period1::num, Period2::num) / LCM(Period1::den, Period2::den) where GCD is</font>
<font color="#c80000">// "Greatest Common Divisor" and LCM is "Least Common Multiple".</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
struct common_type&lt;datetime::duration&lt;Rep1, Period1&gt;, datetime::duration&lt;Rep2, Period2&gt; &gt;
{
typedef datetime::duration&lt;typename common_type&lt;Rep1, Rep2&gt;::type,
ratio&lt;GCD(Period1::num, Period2::num), LCM(Period1::den, Period2::den)&gt;&gt; type;
};
<font color="#c80000">// Note: For any two durations D1 and D2, they will both exactly convert to common_type&lt;D1, D2&gt;::type.</font>
<font color="#c80000">// common_type&lt;D1, D2&gt;::type will have the largest possible period to make this possible, and</font>
<font color="#c80000">// may be the same type as D1 or D2. Examples:</font>
<font color="#c80000">// common_type&lt;minutes, microseconds&gt;::type is microseconds.</font>
<font color="#c80000">// common_type&lt;milliseconds, microseconds&gt;::type is microseconds.</font>
<font color="#c80000">// common_type&lt;nanoseconds, microseconds&gt;::type is nanoseconds.</font>
<font color="#c80000">//</font>
<font color="#c80000">// A more complex example:</font>
<font color="#c80000">// common_type&lt; duration&lt;long, milli&gt;, duration&lt;int, ratio&lt;1,30&gt;&gt; &gt;::type is</font>
<font color="#c80000">// duration&lt;long, ratio&lt;1,3000&gt;&gt;. And both duration&lt;long, milli&gt; and </font>
<font color="#c80000">// duration&lt;int, ratio&lt;1,30&gt;&gt; will exactly convert to duration&lt;long, ratio&lt;1,3000&gt;&gt;.</font>
<font color="#c80000">// The former multitplies its representation by 3L and the latter converts its</font>
<font color="#c80000">// representation to long and multiplies that result by 1000L. There exists no</font>
<font color="#c80000">// duration with a larger period such that both duration&lt;long, milli&gt; and</font>
<font color="#c80000">// duration&lt;int, ratio&lt;1,30&gt;&gt; will exactly convert to it.</font>
namespace datetime {
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
bool operator==(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
bool operator!=(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
bool operator&lt; (const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
bool operator&lt;=(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
bool operator&gt; (const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
bool operator&gt;=(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
typename common_type&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;::type
operator+(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
typename common_type&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;::type
operator-(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period, class Rep2&gt;
requires Constructible&lt;Rep1, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value&gt; &amp;&amp;
Constructible&lt;Rep2, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value&gt;
duration&lt;typename common_type&lt;Rep1, Rep2&gt;::type, Period&gt;
operator*(const duration&lt;Rep, Period&gt;&amp; d, const Rep2&amp; s);
template &lt;class Rep1, class Period, class Rep2&gt;
requires Constructible&lt;Rep1, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value&gt; &amp;&amp;
Constructible&lt;Rep2, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value&gt;
duration&lt;typename common_type&lt;Rep1, Rep2&gt;::type, Period&gt;
operator*(const Rep2&amp; s, const duration&lt;Rep, Period&gt;&amp; d);
template &lt;class Rep1, class Period, class Rep2&gt;
requires Rep2 is not a duration &amp;&amp;
Constructible&lt;Rep1, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value&gt; &amp;&amp;
Constructible&lt;Rep2, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value&gt;
duration&lt;typename common_type&lt;Rep1, Rep2&gt;::type, Period&gt;
operator/(const duration&lt;Rep, Period&gt;&amp; d, const Rep2&amp; s);
<font color="#c80000">// Note: the above 3 signatures can be approximated with is_convertible if concepts do not</font>
<font color="#c80000">// make it into the language. Requiring only *explicit* convertibility between the Rep</font>
<font color="#c80000">// types is strongly desired. One way or another, Rep2 must be constrained. Otherwise</font>
<font color="#c80000">// the operators are overly generic.</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
typename common_type&lt;Rep1, Rep2&gt;::type
operator/(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
<font color="#c80000">// time_point</font>
<font color="#c80000">// A time_point represents an epoch plus or minus a duration. The relationship between a time_point</font>
<font color="#c80000">// which represents "now" and the time_point's epoch is obtained via a clock. Each time_point is</font>
<font color="#c80000">// tied to a specific clock. Thus, for any time_point, one can find the duration between that</font>
<font color="#c80000">// point in time and now, and between that point in time, and its epoch.</font>
<font color="#c80000">// </font>
<font color="#c80000">// A time_point may be default constructed. This time_point represents the epoch. time_point has</font>
<font color="#c80000">// default copy semantics.</font>
<font color="#c80000">// </font>
<font color="#c80000">// time_point may be explicitly constructed by a duration having the same representation and period as</font>
<font color="#c80000">// the time_point. Any other duration which is implicitly convertible to the time_point's "native" duration can</font>
<font color="#c80000">// also be used to explicitly construct the time_point. The meaning of this construction is identical to</font>
<font color="#c80000">// time_point() + d.</font>
<font color="#c80000">//</font>
<font color="#c80000">// A time_point is implicitly constructible from another time_point if they share the same clock,</font>
<font color="#c80000">// and the duration of this time_point is implicitly constructible from the duration of the other</font>
<font color="#c80000">// time_point. A time_point constructed in this fashion will compare equal to the source time_point</font>
<font color="#c80000">// after the construction.</font>
<font color="#c80000">// </font>
<font color="#c80000">// A time_point supports the following member arithmetic:</font>
<font color="#c80000">// </font>
<font color="#c80000">// time_point&amp; operator+=(duration d);</font>
<font color="#c80000">// time_point&amp; operator-=(duration d);</font>
<font color="#c80000">// </font>
<font color="#c80000">// A time_point supports the following non-member arithmetic.</font>
<font color="#c80000">// Let T1 represent time_point&lt;Clock, Duration1&gt;,</font>
<font color="#c80000">// T2 represent time_point&lt;Clock, Duration2&gt;,</font>
<font color="#c80000">// and D represent duration&lt;Rep3, Period3&gt;. Note that T1 and T2 must have the same Clock.</font>
<font color="#c80000">// Attempts to interoperate times having different clocks results in a compile time failure.</font>
<font color="#c80000">// </font>
<font color="#c80000">// T2 operator+(T1, D); // return type is a time_point</font>
<font color="#c80000">// T2 operator+( D, T1); // return type is a time_point</font>
<font color="#c80000">// T2 operator-(T1, D); // return type is a time_point</font>
<font color="#c80000">// D operator-(T1, T2); // return type is a duration</font>
<font color="#c80000">// </font>
<font color="#c80000">// A time_point T1 is fully equality and less-than comparable with any other time_point T2 which</font>
<font color="#c80000">// has the same clock, and for which their durations are comparable.</font>
<font color="#c80000">// </font>
<font color="#c80000">// Times based on floating point representations are subject to round off error precisely the</font>
<font color="#c80000">// same way their representations are.</font>
<font color="#c80000">// </font>
<font color="#c80000">// Times based on integral representations are not subject to truncation error or round off</font>
<font color="#c80000">// error. A compile time error will result if truncation error is possible. Truncation error</font>
<font color="#c80000">// is only possible with construction or the member arithmetic (and won't compile). Non-member</font>
<font color="#c80000">// arithmetic and comparison is always exact. Overflow error with integral based times remains a</font>
<font color="#c80000">// possibility.</font>
<font color="#c80000">// </font>
<font color="#c80000">// A time_point is a thin wrapper around its representation.</font>
<font color="#c80000">// sizeof(time_point&lt;Clock, Duration&gt;) == sizeof(Duration) == sizeof(Duration::rep).</font>
<font color="#c80000">// </font>
<font color="#c80000">// A time_point can represent units as small as 10^-18 seconds and as large as 10^18 seconds. The range</font>
<font color="#c80000">// of a time_point is based on the range of its representation combined with its period.</font>
<font color="#c80000">//</font>
<font color="#c80000">// Because no two clocks report the exact same time, even clocks which nominally have the same</font>
<font color="#c80000">// epoch, are considered by this framework to have different epochs, if only by a few nanoseconds.</font>
<font color="#c80000">// Converting time_points from one clock to another will involve synchronization of the clocks,</font>
<font color="#c80000">// which can be viewed as a synchronization of their epochs. Such synchronization is clock specific</font>
<font color="#c80000">// and beyond the scope of this API. A future API, or a platform specific API, can easily</font>
<font color="#c80000">// write such a synchronization API, basing it on this API.</font>
<font color="#c80000">// The cost of not including a time_point class is the lack of the ability to safely interact with</font>
<font color="#c80000">// the concept of "epoch + duration". Without a separate type, the client is in danger of accidently</font>
<font color="#c80000">// writing code that boils down to "epoch1 + duration1" + "epoch2 + duration2". Algebraically this</font>
<font color="#c80000">// results in epoch1+epoch2 as a subexpression which is likely to be completely without meaning. What</font>
<font color="#c80000">// would it mean to add New Years 1970 to the point in time at which your computer booted up? Or for</font>
<font color="#c80000">// that matter, what is the meaning of "New Years 1970" + "New Years 1970"?</font>
<font color="#c80000">//</font>
<font color="#c80000">// Additionally this would force the duration type to play double duty as a time_point leading to</font>
<font color="#c80000">// client confusion. For example POSIX has timespec represent a duration in nanosleep, and yet the</font>
<font color="#c80000">// same type is used as a time_point in pthread_cond_timedwait and pthread_mutex_timedlock. The</font>
<font color="#c80000">// confusion seems even more likely with a function such as clock_nanosleep where timespec can mean</font>
<font color="#c80000">// either a duration or a time_point depending upon another argument to the function.</font>
<font color="#c80000">//</font>
<font color="#c80000">// In C++ we can easily mitigate such errors by detecting them at compile time. This is done through</font>
<font color="#c80000">// the use of distinct types for these distinct concepts (even though both types have identical layout!).</font>
template &lt;class Clock, class Duration = typename Clock::duration&gt;
requires Duration is an instantiation of duration
class time_point
{
public:
typedef Clock clock;
typedef Duration duration;
typedef typename duration::rep rep;
typedef typename duration::period period;
private:
duration d_; <font color="#c80000">// exposition only</font>
public:
time_point(); <font color="#c80000">// has value "epoch"</font>
explicit time_point(const duration&amp; d); <font color="#c80000">// same as time_point() + d</font>
<font color="#c80000">// conversions</font>
template &lt;class Duration2&gt;
requires Convertible&lt;Duration2, duration&gt;
time_point(const time_point&lt;clock, Duration2&gt;&amp; t);
<font color="#c80000">// observer</font>
duration time_since_epoch() const;
<font color="#c80000">// arithmetic</font>
time_point&amp; operator+=(const duration&amp; d);
time_point&amp; operator-=(const duration&amp; d);
<font color="#c80000">// special values</font>
static time_point min();
static time_point max();
};
} <font color="#c80000">// datetime</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
struct common_type&lt;datetime::time_point&lt;Clock, Duration1&gt;, datetime::time_point&lt;Clock, Duration2&gt; &gt;
{
typedef datetime::time_point&lt;Clock, typename common_type&lt;Duration1, Duration2&gt;::type&gt; type;
};
namespace datetime {
template &lt;class ToDuration, class Clock, class Duration&gt;
time_point&lt;Clock, ToDuration&gt; time_point_cast(const time_point&lt;Clock, Duration&gt;&amp; t);
template &lt;class Clock, class Duration1, class Duration2&gt;
bool operator==(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs);
template &lt;class Clock, class Duration1, class Duration2&gt;
bool operator!=(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs);
template &lt;class Clock, class Duration1, class Duration2&gt;
bool operator&lt; (const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs);
template &lt;class Clock, class Duration1, class Duration2&gt;
bool operator&lt;=(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs);
template &lt;class Clock, class Duration1, class Duration2&gt;
bool operator&gt; (const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs);
template &lt;class Clock, class Duration1, class Duration2&gt;
bool operator&gt;=(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs);
template &lt;class Clock, class Duration1, class Rep2, class Period2&gt;
time_point&lt;Clock, typename common_type&lt;Duration1, duration&lt;Rep2, Period2&gt; &gt;::type&gt;
operator+(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Rep1, class Period1, class Clock, class Duration2&gt;
time_point&lt;Clock, typename common_type&lt;duration&lt;Rep1, Period1&gt;, Duration2&gt;::type&gt;
operator+(const duration&lt;Rep1, Period1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs);
template &lt;class Clock, class Duration1, class Rep2, class Period2&gt;
time_point&lt;Clock, typename common_type&lt;Duration1, duration&lt;Rep2, Period2&gt; &gt;::type&gt;
operator-(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs);
template &lt;class Clock, class Duration1, class Duration2&gt;
typename common_type&lt;Duration1, Duration2&gt;::type
operator-(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs);
<font color="#c80000">// clocks</font>
<font color="#c80000">// A clock specifies a representation, and a period. These specifications are used to</font>
<font color="#c80000">// to define a clock's native duration and time_point types. A clock also has a function to get the current</font>
<font color="#c80000">// time_point. A clock need not have any state.</font>
<font color="#c80000">// The cost of not including separate types for clocks is that there is no better place to</font>
<font color="#c80000">// bundle the "native" duration and time_point types for a clock with the functionality to</font>
<font color="#c80000">// get the current time_point (what time is it now?). By bundling this information into a</font>
<font color="#c80000">// type, the extension to support multiple clocks is both easy and obvious. The ability to</font>
<font color="#c80000">// easily support multiple clocks in such a flexible yet simple and efficient manner is</font>
<font color="#c80000">// very important. A client might (for example) write code with the clock as a generic</font>
<font color="#c80000">// template parameter, and then easily experiment with different timers.</font>
class system_clock
{
public:
typedef &lt;unspecified&gt; rep;
typedef ratio&lt;unspecified, unspecified&gt; period;
typedef datetime::duration&lt;rep, period&gt; duration;
typedef datetime::time_point&lt;system_clock&gt; time_point;
static const bool is_mononontic = &lt;unspecified&gt;;
static time_point now();
<font color="#c80000">// Map to C API</font>
static time_t to_time_t (const time_point&amp; t);
static time_point from_time_t(time_t t);
};
class monotonic_clock <font color="#c80000">// optional</font>
{
public:
typedef &lt;unspecified&gt; rep;
typedef ratio&lt;unspecified, unspecified&gt; period;
typedef datetime::duration&lt;rep, period&gt; duration;
typedef datetime::time_point&lt;monotonic_clock&gt; time_point;
static const bool is_mononontic = true;
static time_point now();
};
class high_resolution_clock <font color="#c80000">// optional</font>
{
public:
typedef &lt;unspecified&gt; rep;
typedef ratio&lt;unspecified, unspecified&gt; period;
typedef datetime::duration&lt;rep, period&gt; duration;
typedef datetime::time_point&lt;high_resolution_clock&gt; time_point;
static const bool is_mononontic = &lt;unspecified&gt;;
static time_point now();
};
<font color="#c80000">// Note: These clocks may be three separate types, or typedefs to one or two common types.</font>
} <font color="#c80000">// datetime</font>
<font color="#c80000">//////////////////////////</font>
<font color="#c80000">// Threading interface //</font>
<font color="#c80000">//////////////////////////</font>
<font color="#c80000">// timed_mutex</font>
struct timed_mutex
{
public:
timed_mutex();
~timed_mutex();
timed_mutex(const timed_mutex&amp;) = delete;
timed_mutex&amp; operator=(const timed_mutex&amp;) = delete;
void lock();
bool try_lock();
template &lt;class Rep, class Period&gt;
bool try_lock_for(const datetime::duration&lt;Rep, Period&gt;&amp; rel_time);
template &lt;class Clock, class Duration&gt;
bool try_lock_until(const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time);
void unlock();
typedef unspecified native_handle_type; <font color="#c80000">// optional. example: pthread_mutex_t*</font>
native_handle_type native_handle(); <font color="#c80000">// optional</font>
};
<font color="#c80000">// recursive_timed_mutex</font>
struct recursive_timed_mutex
{
public:
recursive_timed_mutex();
~recursive_timed_mutex();
recursive_timed_mutex(const recursive_timed_mutex&amp;) = delete;
recursive_timed_mutex&amp; operator=(const recursive_timed_mutex&amp;) = delete;
void lock();
bool try_lock();
template &lt;class Rep, class Period&gt;
bool try_lock_for(const datetime::duration&lt;Rep, Period&gt;&amp; rel_time);
template &lt;class Clock, class Duration&gt;
bool try_lock_until(const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time);
void unlock();
typedef unspecified native_handle_type; <font color="#c80000">// optional. example: pthread_mutex_t*</font>
native_handle_type native_handle(); <font color="#c80000">// optional</font>
};
<font color="#c80000">// unique_lock</font>
template &lt;class Mutex&gt;
class unique_lock
{
public:
typedef Mutex mutex_type;
unique_lock();
explicit unique_lock(mutex_type&amp; m);
unique_lock(mutex_type&amp; m, defer_lock_t);
unique_lock(mutex_type&amp; m, try_to_lock_t);
unique_lock(mutex_type&amp; m, adopt_lock_t);
template &lt;class Rep, class Period&gt;
unique_lock(mutex_type&amp; m, const datetime::duration&lt;Rep, Period&gt;&amp; rel_t);
template &lt;class Clock, class Duration&gt;
unique_lock(mutex_type&amp; m, const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time);
~unique_lock();
unique_lock(unique_lock const&amp;) = delete;
unique_lock&amp; operator=(unique_lock const&amp;) = delete;
unique_lock(unique_lock&amp;&amp; u);
unique_lock&amp; operator=(unique_lock&amp;&amp; u);
void lock();
bool try_lock();
template &lt;class Rep, class Period&gt;
bool try_lock_for(const datetime::duration&lt;Rep, Period&gt;&amp; rel_t);
template &lt;class Clock, class Duration&gt;
bool try_lock_until(const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time);
void unlock();
bool owns_lock() const;
operator unspecified-bool-type () const;
mutex_type* mutex() const;
void swap(unique_lock&amp;&amp; u);
mutex_type* release();
};
<font color="#c80000">// condition_variable</font>
class condition_variable
{
public:
condition_variable();
~condition_variable();
condition_variable(const condition_variable&amp;) = delete;
condition_variable&amp; operator=(const condition_variable&amp;) = delete;
void notify_one();
void notify_all();
void wait(unique_lock&lt;mutex&gt;&amp; lock);
template &lt;class Predicate&gt;
void wait(unique_lock&lt;mutex&gt;&amp; lock, Predicate pred);
template &lt;class Clock, class Duration&gt;
bool wait_until(unique_lock&lt;mutex&gt;&amp; lock,
const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time);
template &lt;class Clock, class Duration, class Predicate&gt;
bool wait_until(unique_lock&lt;mutex&gt;&amp; lock,
const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time,
Predicate pred);
template &lt;class Rep, class Period&gt;
bool wait_for(unique_lock&lt;mutex&gt;&amp; lock, const datetime::duration&lt;Rep, Period&gt;&amp; rel_time);
template &lt;class Rep, class Period, class Predicate&gt;
bool wait_for(unique_lock&lt;mutex&gt;&amp; lock, const datetime::duration&lt;Rep, Period&gt;&amp; rel_time,
Predicate pred);
typedef pthread_cond_t* native_handle_type;
native_handle_type native_handle();
};
<font color="#c80000">// condition_variable_any</font>
class condition_variable_any
{
public:
condition_variable_any();
~condition_variable_any();
condition_variable_any(const condition_variable_any&amp;) = delete;
condition_variable_any&amp; operator=(const condition_variable_any&amp;) = delete;
void notify_one();
void notify_all();
template &lt;class Lock&gt;
void wait(Lock&amp; lock);
template &lt;class Lock, class Predicate&gt;
void wait(Lock&amp; lock, Predicate pred);
template &lt;class Lock, class Clock, class Duration&gt;
bool wait_until(Lock&amp; lock, const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time);
template &lt;class Lock, class Clock, class Duration, class Predicate&gt;
bool wait_until(Lock&amp; lock, const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time,
Predicate pred);
template &lt;class Lock, class Rep, class Period&gt;
bool wait_for(Lock&amp; lock, const datetime::duration&lt;Rep, Period&gt;&amp; rel_time);
template &lt;class Lock, class Rep, class Period, class Predicate&gt;
bool wait_for(Lock&amp; lock, const datetime::duration&lt;Rep, Period&gt;&amp; rel_time, Predicate pred);
};
<font color="#c80000">// sleep</font>
namespace this_thread
{
template &lt;class Rep, class Period&gt;
void sleep_for(const datetime::duration&lt;Rep, Period&gt;&amp; rel_time);
template &lt;class Clock, class Duration&gt;
void sleep_until(const datetime::time_point&lt;Clock, Duration&gt;&amp; abs_time);
} <font color="#c80000">// this_thread</font>
} <font color="#c80000">// std</font>
*/</font>
#include &lt;ctime&gt;
#include &lt;climits&gt;
#include &lt;inttypes.h&gt;
#include &lt;limits&gt;
#include "type_traits"
#define decltype __typeof__
namespace std
{
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">////////////////////// common_type ///////////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
#define VARIADIC_COMMON_TYPE 0
#if VARIADIC_COMMON_TYPE == 0
template &lt;class T, class U&gt;
struct common_type
{
private:
static T t();
static U u();
public:
typedef decltype(true ? t() : u()) type;
};
#else
template &lt;class ...T&gt; struct common_type;
template &lt;class T&gt;
struct common_type&lt;T&gt;
{
typedef T type;
};
template &lt;class T, class U&gt;
struct common_type&lt;T, U&gt;
{
private:
static T t();
static U u();
public:
typedef decltype(true ? t() : u()) type;
};
template &lt;class T, class U, class ...V&gt;
struct common_type&lt;T, U, V...&gt;
{
typedef typename common_type&lt;typename common_type&lt;T, U&gt;::type, V...&gt;::type type;
};
#endif
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">/////////////////////// ratio ////////////////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">// __static_gcd</font>
template &lt;intmax_t X, intmax_t Y&gt;
struct __static_gcd
{
static const intmax_t value = __static_gcd&lt;Y, X % Y&gt;::value;
};
template &lt;intmax_t X&gt;
struct __static_gcd&lt;X, 0&gt;
{
static const intmax_t value = X;
};
<font color="#c80000">// __static_lcm</font>
template &lt;intmax_t X, intmax_t Y&gt;
struct __static_lcm
{
static const intmax_t value = X / __static_gcd&lt;X, Y&gt;::value * Y;
};
template &lt;intmax_t X&gt;
struct __static_abs
{
static const intmax_t value = X &lt; 0 ? -X : X;
};
template &lt;intmax_t X&gt;
struct __static_sign
{
static const intmax_t value = X == 0 ? 0 : (X &lt; 0 ? -1 : 1);
};
template &lt;intmax_t X, intmax_t Y, intmax_t = __static_sign&lt;Y&gt;::value&gt;
class __ll_add;
template &lt;intmax_t X, intmax_t Y&gt;
class __ll_add&lt;X, Y, 1&gt;
{
static const intmax_t min = (1LL &lt;&lt; (sizeof(intmax_t) * CHAR_BIT - 1)) + 1;
static const intmax_t max = -min;
static char test[X &lt;= max - Y];
<font color="#c80000">// static_assert(X &lt;= max - Y, "overflow in __ll_add");</font>
public:
static const intmax_t value = X + Y;
};
template &lt;intmax_t X, intmax_t Y&gt;
class __ll_add&lt;X, Y, 0&gt;
{
public:
static const intmax_t value = X;
};
template &lt;intmax_t X, intmax_t Y&gt;
class __ll_add&lt;X, Y, -1&gt;
{
static const intmax_t min = (1LL &lt;&lt; (sizeof(intmax_t) * CHAR_BIT - 1)) + 1;
static const intmax_t max = -min;
static char test[min - Y &lt;= X];
<font color="#c80000">// static_assert(min - Y &lt;= X, "overflow in __ll_add");</font>
public:
static const intmax_t value = X + Y;
};
template &lt;intmax_t X, intmax_t Y, intmax_t = __static_sign&lt;Y&gt;::value&gt;
class __ll_sub;
template &lt;intmax_t X, intmax_t Y&gt;
class __ll_sub&lt;X, Y, 1&gt;
{
static const intmax_t min = (1LL &lt;&lt; (sizeof(intmax_t) * CHAR_BIT - 1)) + 1;
static const intmax_t max = -min;
static char test[min + Y &lt;= X];
<font color="#c80000">// static_assert(min + Y &lt;= X, "overflow in __ll_sub");</font>
public:
static const intmax_t value = X - Y;
};
template &lt;intmax_t X, intmax_t Y&gt;
class __ll_sub&lt;X, Y, 0&gt;
{
public:
static const intmax_t value = X;
};
template &lt;intmax_t X, intmax_t Y&gt;
class __ll_sub&lt;X, Y, -1&gt;
{
static const intmax_t min = (1LL &lt;&lt; (sizeof(intmax_t) * CHAR_BIT - 1)) + 1;
static const intmax_t max = -min;
static char test[X &lt;= max + Y];
<font color="#c80000">// static_assert(X &lt;= max + Y, "overflow in __ll_sub");</font>
public:
static const intmax_t value = X - Y;
};
template &lt;intmax_t X, intmax_t Y&gt;
class __ll_mul
{
static const intmax_t nan = (1LL &lt;&lt; (sizeof(intmax_t) * CHAR_BIT - 1));
static const intmax_t min = nan + 1;
static const intmax_t max = -min;
static const intmax_t __a_x = __static_abs&lt;X&gt;::value;
static const intmax_t __a_y = __static_abs&lt;Y&gt;::value;
static char test1[X != nan];
static char test2[Y != nan];
static char test[__a_x &lt;= max / __a_y];
<font color="#c80000">// static_assert(X != nan &amp;&amp; Y != nan &amp;&amp; __a_x &lt;= max / __a_y, "overflow in __ll_mul");</font>
public:
static const intmax_t value = X * Y;
};
template &lt;intmax_t Y&gt;
class __ll_mul&lt;0, Y&gt;
{
public:
static const intmax_t value = 0;
};
template &lt;intmax_t X&gt;
class __ll_mul&lt;X, 0&gt;
{
public:
static const intmax_t value = 0;
};
template &lt;&gt;
class __ll_mul&lt;0, 0&gt;
{
public:
static const intmax_t value = 0;
};
<font color="#c80000">// Not actually used but left here in case needed in future maintenance</font>
template &lt;intmax_t X, intmax_t Y&gt;
class __ll_div
{
static const intmax_t nan = (1LL &lt;&lt; (sizeof(intmax_t) * CHAR_BIT - 1));
static const intmax_t min = nan + 1;
static const intmax_t max = -min;
static char test1[X != nan];
static char test2[Y != nan];
static char test3[Y != 0];
<font color="#c80000">// static_assert(X != nan &amp;&amp; Y != nan &amp;&amp; Y != 0, "overflow in __ll_div");</font>
public:
static const intmax_t value = X / Y;
};
template &lt;intmax_t N, intmax_t D = 1&gt;
class ratio
{
static char test1[__static_abs&lt;N&gt;::value &gt;= 0];
static char test2[__static_abs&lt;D&gt;::value &gt; 0];
<font color="#c80000">// static_assert(__static_abs&lt;N&gt;::value &gt;= 0, "ratio numerator is out of range");</font>
<font color="#c80000">// static_assert(D != 0, "ratio divide by 0");</font>
<font color="#c80000">// static_assert(__static_abs&lt;D&gt;::value &gt; 0, "ratio denominator is out of range");</font>
static const intmax_t __na = __static_abs&lt;N&gt;::value;
static const intmax_t __da = __static_abs&lt;D&gt;::value;
static const intmax_t __s = __static_sign&lt;N&gt;::value * __static_sign&lt;D&gt;::value;
static const intmax_t __gcd = __static_gcd&lt;__na, __da&gt;::value;
public:
static const intmax_t num = __s * __na / __gcd;
static const intmax_t den = __da / __gcd;
};
template &lt;class T&gt; struct ___is_ratio : tmp::false_type {};
template &lt;intmax_t N, intmax_t D&gt; struct ___is_ratio&lt;ratio&lt;N, D&gt; &gt; : tmp::true_type {};
template &lt;class T&gt; struct __is_ratio : ___is_ratio&lt;typename tmp::remove_cv&lt;T&gt;::type&gt; {};
typedef ratio&lt;1LL, 1000000000000000000LL&gt; atto;
typedef ratio&lt;1LL, 1000000000000000LL&gt; femto;
typedef ratio&lt;1LL, 1000000000000LL&gt; pico;
typedef ratio&lt;1LL, 1000000000LL&gt; nano;
typedef ratio&lt;1LL, 1000000LL&gt; micro;
typedef ratio&lt;1LL, 1000LL&gt; milli;
typedef ratio&lt;1LL, 100LL&gt; centi;
typedef ratio&lt;1LL, 10LL&gt; deci;
typedef ratio&lt; 10LL, 1LL&gt; deca;
typedef ratio&lt; 100LL, 1LL&gt; hecto;
typedef ratio&lt; 1000LL, 1LL&gt; kilo;
typedef ratio&lt; 1000000LL, 1LL&gt; mega;
typedef ratio&lt; 1000000000LL, 1LL&gt; giga;
typedef ratio&lt; 1000000000000LL, 1LL&gt; tera;
typedef ratio&lt; 1000000000000000LL, 1LL&gt; peta;
typedef ratio&lt;1000000000000000000LL, 1LL&gt; exa;
template &lt;class R1, class R2&gt;
struct ratio_add
{
typedef ratio&lt;__ll_add&lt;__ll_mul&lt;R1::num, R2::den&gt;::value,
__ll_mul&lt;R1::den, R2::num&gt;::value&gt;::value,
__ll_mul&lt;R1::den, R2::den&gt;::value&gt; type;
};
template &lt;class R1, class R2&gt;
struct ratio_subtract
{
typedef ratio&lt;__ll_sub&lt;__ll_mul&lt;R1::num, R2::den&gt;::value,
__ll_mul&lt;R1::den, R2::num&gt;::value&gt;::value,
__ll_mul&lt;R1::den, R2::den&gt;::value&gt; type;
};
template &lt;class R1, class R2&gt;
struct ratio_multiply
{
typedef ratio&lt;__ll_mul&lt;R1::num, R2::num&gt;::value, __ll_mul&lt;R1::den, R2::den&gt;::value&gt; type;
};
template &lt;class R1, class R2&gt;
struct ratio_divide
{
typedef ratio&lt;__ll_mul&lt;R1::num, R2::den&gt;::value, __ll_mul&lt;R1::den, R2::num&gt;::value&gt; type;
};
<font color="#c80000">// ratio_equal</font>
template &lt;class R1, class R2&gt;
struct ratio_equal
: public tmp::integral_constant&lt;bool, R1::num == R2::num &amp;&amp; R1::den == R2::den&gt; {};
template &lt;class R1, class R2&gt;
struct ratio_not_equal
: public tmp::integral_constant&lt;bool, !ratio_equal&lt;R1, R2&gt;::value&gt; {};
<font color="#c80000">// ratio_less</font>
<font color="#c80000">// Protect against overflow, and still get the right answer as much as possible.</font>
<font color="#c80000">// This just demonstrates for fun how far you can push things without hitting</font>
<font color="#c80000">// overflow. The obvious and simple implementation is conforming.</font>
template &lt;class R1, class R2, bool ok1, bool ok2&gt;
struct __ratio_less3 <font color="#c80000">// true, true and false, false</font>
{
static const bool value = __ll_mul&lt;R1::num, R2::den&gt;::value &lt; __ll_mul&lt;R2::num, R1::den&gt;::value;
};
template &lt;class R1, class R2&gt;
struct __ratio_less3&lt;R1, R2, true, false&gt;
{
static const bool value = true;
};
template &lt;class R1, class R2&gt;
struct __ratio_less3&lt;R1, R2, false, true&gt;
{
static const bool value = false;
};
template &lt;class R1, class R2, bool = R1::num &lt; R1::den == R2::num &lt; R2::den&gt;
struct __ratio_less2 <font color="#c80000">// N1 &lt; D1 == N2 &lt; D2</font>
{
static const intmax_t max = -((1LL &lt;&lt; (sizeof(intmax_t) * CHAR_BIT - 1)) + 1);
static const bool ok1 = R1::num &lt;= max / R2::den;
static const bool ok2 = R2::num &lt;= max / R1::den;
static const bool value = __ratio_less3&lt;R1, R2, ok1, ok2&gt;::value;
};
template &lt;class R1, class R2&gt;
struct __ratio_less2&lt;R1, R2, false&gt; <font color="#c80000">// N1 &lt; D1 != N2 &lt; D2</font>
{
static const bool value = R1::num &lt; R1::den;
};
template &lt;class R1, class R2, bool = R1::num &lt; R1::den == R2::num &lt; R2::den&gt;
struct __ratio_less1 <font color="#c80000">// N1 &lt; D1 == N2 &lt; D2</font>
{
static const bool value = __ratio_less2&lt;ratio&lt;R1::num, R2::num&gt;, ratio&lt;R1::den, R2::den&gt; &gt;::value;
};
template &lt;class R1, class R2&gt;
struct __ratio_less1&lt;R1, R2, false&gt; <font color="#c80000">// N1 &lt; D1 != N2 &lt; D2</font>
{
static const bool value = R1::num &lt; R1::den;
};
template &lt;class R1, class R2, intmax_t S1 = __static_sign&lt;R1::num&gt;::value,
intmax_t S2 = __static_sign&lt;R2::num&gt;::value&gt;
struct __ratio_less
{
static const bool value = S1 &lt; S2;
};
template &lt;class R1, class R2&gt;
struct __ratio_less&lt;R1, R2, 1LL, 1LL&gt;
{
static const bool value = __ratio_less1&lt;R1, R2&gt;::value;
};
template &lt;class R1, class R2&gt;
struct __ratio_less&lt;R1, R2, -1LL, -1LL&gt;
{
static const bool value = __ratio_less1&lt;ratio&lt;-R2::num, R2::den&gt;, ratio&lt;-R1::num, R1::den&gt; &gt;::value;
};
template &lt;class R1, class R2&gt;
struct ratio_less
: public tmp::integral_constant&lt;bool, __ratio_less&lt;R1, R2&gt;::value&gt; {};
template &lt;class R1, class R2&gt;
struct ratio_less_equal
: public tmp::integral_constant&lt;bool, !ratio_less&lt;R2, R1&gt;::value&gt; {};
template &lt;class R1, class R2&gt;
struct ratio_greater
: public tmp::integral_constant&lt;bool, ratio_less&lt;R2, R1&gt;::value&gt; {};
template &lt;class R1, class R2&gt;
struct ratio_greater_equal
: public tmp::integral_constant&lt;bool, !ratio_less&lt;R1, R2&gt;::value&gt; {};
template &lt;class R1, class R2&gt;
struct __ratio_gcd
{
typedef ratio&lt;__static_gcd&lt;R1::num, R2::num&gt;::value,
__static_lcm&lt;R1::den, R2::den&gt;::value&gt; type;
};
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">////////////////////// duration //////////////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
namespace datetime
{
template &lt;class RepType, class Period = ratio&lt;1&gt; &gt; class duration;
template &lt;class T&gt; struct ___is_duration : tmp::false_type {};
template &lt;class Rep, class Period&gt; struct ___is_duration&lt;duration&lt;Rep, Period&gt; &gt; : tmp::true_type {};
template &lt;class T&gt; struct __is_duration : ___is_duration&lt;typename tmp::remove_cv&lt;T&gt;::type&gt; {};
<font color="#c80000">// duration_cast</font>
<font color="#c80000">// duration_cast is the heart of this whole prototype. It can convert any</font>
<font color="#c80000">// duration to any other. It is also (implicitly) used in converting</font>
<font color="#c80000">// time_points. The conversion is always exact if possible. And it is</font>
<font color="#c80000">// always as efficient as hand written code. If different representations</font>
<font color="#c80000">// are involved, care is taken to never require implicit conversions.</font>
<font color="#c80000">// Instead static_cast is used explicitly for every required conversion.</font>
<font color="#c80000">// If there are a mixture of integral and floating point representations,</font>
<font color="#c80000">// the use of common_type ensures that the most logical "intermediate"</font>
<font color="#c80000">// representation is used.</font>
template &lt;class FromDuration, class ToDuration,
class Period = typename ratio_divide&lt;typename FromDuration::period, typename ToDuration::period&gt;::type,
bool = Period::num == 1,
bool = Period::den == 1&gt;
struct __duration_cast;
<font color="#c80000">// When the two periods are the same, all that is left to do is static_cast from</font>
<font color="#c80000">// the source representation to the target representation (which may be a no-op).</font>
<font color="#c80000">// This conversion is always exact as long as the static_cast from the source</font>
<font color="#c80000">// representation to the destination representation is exact.</font>
template &lt;class FromDuration, class ToDuration, class Period&gt;
struct __duration_cast&lt;FromDuration, ToDuration, Period, true, true&gt;
{
ToDuration operator()(const FromDuration&amp; fd) const
{
return ToDuration(static_cast&lt;typename ToDuration::rep&gt;(fd.count()));
}
};
<font color="#c80000">// When the numerator of FromPeriod / ToPeriod is 1, then all we need to do is</font>
<font color="#c80000">// divide by the denominator of FromPeriod / ToPeriod. The common_type of</font>
<font color="#c80000">// the two representations is used for the intermediate computation before</font>
<font color="#c80000">// static_cast'ing to the destination.</font>
<font color="#c80000">// This conversion is generally not exact because of the division (but could be</font>
<font color="#c80000">// if you get lucky on the run time value of fd.count()).</font>
template &lt;class FromDuration, class ToDuration, class Period&gt;
struct __duration_cast&lt;FromDuration, ToDuration, Period, true, false&gt;
{
ToDuration operator()(const FromDuration&amp; fd) const
{
#if VARIADIC_COMMON_TYPE == 0
typedef typename common_type&lt;
typename common_type&lt;typename ToDuration::rep, typename FromDuration::rep&gt;::type,
intmax_t&gt;::type C;
#else
typedef typename common_type&lt;typename ToDuration::rep, typename FromDuration::rep, intmax_t&gt;::type C;
#endif
return ToDuration(static_cast&lt;typename ToDuration::rep&gt;(
static_cast&lt;C&gt;(fd.count()) / static_cast&lt;C&gt;(Period::den)));
}
};
<font color="#c80000">// When the denomenator of FromPeriod / ToPeriod is 1, then all we need to do is</font>
<font color="#c80000">// multiply by the numerator of FromPeriod / ToPeriod. The common_type of</font>
<font color="#c80000">// the two representations is used for the intermediate computation before</font>
<font color="#c80000">// static_cast'ing to the destination.</font>
<font color="#c80000">// This conversion is always exact as long as the static_cast's involved are exact.</font>
template &lt;class FromDuration, class ToDuration, class Period&gt;
struct __duration_cast&lt;FromDuration, ToDuration, Period, false, true&gt;
{
ToDuration operator()(const FromDuration&amp; fd) const
{
#if VARIADIC_COMMON_TYPE == 0
typedef typename common_type&lt;
typename common_type&lt;typename ToDuration::rep, typename FromDuration::rep&gt;::type,
intmax_t&gt;::type C;
#else
typedef typename common_type&lt;typename ToDuration::rep, typename FromDuration::rep, intmax_t&gt;::type C;
#endif
return ToDuration(static_cast&lt;typename ToDuration::rep&gt;(
static_cast&lt;C&gt;(fd.count()) * static_cast&lt;C&gt;(Period::num)));
}
};
<font color="#c80000">// When neither the numerator or denominator of FromPeriod / ToPeriod is 1, then we need to</font>
<font color="#c80000">// multiply by the numerator and divide by the denominator of FromPeriod / ToPeriod. The</font>
<font color="#c80000">// common_type of the two representations is used for the intermediate computation before</font>
<font color="#c80000">// static_cast'ing to the destination.</font>
<font color="#c80000">// This conversion is generally not exact because of the division (but could be</font>
<font color="#c80000">// if you get lucky on the run time value of fd.count()).</font>
template &lt;class FromDuration, class ToDuration, class Period&gt;
struct __duration_cast&lt;FromDuration, ToDuration, Period, false, false&gt;
{
ToDuration operator()(const FromDuration&amp; fd) const
{
#if VARIADIC_COMMON_TYPE == 0
typedef typename common_type&lt;
typename common_type&lt;typename ToDuration::rep, typename FromDuration::rep&gt;::type,
intmax_t&gt;::type C;
#else
typedef typename common_type&lt;typename ToDuration::rep, typename FromDuration::rep, intmax_t&gt;::type C;
#endif
return ToDuration(static_cast&lt;typename ToDuration::rep&gt;(
static_cast&lt;C&gt;(fd.count()) * static_cast&lt;C&gt;(Period::num) / static_cast&lt;C&gt;(Period::den)));
}
};
<font color="#c80000">// Compile-time select the most efficient algorithm for the conversion...</font>
template &lt;class ToDuration, class Rep, class Period&gt;
inline
typename tmp::enable_if
&lt;
__is_duration&lt;ToDuration&gt;::value,
ToDuration
&gt;::type
duration_cast(const duration&lt;Rep, Period&gt;&amp; fd)
{
return __duration_cast&lt;duration&lt;Rep, Period&gt;, ToDuration&gt;()(fd);
}
<font color="#c80000">// Support bidirectional (non-exact) conversions for floating point rep types</font>
<font color="#c80000">// (or user defined rep types which specialize treat_as_floating_point).</font>
template &lt;class Rep&gt; struct treat_as_floating_point : tmp::is_floating_point&lt;Rep&gt; {};
template &lt;class Rep&gt;
struct duration_values
{
static Rep __min_imp(tmp::false_type) {return -max();}
static Rep __min_imp(tmp::true_type) {return zero();}
public:
static Rep zero() {return Rep(0);}
static Rep max() {return numeric_limits&lt;Rep&gt;::max();}
static Rep min() {return __min_imp(tmp::is_unsigned&lt;Rep&gt;());}
};
<font color="#c80000">// duration</font>
template &lt;class Rep, class Period&gt;
class duration
{
static char test0[!__is_duration&lt;Rep&gt;::value];
<font color="#c80000">// static_assert(!__is_duration&lt;Rep&gt;::value, "A duration representation can not be a duration");</font>
static char test1[__is_ratio&lt;Period&gt;::value];
<font color="#c80000">// static_assert(__is_ratio&lt;Period&gt;::value, "Second template parameter of duration must be a std::ratio");</font>
static char test2[Period::num &gt; 0];
<font color="#c80000">// static_assert(Period::num &gt; 0, "duration period must be positive");</font>
public:
typedef Rep rep;
typedef Period period;
private:
rep rep_;
public:
duration() {} <font color="#c80000">// = default;</font>
template &lt;class Rep2&gt;
explicit duration(const Rep2&amp; r,
typename tmp::enable_if
&lt;
tmp::is_convertible&lt;Rep2, rep&gt;::value &amp;&amp;
(treat_as_floating_point&lt;rep&gt;::value ||
!treat_as_floating_point&lt;rep&gt;::value &amp;&amp; !treat_as_floating_point&lt;Rep2&gt;::value)
&gt;::type* = 0)
: rep_(r) {}
<font color="#c80000">// conversions</font>
template &lt;class Rep2, class Period2&gt;
duration(const duration&lt;Rep2, Period2&gt;&amp; d,
typename tmp::enable_if
&lt;
treat_as_floating_point&lt;rep&gt;::value ||
(ratio_divide&lt;Period2, period&gt;::type::den == 1 &amp;&amp; !treat_as_floating_point&lt;Rep2&gt;::value)
&gt;::type* = 0)
: rep_(duration_cast&lt;duration&gt;(d).count()) {}
<font color="#c80000">// observer</font>
rep count() const {return rep_;}
<font color="#c80000">// arithmetic</font>
duration operator+() const {return *this;}
duration operator-() const {return duration(-rep_);}
duration&amp; operator++() {++rep_; return *this;}
duration operator++(int) {return duration(rep_++);}
duration&amp; operator--() {--rep_; return *this;}
duration operator--(int) {return duration(rep_--);}
duration&amp; operator+=(const duration&amp; d) {rep_ += d.count(); return *this;}
duration&amp; operator-=(const duration&amp; d) {rep_ -= d.count(); return *this;}
duration&amp; operator*=(const rep&amp; rhs) {rep_ *= rhs; return *this;}
duration&amp; operator/=(const rep&amp; rhs) {rep_ /= rhs; return *this;}
<font color="#c80000">// special values</font>
static duration zero() {return duration(duration_values&lt;rep&gt;::zero());}
static duration min() {return duration(duration_values&lt;rep&gt;::min());}
static duration max() {return duration(duration_values&lt;rep&gt;::max());}
};
typedef duration&lt;long long, nano&gt; nanoseconds;
typedef duration&lt;long long, micro&gt; microseconds;
typedef duration&lt;long long, milli&gt; milliseconds;
typedef duration&lt;long long &gt; seconds;
typedef duration&lt; long, ratio&lt; 60&gt; &gt; minutes;
typedef duration&lt; long, ratio&lt;3600&gt; &gt; hours;
} <font color="#c80000">// datetime</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
struct common_type&lt;datetime::duration&lt;Rep1, Period1&gt;, datetime::duration&lt;Rep2, Period2&gt; &gt;
{
typedef datetime::duration&lt;typename common_type&lt;Rep1, Rep2&gt;::type,
typename __ratio_gcd&lt;Period1, Period2&gt;::type&gt; type;
};
namespace datetime {
<font color="#c80000">// Duration ==</font>
template &lt;class LhsDuration, class RhsDuration&gt;
struct __duration_eq
{
bool operator()(const LhsDuration&amp; lhs, const RhsDuration&amp; rhs)
{
typedef typename common_type&lt;LhsDuration, RhsDuration&gt;::type CD;
return CD(lhs).count() == CD(rhs).count();
}
};
template &lt;class LhsDuration&gt;
struct __duration_eq&lt;LhsDuration, LhsDuration&gt;
{
bool operator()(const LhsDuration&amp; lhs, const LhsDuration&amp; rhs)
{return lhs.count() == rhs.count();}
};
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
bool
operator==(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
return __duration_eq&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;()(lhs, rhs);
}
<font color="#c80000">// Duration !=</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
bool
operator!=(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
return !(lhs == rhs);
}
<font color="#c80000">// Duration &lt;</font>
template &lt;class LhsDuration, class RhsDuration&gt;
struct __duration_lt
{
bool operator()(const LhsDuration&amp; lhs, const RhsDuration&amp; rhs)
{
typedef typename common_type&lt;LhsDuration, RhsDuration&gt;::type CD;
return CD(lhs).count() &lt; CD(rhs).count();
}
};
template &lt;class LhsDuration&gt;
struct __duration_lt&lt;LhsDuration, LhsDuration&gt;
{
bool operator()(const LhsDuration&amp; lhs, const LhsDuration&amp; rhs)
{return lhs.count() &lt; rhs.count();}
};
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
bool
operator&lt; (const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
return __duration_lt&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;()(lhs, rhs);
}
<font color="#c80000">// Duration &gt;</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
bool
operator&gt; (const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
return rhs &lt; lhs;
}
<font color="#c80000">// Duration &lt;=</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
bool
operator&lt;=(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
return !(rhs &lt; lhs);
}
<font color="#c80000">// Duration &gt;=</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
bool
operator&gt;=(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
return !(lhs &lt; rhs);
}
<font color="#c80000">// Duration +</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
typename common_type&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;::type
operator+(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
typename common_type&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;::type result = lhs;
result += rhs;
return result;
}
<font color="#c80000">// Duration -</font>
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
typename common_type&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;::type
operator-(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
typename common_type&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;::type result = lhs;
result -= rhs;
return result;
}
<font color="#c80000">// Duration *</font>
template &lt;class Rep1, class Period, class Rep2&gt;
inline
typename tmp::enable_if
&lt;
tmp::is_convertible&lt;Rep1, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value &amp;&amp;
tmp::is_convertible&lt;Rep2, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value,
duration&lt;typename common_type&lt;Rep1, Rep2&gt;::type, Period&gt;
&gt;::type
operator*(const duration&lt;Rep1, Period&gt;&amp; d, const Rep2&amp; s)
{
typedef typename common_type&lt;Rep1, Rep2&gt;::type CR;
duration&lt;CR, Period&gt; r = d;
r *= static_cast&lt;CR&gt;(s);
return r;
}
template &lt;class Rep1, class Period, class Rep2&gt;
inline
typename tmp::enable_if
&lt;
tmp::is_convertible&lt;Rep1, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value &amp;&amp;
tmp::is_convertible&lt;Rep2, typename common_type&lt;Rep1, Rep2&gt;::type&gt;::value,
duration&lt;typename common_type&lt;Rep1, Rep2&gt;::type, Period&gt;
&gt;::type
operator*(const Rep1&amp; s, const duration&lt;Rep2, Period&gt;&amp; d)
{
return d * s;
}
<font color="#c80000">// Duration /</font>
template &lt;class Duration, class Rep, bool = __is_duration&lt;Rep&gt;::value&gt;
struct __duration_divide_result
{
};
template &lt;class Duration, class Rep2,
bool = tmp::is_convertible&lt;typename Duration::rep,
typename common_type&lt;typename Duration::rep, Rep2&gt;::type&gt;::value &amp;&amp;
tmp::is_convertible&lt;Rep2,
typename common_type&lt;typename Duration::rep, Rep2&gt;::type&gt;::value&gt;
struct __duration_divide_imp
{
};
template &lt;class Rep1, class Period, class Rep2&gt;
struct __duration_divide_imp&lt;duration&lt;Rep1, Period&gt;, Rep2, true&gt;
{
typedef duration&lt;typename common_type&lt;Rep1, Rep2&gt;::type, Period&gt; type;
};
template &lt;class Rep1, class Period, class Rep2&gt;
struct __duration_divide_result&lt;duration&lt;Rep1, Period&gt;, Rep2, false&gt;
: __duration_divide_imp&lt;duration&lt;Rep1, Period&gt;, Rep2&gt;
{
};
template &lt;class Rep1, class Period, class Rep2&gt;
inline
typename __duration_divide_result&lt;duration&lt;Rep1, Period&gt;, Rep2&gt;::type
operator/(const duration&lt;Rep1, Period&gt;&amp; d, const Rep2&amp; s)
{
typedef typename common_type&lt;Rep1, Rep2&gt;::type CR;
duration&lt;CR, Period&gt; r = d;
r /= static_cast&lt;CR&gt;(s);
return r;
}
template &lt;class Rep1, class Period1, class Rep2, class Period2&gt;
inline
typename common_type&lt;Rep1, Rep2&gt;::type
operator/(const duration&lt;Rep1, Period1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
typedef typename common_type&lt;duration&lt;Rep1, Period1&gt;, duration&lt;Rep2, Period2&gt; &gt;::type CD;
return CD(lhs).count() / CD(rhs).count();
}
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">///////////////////// time_point /////////////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
template &lt;class Clock, class Duration = typename Clock::duration&gt;
class time_point
{
static char test1[__is_duration&lt;Duration&gt;::value];
<font color="#c80000">// static_assert(__is_duration&lt;Duration&gt;::value,</font>
<font color="#c80000">// "Second template parameter of time_point must be a std::datetime::duration");</font>
public:
typedef Clock clock;
typedef Duration duration;
typedef typename duration::rep rep;
typedef typename duration::period period;
private:
duration d_;
public:
time_point() : d_(duration::zero()) {}
explicit time_point(const duration&amp; d) : d_(d) {}
<font color="#c80000">// conversions</font>
template &lt;class Duration2&gt;
time_point(const time_point&lt;clock, Duration2&gt;&amp; t,
typename tmp::enable_if
&lt;
tmp::is_convertible&lt;Duration2, duration&gt;::value
&gt;::type* = 0)
: d_(t.time_since_epoch()) {}
<font color="#c80000">// observer</font>
duration time_since_epoch() const {return d_;}
<font color="#c80000">// arithmetic</font>
time_point&amp; operator+=(const duration&amp; d) {d_ += d; return *this;}
time_point&amp; operator-=(const duration&amp; d) {d_ -= d; return *this;}
<font color="#c80000">// special values</font>
static time_point min() {return time_point(duration::min());}
static time_point max() {return time_point(duration::max());}
};
} <font color="#c80000">// datetime</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
struct common_type&lt;datetime::time_point&lt;Clock, Duration1&gt;, datetime::time_point&lt;Clock, Duration2&gt; &gt;
{
typedef datetime::time_point&lt;Clock, typename common_type&lt;Duration1, Duration2&gt;::type&gt; type;
};
namespace datetime {
template &lt;class ToDuration, class Clock, class Duration&gt;
inline
time_point&lt;Clock, ToDuration&gt;
time_point_cast(const time_point&lt;Clock, Duration&gt;&amp; t)
{
return time_point&lt;Clock, ToDuration&gt;(duration_cast&lt;ToDuration&gt;(t.time_since_epoch()));
}
<font color="#c80000">// time_point ==</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
inline
bool
operator==(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs)
{
return lhs.time_since_epoch() == rhs.time_since_epoch();
}
<font color="#c80000">// time_point !=</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
inline
bool
operator!=(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs)
{
return !(lhs == rhs);
}
<font color="#c80000">// time_point &lt;</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
inline
bool
operator&lt;(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs)
{
return lhs.time_since_epoch() &lt; rhs.time_since_epoch();
}
<font color="#c80000">// time_point &gt;</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
inline
bool
operator&gt;(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs)
{
return rhs &lt; lhs;
}
<font color="#c80000">// time_point &lt;=</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
inline
bool
operator&lt;=(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs)
{
return !(rhs &lt; lhs);
}
<font color="#c80000">// time_point &gt;=</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
inline
bool
operator&gt;=(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs)
{
return !(lhs &lt; rhs);
}
<font color="#c80000">// time_point operator+(time_point x, duration y);</font>
template &lt;class Clock, class Duration1, class Rep2, class Period2&gt;
inline
time_point&lt;Clock, typename common_type&lt;Duration1, duration&lt;Rep2, Period2&gt; &gt;::type&gt;
operator+(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
typedef time_point&lt;Clock, typename common_type&lt;Duration1, duration&lt;Rep2, Period2&gt; &gt;::type&gt; TimeResult;
TimeResult r(lhs);
r += rhs;
return r;
}
<font color="#c80000">// time_point operator+(duration x, time_point y);</font>
template &lt;class Rep1, class Period1, class Clock, class Duration2&gt;
inline
time_point&lt;Clock, typename common_type&lt;duration&lt;Rep1, Period1&gt;, Duration2&gt;::type&gt;
operator+(const duration&lt;Rep1, Period1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs)
{
return rhs + lhs;
}
<font color="#c80000">// time_point operator-(time_point x, duration y);</font>
template &lt;class Clock, class Duration1, class Rep2, class Period2&gt;
inline
time_point&lt;Clock, typename common_type&lt;Duration1, duration&lt;Rep2, Period2&gt; &gt;::type&gt;
operator-(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const duration&lt;Rep2, Period2&gt;&amp; rhs)
{
return lhs + (-rhs);
}
<font color="#c80000">// duration operator-(time_point x, time_point y);</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
inline
typename common_type&lt;Duration1, Duration2&gt;::type
operator-(const time_point&lt;Clock, Duration1&gt;&amp; lhs, const time_point&lt;Clock, Duration2&gt;&amp; rhs)
{
return lhs.time_since_epoch() - rhs.time_since_epoch();
}
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">/////////////////////// clocks ///////////////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">// If you're porting, clocks are the system-specific (non-portable) part.</font>
<font color="#c80000">// You'll need to know how to get the current time and implement that under now().</font>
<font color="#c80000">// You'll need to know what units (tick period) and representation makes the most</font>
<font color="#c80000">// sense for your clock and set those accordingly.</font>
<font color="#c80000">// If you know how to map this clock to time_t (perhaps your clock is std::time, which</font>
<font color="#c80000">// makes that trivial), then you can fill out system_clock's to_time_t() and from_time_t().</font>
class system_clock
{
public:
typedef microseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef datetime::time_point&lt;system_clock&gt; time_point;
static const bool is_monotonic = false;
static time_point now();
static time_t to_time_t (const time_point&amp; t);
static time_point from_time_t(time_t t);
};
class monotonic_clock
{
public:
typedef nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef datetime::time_point&lt;monotonic_clock&gt; time_point;
static const bool is_monotonic = true;
static time_point now();
};
typedef monotonic_clock high_resolution_clock;
} <font color="#c80000">// datetime</font>
} <font color="#c80000">// std</font>
<font color="#c80000">// clocks.cpp</font>
#include &lt;sys/time.h&gt; <font color="#c80000">//for gettimeofday and timeval</font>
#include &lt;mach/mach_time.h&gt; <font color="#c80000">// mach_absolute_time, mach_timebase_info_data_t</font>
namespace std {
namespace datetime {
<font color="#c80000">// system_clock</font>
<font color="#c80000">// gettimeofday is the most precise "system time" available on this platform.</font>
<font color="#c80000">// It returns the number of microseconds since New Years 1970 in a struct called timeval</font>
<font color="#c80000">// which has a field for seconds and a field for microseconds.</font>
<font color="#c80000">// Fill in the timeval and then convert that to the time_point</font>
system_clock::time_point
system_clock::now()
{
timeval tv;
gettimeofday(&amp;tv, 0);
return time_point(seconds(tv.tv_sec) + microseconds(tv.tv_usec));
}
<font color="#c80000">// Take advantage of the fact that on this platform time_t is nothing but</font>
<font color="#c80000">// an integral count of seconds since New Years 1970 (same epoch as timeval).</font>
<font color="#c80000">// Just get the duration out of the time_point and truncate it to seconds.</font>
time_t
system_clock::to_time_t(const time_point&amp; t)
{
return time_t(duration_cast&lt;seconds&gt;(t.time_since_epoch()).count());
}
<font color="#c80000">// Just turn the time_t into a count of seconds and construct a time_point with it.</font>
system_clock::time_point
system_clock::from_time_t(time_t t)
{
return system_clock::time_point(seconds(t));
}
<font color="#c80000">// monotonic_clock</font>
<font color="#c80000">// Note, in this implementation monotonic_clock and high_resolution_clock</font>
<font color="#c80000">// are the same clock. They are both based on mach_absolute_time().</font>
<font color="#c80000">// mach_absolute_time() * MachInfo.numer / MachInfo.denom is the number of</font>
<font color="#c80000">// nanoseconds since the computer booted up. MachInfo.numer and MachInfo.denom</font>
<font color="#c80000">// are run time constants supplied by the OS. This clock has no relationship</font>
<font color="#c80000">// to the Gregorian calendar. It's main use is as a high resolution timer.</font>
<font color="#c80000">// MachInfo.numer / MachInfo.denom is often 1 on the latest equipment. Specialize</font>
<font color="#c80000">// for that case as an optimization.</font>
static
monotonic_clock::rep
monotonic_simplified()
{
return mach_absolute_time();
}
static
double
compute_monotonic_factor()
{
mach_timebase_info_data_t MachInfo;
mach_timebase_info(&amp;MachInfo);
return static_cast&lt;double&gt;(MachInfo.numer) / MachInfo.denom;
}
static
monotonic_clock::rep
monotonic_full()
{
static const double factor = compute_monotonic_factor();
return static_cast&lt;monotonic_clock::rep&gt;(mach_absolute_time() * factor);
}
typedef monotonic_clock::rep (*FP)();
static
FP
init_monotonic_clock()
{
mach_timebase_info_data_t MachInfo;
mach_timebase_info(&amp;MachInfo);
if (MachInfo.numer == MachInfo.denom)
return &amp;monotonic_simplified;
return &amp;monotonic_full;
}
monotonic_clock::time_point
monotonic_clock::now()
{
static FP fp = init_monotonic_clock();
return time_point(duration(fp()));
}
<font color="#c80000">// clocks.cpp end</font>
} } <font color="#c80000">// std::datetime</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">///////////// simulated thread interface /////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
#include &lt;iostream&gt;
namespace std {
void __print_time(datetime::system_clock::time_point t)
{
using namespace datetime;
time_t c_time = system_clock::to_time_t(t);
std::tm* tmptr = std::localtime(&amp;c_time);
system_clock::duration d = t.time_since_epoch();
std::cout &lt;&lt; tmptr-&gt;tm_hour &lt;&lt; ':' &lt;&lt; tmptr-&gt;tm_min &lt;&lt; ':' &lt;&lt; tmptr-&gt;tm_sec
&lt;&lt; '.' &lt;&lt; (d - duration_cast&lt;seconds&gt;(d)).count();
}
namespace this_thread {
template &lt;class Rep, class Period&gt;
void sleep_for(const datetime::duration&lt;Rep, Period&gt;&amp; d)
{
datetime::microseconds t = datetime::duration_cast&lt;datetime::microseconds&gt;(d);
if (t &lt; d)
++t;
if (t &gt; datetime::microseconds(0))
std::cout &lt;&lt; "sleep_for " &lt;&lt; t.count() &lt;&lt; " microseconds\n";
}
template &lt;class Clock, class Duration&gt;
void sleep_until(const datetime::time_point&lt;Clock, Duration&gt;&amp; t)
{
using namespace datetime;
typedef time_point&lt;Clock, Duration&gt; Time;
typedef system_clock::time_point SysTime;
if (t &gt; Clock::now())
{
typedef typename common_type&lt;typename Time::duration, typename SysTime::duration&gt;::type D;
<font color="#c80000">/* auto */</font> D d = t - Clock::now();
microseconds us = duration_cast&lt;microseconds&gt;(d);
if (us &lt; d)
++us;
SysTime st = system_clock::now() + us;
std::cout &lt;&lt; "sleep_until ";
__print_time(st);
std::cout &lt;&lt; " which is " &lt;&lt; (st - system_clock::now()).count() &lt;&lt; " microseconds away\n";
}
}
} <font color="#c80000">// this_thread</font>
struct mutex {};
struct timed_mutex
{
bool try_lock() {std::cout &lt;&lt; "timed_mutex::try_lock()\n";}
template &lt;class Rep, class Period&gt;
bool try_lock_for(const datetime::duration&lt;Rep, Period&gt;&amp; d)
{
datetime::microseconds t = datetime::duration_cast&lt;datetime::microseconds&gt;(d);
if (t &lt;= datetime::microseconds(0))
return try_lock();
std::cout &lt;&lt; "try_lock_for " &lt;&lt; t.count() &lt;&lt; " microseconds\n";
return true;
}
template &lt;class Clock, class Duration&gt;
bool try_lock_until(const datetime::time_point&lt;Clock, Duration&gt;&amp; t)
{
using namespace datetime;
typedef time_point&lt;Clock, Duration&gt; Time;
typedef system_clock::time_point SysTime;
if (t &lt;= Clock::now())
return try_lock();
typedef typename common_type&lt;typename Time::duration, typename Clock::duration&gt;::type D;
<font color="#c80000">/* auto */</font> D d = t - Clock::now();
microseconds us = duration_cast&lt;microseconds&gt;(d);
SysTime st = system_clock::now() + us;
std::cout &lt;&lt; "try_lock_until ";
__print_time(st);
std::cout &lt;&lt; " which is " &lt;&lt; (st - system_clock::now()).count() &lt;&lt; " microseconds away\n";
}
};
struct condition_variable
{
template &lt;class Rep, class Period&gt;
bool wait_for(mutex&amp;, const datetime::duration&lt;Rep, Period&gt;&amp; d)
{
datetime::microseconds t = datetime::duration_cast&lt;datetime::microseconds&gt;(d);
std::cout &lt;&lt; "wait_for " &lt;&lt; t.count() &lt;&lt; " microseconds\n";
return true;
}
template &lt;class Clock, class Duration&gt;
bool wait_until(mutex&amp;, const datetime::time_point&lt;Clock, Duration&gt;&amp; t)
{
using namespace datetime;
typedef time_point&lt;Clock, Duration&gt; Time;
typedef system_clock::time_point SysTime;
if (t &lt;= Clock::now())
return false;
typedef typename common_type&lt;typename Time::duration, typename Clock::duration&gt;::type D;
<font color="#c80000">/* auto */</font> D d = t - Clock::now();
microseconds us = duration_cast&lt;microseconds&gt;(d);
SysTime st = system_clock::now() + us;
std::cout &lt;&lt; "wait_until ";
__print_time(st);
std::cout &lt;&lt; " which is " &lt;&lt; (st - system_clock::now()).count() &lt;&lt; " microseconds away\n";
}
};
} <font color="#c80000">// std</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">/////////////////// End of implemetation ////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">//////////// Simple sleep and wait examples //////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
std::mutex m;
std::timed_mutex mut;
std::condition_variable cv;
void basic_examples()
{
std::cout &lt;&lt; "Running basic examples\n";
using namespace std;
using namespace std::datetime;
system_clock::time_point time_limit = system_clock::now() + seconds(4) + milliseconds(500);
this_thread::sleep_for(seconds(3));
this_thread::sleep_for(nanoseconds(300));
this_thread::sleep_until(time_limit);
<font color="#c80000">// this_thread::sleep_for(time_limit); // desired compile-time error</font>
<font color="#c80000">// this_thread::sleep_until(seconds(3)); // desired compile-time error</font>
mut.try_lock_for(milliseconds(30));
mut.try_lock_until(time_limit);
<font color="#c80000">// mut.try_lock_for(time_limit); // desired compile-time error</font>
<font color="#c80000">// mut.try_lock_until(milliseconds(30)); // desired compile-time error</font>
cv.wait_for(m, minutes(1)); <font color="#c80000">// real code would put this in a loop</font>
cv.wait_until(m, time_limit); <font color="#c80000">// real code would put this in a loop</font>
<font color="#c80000">// For those who prefer floating point</font>
this_thread::sleep_for(duration&lt;double&gt;(0.25));
this_thread::sleep_until(system_clock::now() + duration&lt;double&gt;(1.5));
}
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">//////////////////// User1 Example ///////////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
namespace User1
{
<font color="#c80000">// Example type-safe "physics" code interoperating with std::datetime::duration types</font>
<font color="#c80000">// and taking advantage of the std::ratio infrastructure and design philosophy.</font>
<font color="#c80000">// length - mimics std::datetime::duration except restricts representation to double.</font>
<font color="#c80000">// Uses std::ratio facilities for length units conversions.</font>
template &lt;class Ratio&gt;
class length
{
public:
typedef Ratio ratio;
private:
double len_;
public:
length() : len_(1) {}
length(const double&amp; len) : len_(len) {}
<font color="#c80000">// conversions</font>
template &lt;class R&gt;
length(const length&lt;R&gt;&amp; d)
: len_(d.count() * std::ratio_divide&lt;Ratio, R&gt;::type::den /
std::ratio_divide&lt;Ratio, R&gt;::type::num) {}
<font color="#c80000">// observer</font>
double count() const {return len_;}
<font color="#c80000">// arithmetic</font>
length&amp; operator+=(const length&amp; d) {len_ += d.count(); return *this;}
length&amp; operator-=(const length&amp; d) {len_ -= d.count(); return *this;}
length operator+() const {return *this;}
length operator-() const {return length(-len_);}
length&amp; operator*=(double rhs) {len_ *= rhs; return *this;}
length&amp; operator/=(double rhs) {len_ /= rhs; return *this;}
};
<font color="#c80000">// Sparse sampling of length units</font>
typedef length&lt;std::ratio&lt;1&gt; &gt; meter; <font color="#c80000">// set meter as "unity"</font>
typedef length&lt;std::centi&gt; centimeter; <font color="#c80000">// 1/100 meter</font>
typedef length&lt;std::kilo&gt; kilometer; <font color="#c80000">// 1000 meters</font>
typedef length&lt;std::ratio&lt;254, 10000&gt; &gt; inch; <font color="#c80000">// 254/10000 meters</font>
<font color="#c80000">// length takes ratio instead of two integral types so that definitions can be made like so:</font>
typedef length&lt;std::ratio_multiply&lt;std::ratio&lt;12&gt;, inch::ratio&gt;::type&gt; foot; <font color="#c80000">// 12 inchs</font>
typedef length&lt;std::ratio_multiply&lt;std::ratio&lt;5280&gt;, foot::ratio&gt;::type&gt; mile; <font color="#c80000">// 5280 feet</font>
<font color="#c80000">// Need a floating point definition of seconds</font>
typedef std::datetime::duration&lt;double&gt; seconds; <font color="#c80000">// unity</font>
<font color="#c80000">// Demo of (scientific) support for sub-nanosecond resolutions</font>
typedef std::datetime::duration&lt;double, std::pico&gt; picosecond; <font color="#c80000">// 10^-12 seconds</font>
typedef std::datetime::duration&lt;double, std::femto&gt; femtosecond; <font color="#c80000">// 10^-15 seconds</font>
typedef std::datetime::duration&lt;double, std::atto&gt; attosecond; <font color="#c80000">// 10^-18 seconds</font>
<font color="#c80000">// A very brief proof-of-concept for SIUnits-like library</font>
<font color="#c80000">// Hard-wired to floating point seconds and meters, but accepts other units (shown in testUser1())</font>
template &lt;class R1, class R2&gt;
class quantity
{
double q_;
public:
quantity() : q_(1) {}
double get() const {return q_;}
void set(double q) {q_ = q;}
};
template &lt;&gt;
class quantity&lt;std::ratio&lt;1&gt;, std::ratio&lt;0&gt; &gt;
{
double q_;
public:
quantity() : q_(1) {}
quantity(seconds d) : q_(d.count()) {} <font color="#c80000">// note: only User1::seconds needed here</font>
double get() const {return q_;}
void set(double q) {q_ = q;}
};
template &lt;&gt;
class quantity&lt;std::ratio&lt;0&gt;, std::ratio&lt;1&gt; &gt;
{
double q_;
public:
quantity() : q_(1) {}
quantity(meter d) : q_(d.count()) {} <font color="#c80000">// note: only User1::meter needed here</font>
double get() const {return q_;}
void set(double q) {q_ = q;}
};
template &lt;&gt;
class quantity&lt;std::ratio&lt;0&gt;, std::ratio&lt;0&gt; &gt;
{
double q_;
public:
quantity() : q_(1) {}
quantity(double d) : q_(d) {}
double get() const {return q_;}
void set(double q) {q_ = q;}
};
<font color="#c80000">// Example SI-Units</font>
typedef quantity&lt;std::ratio&lt;0&gt;, std::ratio&lt;0&gt; &gt; Scalar;
typedef quantity&lt;std::ratio&lt;1&gt;, std::ratio&lt;0&gt; &gt; Time; <font color="#c80000">// second</font>
typedef quantity&lt;std::ratio&lt;0&gt;, std::ratio&lt;1&gt; &gt; Distance; <font color="#c80000">// meter</font>
typedef quantity&lt;std::ratio&lt;-1&gt;, std::ratio&lt;1&gt; &gt; Speed; <font color="#c80000">// meter/second</font>
typedef quantity&lt;std::ratio&lt;-2&gt;, std::ratio&lt;1&gt; &gt; Acceleration; <font color="#c80000">// meter/second^2</font>
template &lt;class R1, class R2, class R3, class R4&gt;
quantity&lt;typename std::ratio_subtract&lt;R1, R3&gt;::type, typename std::ratio_subtract&lt;R2, R4&gt;::type&gt;
operator/(const quantity&lt;R1, R2&gt;&amp; x, const quantity&lt;R3, R4&gt;&amp; y)
{
typedef quantity&lt;typename std::ratio_subtract&lt;R1, R3&gt;::type, typename std::ratio_subtract&lt;R2, R4&gt;::type&gt; R;
R r;
r.set(x.get() / y.get());
return r;
}
template &lt;class R1, class R2, class R3, class R4&gt;
quantity&lt;typename std::ratio_add&lt;R1, R3&gt;::type, typename std::ratio_add&lt;R2, R4&gt;::type&gt;
operator*(const quantity&lt;R1, R2&gt;&amp; x, const quantity&lt;R3, R4&gt;&amp; y)
{
typedef quantity&lt;typename std::ratio_add&lt;R1, R3&gt;::type, typename std::ratio_add&lt;R2, R4&gt;::type&gt; R;
R r;
r.set(x.get() * y.get());
return r;
}
template &lt;class R1, class R2&gt;
quantity&lt;R1, R2&gt;
operator+(const quantity&lt;R1, R2&gt;&amp; x, const quantity&lt;R1, R2&gt;&amp; y)
{
typedef quantity&lt;R1, R2&gt; R;
R r;
r.set(x.get() + y.get());
return r;
}
template &lt;class R1, class R2&gt;
quantity&lt;R1, R2&gt;
operator-(const quantity&lt;R1, R2&gt;&amp; x, const quantity&lt;R1, R2&gt;&amp; y)
{
typedef quantity&lt;R1, R2&gt; R;
R r;
r.set(x.get() - y.get());
return r;
}
<font color="#c80000">// Example type-safe physics function</font>
Distance
compute_distance(Speed v0, Time t, Acceleration a)
{
return v0 * t + Scalar(.5) * a * t * t; <font color="#c80000">// if a units mistake is made here it won't compile</font>
}
} <font color="#c80000">// User1</font>
#include &lt;iostream&gt;
<font color="#c80000">// Exercise example type-safe physics function and show interoperation</font>
<font color="#c80000">// of custom time durations (User1::seconds) and standard time durations (std::hours).</font>
<font color="#c80000">// Though input can be arbitrary (but type-safe) units, output is always in SI-units</font>
<font color="#c80000">// (a limitation of the simplified Units lib demoed here).</font>
void testUser1()
{
std::cout &lt;&lt; "*************\n";
std::cout &lt;&lt; "* testUser1 *\n";
std::cout &lt;&lt; "*************\n";
User1::Distance d( User1::mile(110) );
User1::Time t( std::datetime::hours(2) );
User1::Speed s = d / t;
std::cout &lt;&lt; "Speed = " &lt;&lt; s.get() &lt;&lt; " meters/sec\n";
User1::Acceleration a = User1::Distance( User1::foot(32.2) ) / User1::Time() / User1::Time();
std::cout &lt;&lt; "Acceleration = " &lt;&lt; a.get() &lt;&lt; " meters/sec^2\n";
User1::Distance df = compute_distance(s, User1::Time( User1::seconds(0.5) ), a);
std::cout &lt;&lt; "Distance = " &lt;&lt; df.get() &lt;&lt; " meters\n";
std::cout &lt;&lt; "There are " &lt;&lt; User1::mile::ratio::den &lt;&lt; '/' &lt;&lt; User1::mile::ratio::num &lt;&lt; " miles/meter";
User1::meter mt = 1;
User1::mile mi = mt;
std::cout &lt;&lt; " which is approximately " &lt;&lt; mi.count() &lt;&lt; '\n';
std::cout &lt;&lt; "There are " &lt;&lt; User1::mile::ratio::num &lt;&lt; '/' &lt;&lt; User1::mile::ratio::den &lt;&lt; " meters/mile";
mi = 1;
mt = mi;
std::cout &lt;&lt; " which is approximately " &lt;&lt; mt.count() &lt;&lt; '\n';
User1::attosecond as(1);
User1::seconds sec = as;
std::cout &lt;&lt; "1 attosecond is " &lt;&lt; sec.count() &lt;&lt; " seconds\n";
std::cout &lt;&lt; "sec = as; <font color="#c80000">// compiles\n";</font>
sec = User1::seconds(1);
as = sec;
std::cout &lt;&lt; "1 second is " &lt;&lt; as.count() &lt;&lt; " attoseconds\n";
std::cout &lt;&lt; "as = sec; <font color="#c80000">// compiles\n";</font>
std::cout &lt;&lt; "\n";
}
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">//////////////////// User2 Example ///////////////////////</font>
<font color="#c80000">//////////////////////////////////////////////////////////</font>
<font color="#c80000">// Demonstrate User2:</font>
<font color="#c80000">// A "saturating" signed integral type is developed. This type has +/- infinity and a nan</font>
<font color="#c80000">// (like IEEE floating point) but otherwise obeys signed integral arithmetic.</font>
<font color="#c80000">// This class is subsequently used as the rep in std::datetime::duration to demonstrate a</font>
<font color="#c80000">// duration class that does not silently ignore overflow.</font>
#include &lt;ostream&gt;
#include &lt;stdexcept&gt;
#include &lt;climits&gt;
namespace User2
{
template &lt;class I&gt;
class saturate
{
public:
typedef I int_type;
static const int_type nan = int_type(int_type(1) &lt;&lt; (sizeof(int_type) * CHAR_BIT - 1));
static const int_type neg_inf = nan + 1;
static const int_type pos_inf = -neg_inf;
private:
int_type i_;
<font color="#c80000">// static_assert(std::is_integral&lt;int_type&gt;::value &amp;&amp; std::is_signed&lt;int_type&gt;::value,</font>
<font color="#c80000">// "saturate only accepts signed integral types");</font>
<font color="#c80000">// static_assert(nan == -nan &amp;&amp; neg_inf &lt; pos_inf,</font>
<font color="#c80000">// "saturate assumes two's complement hardware for signed integrals");</font>
public:
saturate() : i_(nan) {}
explicit saturate(int_type i) : i_(i) {}
<font color="#c80000">// explicit</font>
operator int_type() const;
saturate&amp; operator+=(saturate x);
saturate&amp; operator-=(saturate x) {return *this += -x;}
saturate&amp; operator*=(saturate x);
saturate&amp; operator/=(saturate x);
saturate&amp; operator%=(saturate x);
saturate operator- () const {return saturate(-i_);}
saturate&amp; operator++() {*this += saturate(int_type(1)); return *this;}
saturate operator++(int) {saturate tmp(*this); ++(*this); return tmp;}
saturate&amp; operator--() {*this -= saturate(int_type(1)); return *this;}
saturate operator--(int) {saturate tmp(*this); --(*this); return tmp;}
friend saturate operator+(saturate x, saturate y) {return x += y;}
friend saturate operator-(saturate x, saturate y) {return x -= y;}
friend saturate operator*(saturate x, saturate y) {return x *= y;}
friend saturate operator/(saturate x, saturate y) {return x /= y;}
friend saturate operator%(saturate x, saturate y) {return x %= y;}
friend bool operator==(saturate x, saturate y)
{
if (x.i_ == nan || y.i_ == nan)
return false;
return x.i_ == y.i_;
}
friend bool operator!=(saturate x, saturate y) {return !(x == y);}
friend bool operator&lt;(saturate x, saturate y)
{
if (x.i_ == nan || y.i_ == nan)
return false;
return x.i_ &lt; y.i_;
}
friend bool operator&lt;=(saturate x, saturate y)
{
if (x.i_ == nan || y.i_ == nan)
return false;
return x.i_ &lt;= y.i_;
}
friend bool operator&gt;(saturate x, saturate y)
{
if (x.i_ == nan || y.i_ == nan)
return false;
return x.i_ &gt; y.i_;
}
friend bool operator&gt;=(saturate x, saturate y)
{
if (x.i_ == nan || y.i_ == nan)
return false;
return x.i_ &gt;= y.i_;
}
friend std::ostream&amp; operator&lt;&lt;(std::ostream&amp; os, saturate s)
{
switch (s.i_)
{
case pos_inf:
return os &lt;&lt; "inf";
case nan:
return os &lt;&lt; "nan";
case neg_inf:
return os &lt;&lt; "-inf";
};
return os &lt;&lt; s.i_;
}
};
template &lt;class I&gt;
saturate&lt;I&gt;::operator int_type() const
{
switch (i_)
{
case nan:
case neg_inf:
case pos_inf:
throw std::out_of_range("saturate special value can not convert to int_type");
}
return i_;
}
template &lt;class I&gt;
saturate&lt;I&gt;&amp;
saturate&lt;I&gt;::operator+=(saturate x)
{
switch (i_)
{
case pos_inf:
switch (x.i_)
{
case neg_inf:
case nan:
i_ = nan;
}
return *this;
case nan:
return *this;
case neg_inf:
switch (x.i_)
{
case pos_inf:
case nan:
i_ = nan;
}
return *this;
}
switch (x.i_)
{
case pos_inf:
case neg_inf:
case nan:
i_ = x.i_;
return *this;
}
if (x.i_ &gt;= 0)
{
if (i_ &lt; pos_inf - x.i_)
i_ += x.i_;
else
i_ = pos_inf;
return *this;
}
if (i_ &gt; neg_inf - x.i_)
i_ += x.i_;
else
i_ = neg_inf;
return *this;
}
template &lt;class I&gt;
saturate&lt;I&gt;&amp;
saturate&lt;I&gt;::operator*=(saturate x)
{
switch (i_)
{
case 0:
switch (x.i_)
{
case pos_inf:
case neg_inf:
case nan:
i_ = nan;
}
return *this;
case pos_inf:
switch (x.i_)
{
case nan:
case 0:
i_ = nan;
return *this;
}
if (x.i_ &lt; 0)
i_ = neg_inf;
return *this;
case nan:
return *this;
case neg_inf:
switch (x.i_)
{
case nan:
case 0:
i_ = nan;
return *this;
}
if (x.i_ &lt; 0)
i_ = pos_inf;
return *this;
}
switch (x.i_)
{
case 0:
i_ = 0;
return *this;
case nan:
i_ = nan;
return *this;
case pos_inf:
if (i_ &lt; 0)
i_ = neg_inf;
else
i_ = pos_inf;
return *this;
case neg_inf:
if (i_ &lt; 0)
i_ = pos_inf;
else
i_ = neg_inf;
return *this;
}
int s = (i_ &lt; 0 ? -1 : 1) * (x.i_ &lt; 0 ? -1 : 1);
i_ = i_ &lt; 0 ? -i_ : i_;
int_type x_i_ = x.i_ &lt; 0 ? -x.i_ : x.i_;
if (i_ &lt;= pos_inf / x_i_)
i_ *= x_i_;
else
i_ = pos_inf;
i_ *= s;
return *this;
}
template &lt;class I&gt;
saturate&lt;I&gt;&amp;
saturate&lt;I&gt;::operator/=(saturate x)
{
switch (x.i_)
{
case pos_inf:
case neg_inf:
switch (i_)
{
case pos_inf:
case neg_inf:
case nan:
i_ = nan;
break;
default:
i_ = 0;
break;
}
return *this;
case nan:
i_ = nan;
return *this;
case 0:
switch (i_)
{
case pos_inf:
case neg_inf:
case nan:
return *this;
case 0:
i_ = nan;
return *this;
}
if (i_ &gt; 0)
i_ = pos_inf;
else
i_ = neg_inf;
return *this;
}
switch (i_)
{
case 0:
case nan:
return *this;
case pos_inf:
case neg_inf:
if (x.i_ &lt; 0)
i_ = -i_;
return *this;
}
i_ /= x.i_;
return *this;
}
template &lt;class I&gt;
saturate&lt;I&gt;&amp;
saturate&lt;I&gt;::operator%=(saturate x)
{
<font color="#c80000">// *this -= *this / x * x; // definition</font>
switch (x.i_)
{
case nan:
case neg_inf:
case 0:
case pos_inf:
i_ = nan;
return *this;
}
switch (i_)
{
case neg_inf:
case pos_inf:
i_ = nan;
case nan:
return *this;
}
i_ %= x.i_;
return *this;
}
<font color="#c80000">// Demo overflow-safe integral durations ranging from picoseconds resolution to millennium resolution</font>
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::pico &gt; picoseconds;
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::nano &gt; nanoseconds;
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::micro &gt; microseconds;
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::milli &gt; milliseconds;
typedef std::datetime::duration&lt;saturate&lt;long long&gt; &gt; seconds;
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::ratio&lt; 60LL&gt; &gt; minutes;
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::ratio&lt; 3600LL&gt; &gt; hours;
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::ratio&lt; 86400LL&gt; &gt; days;
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::ratio&lt; 31556952LL&gt; &gt; years;
typedef std::datetime::duration&lt;saturate&lt;long long&gt;, std::ratio&lt;31556952000LL&gt; &gt; millennium;
} <font color="#c80000">// User2</font>
<font color="#c80000">// Demonstrate custom promotion rules (needed only if there are no implicit conversions)</font>
namespace User2 { namespace detail {
template &lt;class T1, class T2, bool = tmp::is_integral&lt;T1&gt;::value&gt;
struct promote_helper;
template &lt;class T1, class T2&gt;
struct promote_helper&lt;T1, saturate&lt;T2&gt;, true&gt; <font color="#c80000">// integral</font>
{
typedef typename std::common_type&lt;T1, T2&gt;::type rep;
typedef User2::saturate&lt;rep&gt; type;
};
template &lt;class T1, class T2&gt;
struct promote_helper&lt;T1, saturate&lt;T2&gt;, false&gt; <font color="#c80000">// floating</font>
{
typedef T1 type;
};
} }
namespace std
{
template &lt;class T1, class T2&gt;
struct common_type&lt;User2::saturate&lt;T1&gt;, User2::saturate&lt;T2&gt; &gt;
{
typedef typename common_type&lt;T1, T2&gt;::type rep;
typedef User2::saturate&lt;rep&gt; type;
};
template &lt;class T1, class T2&gt;
struct common_type&lt;T1, User2::saturate&lt;T2&gt; &gt;
: User2::detail::promote_helper&lt;T1, User2::saturate&lt;T2&gt; &gt; {};
template &lt;class T1, class T2&gt;
struct common_type&lt;User2::saturate&lt;T1&gt;, T2&gt;
: User2::detail::promote_helper&lt;T2, User2::saturate&lt;T1&gt; &gt; {};
<font color="#c80000">// Demonstrate specialization of duration_values:</font>
namespace datetime {
template &lt;class I&gt;
struct duration_values&lt;User2::saturate&lt;I&gt; &gt;
{
typedef User2::saturate&lt;I&gt; Rep;
public:
static Rep zero() {return Rep(0);}
static Rep max() {return Rep(Rep::pos_inf-1);}
static Rep min() {return -max();}
};
}
}
#include &lt;iostream&gt;
void testUser2()
{
std::cout &lt;&lt; "*************\n";
std::cout &lt;&lt; "* testUser2 *\n";
std::cout &lt;&lt; "*************\n";
using namespace User2;
typedef seconds::rep sat;
years yr(sat(100));
std::cout &lt;&lt; "100 years expressed as years = " &lt;&lt; yr.count() &lt;&lt; '\n';
nanoseconds ns = yr;
std::cout &lt;&lt; "100 years expressed as nanoseconds = " &lt;&lt; ns.count() &lt;&lt; '\n';
ns += yr;
std::cout &lt;&lt; "200 years expressed as nanoseconds = " &lt;&lt; ns.count() &lt;&lt; '\n';
ns += yr;
std::cout &lt;&lt; "300 years expressed as nanoseconds = " &lt;&lt; ns.count() &lt;&lt; '\n';
<font color="#c80000">// yr = ns; // does not compile</font>
std::cout &lt;&lt; "yr = ns; <font color="#c80000">// does not compile\n";</font>
<font color="#c80000">// picoseconds ps1 = yr; // does not compile, compile-time overflow in ratio arithmetic</font>
std::cout &lt;&lt; "ps = yr; <font color="#c80000">// does not compile\n";</font>
ns = yr;
picoseconds ps = ns;
std::cout &lt;&lt; "100 years expressed as picoseconds = " &lt;&lt; ps.count() &lt;&lt; '\n';
ps = ns / sat(1000);
std::cout &lt;&lt; "0.1 years expressed as picoseconds = " &lt;&lt; ps.count() &lt;&lt; '\n';
yr = years(sat(-200000000));
std::cout &lt;&lt; "200 million years ago encoded in years: " &lt;&lt; yr.count() &lt;&lt; '\n';
days d = std::datetime::duration_cast&lt;days&gt;(yr);
std::cout &lt;&lt; "200 million years ago encoded in days: " &lt;&lt; d.count() &lt;&lt; '\n';
millennium c = std::datetime::duration_cast&lt;millennium&gt;(yr);
std::cout &lt;&lt; "200 million years ago encoded in millennium: " &lt;&lt; c.count() &lt;&lt; '\n';
std::cout &lt;&lt; "Demonstrate \"uninitialized protection\" behavior:\n";
seconds sec;
for (++sec; sec &lt; seconds(sat(10)); ++sec)
;
std::cout &lt;&lt; sec.count() &lt;&lt; '\n';
std::cout &lt;&lt; "\n";
}
void testStdUser()
{
std::cout &lt;&lt; "***************\n";
std::cout &lt;&lt; "* testStdUser *\n";
std::cout &lt;&lt; "***************\n";
using namespace std::datetime;
hours hr = hours(100);
std::cout &lt;&lt; "100 hours expressed as hours = " &lt;&lt; hr.count() &lt;&lt; '\n';
nanoseconds ns = hr;
std::cout &lt;&lt; "100 hours expressed as nanoseconds = " &lt;&lt; ns.count() &lt;&lt; '\n';
ns += hr;
std::cout &lt;&lt; "200 hours expressed as nanoseconds = " &lt;&lt; ns.count() &lt;&lt; '\n';
ns += hr;
std::cout &lt;&lt; "300 hours expressed as nanoseconds = " &lt;&lt; ns.count() &lt;&lt; '\n';
<font color="#c80000">// hr = ns; // does not compile</font>
std::cout &lt;&lt; "hr = ns; <font color="#c80000">// does not compile\n";</font>
<font color="#c80000">// hr * ns; // does not compile</font>
std::cout &lt;&lt; "hr * ns; <font color="#c80000">// does not compile\n";</font>
duration&lt;double&gt; fs(2.5);
std::cout &lt;&lt; "duration&lt;double&gt; has count() = " &lt;&lt; fs.count() &lt;&lt; '\n';
<font color="#c80000">// seconds sec = fs; // does not compile</font>
std::cout &lt;&lt; "seconds sec = duration&lt;double&gt; won't compile\n";
seconds sec = duration_cast&lt;seconds&gt;(fs);
std::cout &lt;&lt; "seconds has count() = " &lt;&lt; sec.count() &lt;&lt; '\n';
std::cout &lt;&lt; "\n";
}
<font color="#c80000">// timeval clock demo</font>
<font color="#c80000">// Demonstrate the use of a timeval-like struct to be used as the representation</font>
<font color="#c80000">// type for both duraiton and time_point.</font>
namespace timeval_demo
{
class xtime {
private:
long tv_sec;
long tv_usec;
void fixup() {
if (tv_usec &lt; 0) {
tv_usec += 1000000;
--tv_sec;
}
}
public:
explicit xtime(long sec, long usec) {
tv_sec = sec;
tv_usec = usec;
if (tv_usec &lt; 0 || tv_usec &gt;= 1000000) {
tv_sec += tv_usec / 1000000;
tv_usec %= 1000000;
fixup();
}
}
explicit xtime(long long usec)
{
tv_usec = static_cast&lt;long&gt;(usec % 1000000);
tv_sec = static_cast&lt;long&gt;(usec / 1000000);
fixup();
}
<font color="#c80000">// explicit</font>
operator long long() const {return static_cast&lt;long long&gt;(tv_sec) * 1000000 + tv_usec;}
xtime&amp; operator += (xtime rhs) {
tv_sec += rhs.tv_sec;
tv_usec += rhs.tv_usec;
if (tv_usec &gt;= 1000000) {
tv_usec -= 1000000;
++tv_sec;
}
return *this;
}
xtime&amp; operator -= (xtime rhs) {
tv_sec -= rhs.tv_sec;
tv_usec -= rhs.tv_usec;
fixup();
return *this;
}
xtime&amp; operator %= (xtime rhs) {
long long t = tv_sec * 1000000 + tv_usec;
long long r = rhs.tv_sec * 1000000 + rhs.tv_usec;
t %= r;
tv_sec = t / 1000000;
tv_usec = t % 1000000;
fixup();
return *this;
}
friend xtime operator+(xtime x, xtime y) {return x += y;}
friend xtime operator-(xtime x, xtime y) {return x -= y;}
friend xtime operator%(xtime x, xtime y) {return x %= y;}
friend bool operator==(xtime x, xtime y)
{ return (x.tv_sec == y.tv_sec &amp;&amp; x.tv_usec == y.tv_usec); }
friend bool operator&lt;(xtime x, xtime y) {
if (x.tv_sec == y.tv_sec)
return (x.tv_usec &lt; y.tv_usec);
return (x.tv_sec &lt; y.tv_sec);
}
friend bool operator!=(xtime x, xtime y) { return !(x == y); }
friend bool operator&gt; (xtime x, xtime y) { return y &lt; x; }
friend bool operator&lt;=(xtime x, xtime y) { return !(y &lt; x); }
friend bool operator&gt;=(xtime x, xtime y) { return !(x &lt; y); }
friend std::ostream&amp; operator&lt;&lt;(std::ostream&amp; os, xtime x)
{return os &lt;&lt; '{' &lt;&lt; x.tv_sec &lt;&lt; ',' &lt;&lt; x.tv_usec &lt;&lt; '}';}
};
class xtime_clock
{
public:
typedef xtime rep;
typedef std::micro period;
typedef std::datetime::duration&lt;rep, period&gt; duration;
typedef std::datetime::time_point&lt;xtime_clock&gt; time_point;
static time_point now();
};
xtime_clock::time_point
xtime_clock::now()
{
time_point t(duration(xtime(0)));
gettimeofday((timeval*)&amp;t, 0);
return t;
}
void test_xtime_clock()
{
using namespace std::datetime;
std::cout &lt;&lt; "timeval_demo system clock test\n";
std::cout &lt;&lt; "sizeof xtime_clock::time_point = " &lt;&lt; sizeof(xtime_clock::time_point) &lt;&lt; '\n';
std::cout &lt;&lt; "sizeof xtime_clock::duration = " &lt;&lt; sizeof(xtime_clock::duration) &lt;&lt; '\n';
std::cout &lt;&lt; "sizeof xtime_clock::rep = " &lt;&lt; sizeof(xtime_clock::rep) &lt;&lt; '\n';
xtime_clock::duration delay(milliseconds(5));
xtime_clock::time_point start = xtime_clock::now();
while (xtime_clock::now() - start &lt;= delay)
;
xtime_clock::time_point stop = xtime_clock::now();
xtime_clock::duration elapsed = stop - start;
std::cout &lt;&lt; "paused " &lt;&lt; nanoseconds(elapsed).count() &lt;&lt; " nanoseconds\n";
}
} <font color="#c80000">// timeval_demo</font>
<font color="#c80000">// Handle duration with resolution not known until run time</font>
namespace runtime_resolution
{
class duration
{
public:
typedef long long rep;
private:
rep rep_;
static const double ticks_per_nanosecond;
public:
typedef std::datetime::duration&lt;double, std::nano&gt; tonanosec;
duration() {} <font color="#c80000">// = default;</font>
explicit duration(const rep&amp; r) : rep_(r) {}
<font color="#c80000">// conversions</font>
explicit duration(const tonanosec&amp; d)
: rep_(static_cast&lt;rep&gt;(d.count() * ticks_per_nanosecond)) {}
<font color="#c80000">// explicit</font>
operator tonanosec() const {return tonanosec(rep_/ticks_per_nanosecond);}
<font color="#c80000">// observer</font>
rep count() const {return rep_;}
<font color="#c80000">// arithmetic</font>
duration&amp; operator+=(const duration&amp; d) {rep_ += d.rep_; return *this;}
duration&amp; operator-=(const duration&amp; d) {rep_ += d.rep_; return *this;}
duration&amp; operator*=(rep rhs) {rep_ *= rhs; return *this;}
duration&amp; operator/=(rep rhs) {rep_ /= rhs; return *this;}
duration operator+() const {return *this;}
duration operator-() const {return duration(-rep_);}
duration&amp; operator++() {++rep_; return *this;}
duration operator++(int) {return duration(rep_++);}
duration&amp; operator--() {--rep_; return *this;}
duration operator--(int) {return duration(rep_--);}
friend duration operator+(duration x, duration y) {return x += y;}
friend duration operator-(duration x, duration y) {return x -= y;}
friend duration operator*(duration x, rep y) {return x *= y;}
friend duration operator*(rep x, duration y) {return y *= x;}
friend duration operator/(duration x, rep y) {return x /= y;}
friend bool operator==(duration x, duration y) {return x.rep_ == y.rep_;}
friend bool operator!=(duration x, duration y) {return !(x == y);}
friend bool operator&lt; (duration x, duration y) {return x.rep_ &lt; y.rep_;}
friend bool operator&lt;=(duration x, duration y) {return !(y &lt; x);}
friend bool operator&gt; (duration x, duration y) {return y &lt; x;}
friend bool operator&gt;=(duration x, duration y) {return !(x &lt; y);}
};
static
double
init_duration()
{
mach_timebase_info_data_t MachInfo;
mach_timebase_info(&amp;MachInfo);
return static_cast&lt;double&gt;(MachInfo.denom) / MachInfo.numer;
}
const double duration::ticks_per_nanosecond = init_duration();
class clock;
class time_point
{
public:
typedef runtime_resolution::clock clock;
typedef long long rep;
private:
rep rep_;
rep count() const {return rep_;}
public:
time_point() : rep_(0) {}
explicit time_point(const duration&amp; d)
: rep_(d.count()) {}
<font color="#c80000">// arithmetic</font>
time_point&amp; operator+=(const duration&amp; d) {rep_ += d.count(); return *this;}
time_point&amp; operator-=(const duration&amp; d) {rep_ -= d.count(); return *this;}
friend time_point operator+(time_point x, duration y) {return x += y;}
friend time_point operator+(duration x, time_point y) {return y += x;}
friend time_point operator-(time_point x, duration y) {return x -= y;}
friend duration operator-(time_point x, time_point y) {return duration(x.rep_ - y.rep_);}
};
class clock
{
public:
typedef duration::rep rep;
typedef runtime_resolution::duration duration;
typedef runtime_resolution::time_point time_point;
static time_point now() {return time_point(duration(mach_absolute_time()));}
};
void test()
{
using namespace std::datetime;
std::cout &lt;&lt; "runtime_resolution test\n";
clock::duration delay(std::datetime::milliseconds(5));
clock::time_point start = clock::now();
while (clock::now() - start &lt;= delay)
;
clock::time_point stop = clock::now();
clock::duration elapsed = stop - start;
std::cout &lt;&lt; "paused " &lt;&lt; nanoseconds(duration_cast&lt;nanoseconds&gt;(duration::tonanosec(elapsed))).count()
&lt;&lt; " nanoseconds\n";
}
} <font color="#c80000">// runtime_resolution</font>
<font color="#c80000">// miscellaneous tests and demos:</font>
#include &lt;cassert&gt;
#include &lt;iostream&gt;
using namespace std::datetime;
void physics_function(duration&lt;double&gt; d)
{
std::cout &lt;&lt; "d = " &lt;&lt; d.count() &lt;&lt; '\n';
}
void drive_physics_function()
{
physics_function(nanoseconds(3));
physics_function(hours(3));
physics_function(duration&lt;double&gt;(2./3));
std::cout.precision(16);
physics_function( hours(3) + nanoseconds(-3) );
}
void test_range()
{
using namespace std::datetime;
hours h1 = hours(24 * ( 365 * 292 + 292/4));
nanoseconds n1 = h1 + nanoseconds(1);
nanoseconds delta = n1 - h1;
std::cout &lt;&lt; "292 years of hours = " &lt;&lt; h1.count() &lt;&lt; "hr\n";
std::cout &lt;&lt; "Add a nanosecond = " &lt;&lt; n1.count() &lt;&lt; "ns\n";
std::cout &lt;&lt; "Find the difference = " &lt;&lt; delta.count() &lt;&lt; "ns\n";
}
void test_extended_range()
{
using namespace std::datetime;
hours h1 = hours(24 * ( 365 * 244000 + 244000/4));
<font color="#c80000">/*auto*/</font> microseconds u1 = h1 + microseconds(1);
<font color="#c80000">/*auto*/</font> microseconds delta = u1 - h1;
std::cout &lt;&lt; "244,000 years of hours = " &lt;&lt; h1.count() &lt;&lt; "hr\n";
std::cout &lt;&lt; "Add a microsecond = " &lt;&lt; u1.count() &lt;&lt; "us\n";
std::cout &lt;&lt; "Find the difference = " &lt;&lt; delta.count() &lt;&lt; "us\n";
}
template &lt;class Rep, class Period&gt;
void inspect_duration(std::datetime::duration&lt;Rep, Period&gt; d, const std::string&amp; name)
{
typedef std::datetime::duration&lt;Rep, Period&gt; Duration;
std::cout &lt;&lt; "********* " &lt;&lt; name &lt;&lt; " *********\n";
std::cout &lt;&lt; "The period of " &lt;&lt; name &lt;&lt; " is " &lt;&lt; (double)Period::num/Period::den &lt;&lt; " seconds.\n";
std::cout &lt;&lt; "The frequency of " &lt;&lt; name &lt;&lt; " is " &lt;&lt; (double)Period::den/Period::num &lt;&lt; " Hz.\n";
std::cout &lt;&lt; "The representation is ";
if (tmp::is_floating_point&lt;Rep&gt;::value)
{
std::cout &lt;&lt; "floating point\n";
std::cout &lt;&lt; "The precision is the most significant ";
std::cout &lt;&lt; std::numeric_limits&lt;Rep&gt;::digits10 &lt;&lt; " decimal digits.\n";
}
else if (tmp::is_integral&lt;Rep&gt;::value)
{
std::cout &lt;&lt; "integral\n";
d = Duration(Rep(1));
std::datetime::duration&lt;double&gt; dsec = d;
std::cout &lt;&lt; "The precision is " &lt;&lt; dsec.count() &lt;&lt; " seconds.\n";
}
else
{
std::cout &lt;&lt; "a class type\n";
d = Duration(Rep(1));
std::datetime::duration&lt;double&gt; dsec = d;
std::cout &lt;&lt; "The precision is " &lt;&lt; dsec.count() &lt;&lt; " seconds.\n";
}
d = Duration(std::numeric_limits&lt;Rep&gt;::max());
using namespace std::datetime;
using namespace std;
typedef duration&lt;double, ratio_multiply&lt;ratio&lt;24*3652425,10000&gt;, hours::period&gt;::type&gt; Years;
Years years = d;
std::cout &lt;&lt; "The range is +/- " &lt;&lt; years.count() &lt;&lt; " years.\n";
std::cout &lt;&lt; "sizeof(" &lt;&lt; name &lt;&lt; ") = " &lt;&lt; sizeof(d) &lt;&lt; '\n';
}
void inspect_all()
{
using namespace std::datetime;
std::cout.precision(6);
inspect_duration(nanoseconds(), "nanoseconds");
inspect_duration(microseconds(), "microseconds");
inspect_duration(milliseconds(), "milliseconds");
inspect_duration(seconds(), "seconds");
inspect_duration(minutes(), "minutes");
inspect_duration(hours(), "hours");
inspect_duration(duration&lt;double&gt;(), "duration&lt;double&gt;");
}
void test_milliseconds()
{
using namespace std::datetime;
milliseconds ms(250);
ms += milliseconds(1);
milliseconds ms2(150);
milliseconds msdiff = ms - ms2;
if (msdiff == milliseconds(101))
std::cout &lt;&lt; "success\n";
else
std::cout &lt;&lt; "failure: " &lt;&lt; msdiff.count() &lt;&lt; '\n';
}
using namespace std;
using namespace std::datetime;
<font color="#c80000">// Example round_up utility: converts d to To, rounding up for inexact conversions</font>
<font color="#c80000">// Being able to *easily* write this function is a major feature!</font>
template &lt;class To, class Rep, class Period&gt;
To
round_up(duration&lt;Rep, Period&gt; d)
{
To result = duration_cast&lt;To&gt;(d);
if (result &lt; d)
++result;
return result;
}
<font color="#c80000">// demonstrate interaction with xtime-like facility:</font>
using namespace std::datetime;
struct xtime
{
long sec;
unsigned long usec;
};
template &lt;class Rep, class Period&gt;
xtime
to_xtime_truncate(duration&lt;Rep, Period&gt; d)
{
xtime xt;
xt.sec = duration_cast&lt;seconds&gt;(d).count();
xt.usec = duration_cast&lt;microseconds&gt;(d - seconds(xt.sec)).count();
return xt;
}
template &lt;class Rep, class Period&gt;
xtime
to_xtime_round_up(duration&lt;Rep, Period&gt; d)
{
xtime xt;
xt.sec = duration_cast&lt;seconds&gt;(d).count();
xt.usec = round_up&lt;microseconds&gt;(d - seconds(xt.sec)).count();
return xt;
}
microseconds
from_xtime(xtime xt)
{
return seconds(xt.sec) + microseconds(xt.usec);
}
void print(xtime xt)
{
cout &lt;&lt; '{' &lt;&lt; xt.sec &lt;&lt; ',' &lt;&lt; xt.usec &lt;&lt; "}\n";
}
void test_with_xtime()
{
cout &lt;&lt; "test_with_xtime\n";
xtime xt = to_xtime_truncate(seconds(3) + milliseconds(251));
print(xt);
milliseconds ms = duration_cast&lt;milliseconds&gt;(from_xtime(xt));
cout &lt;&lt; ms.count() &lt;&lt; " milliseconds\n";
xt = to_xtime_round_up(ms);
print(xt);
xt = to_xtime_truncate(seconds(3) + nanoseconds(999));
print(xt);
xt = to_xtime_round_up(seconds(3) + nanoseconds(999));
print(xt);
}
void test_system_clock()
{
cout &lt;&lt; "system_clock test" &lt;&lt; endl;
system_clock::duration delay = milliseconds(5);
system_clock::time_point start = system_clock::now();
while (system_clock::now() - start &lt;= delay)
;
system_clock::time_point stop = system_clock::now();
system_clock::duration elapsed = stop - start;
cout &lt;&lt; "paused " &lt;&lt; nanoseconds(elapsed).count() &lt;&lt; " nanoseconds\n";
start = system_clock::now();
stop = system_clock::now();
cout &lt;&lt; "system_clock resolution estimate: " &lt;&lt; nanoseconds(stop-start).count() &lt;&lt; " nanoseconds\n";
}
void test_monotonic_clock()
{
cout &lt;&lt; "monotonic_clock test" &lt;&lt; endl;
monotonic_clock::duration delay = milliseconds(5);
monotonic_clock::time_point start = monotonic_clock::now();
while (monotonic_clock::now() - start &lt;= delay)
;
monotonic_clock::time_point stop = monotonic_clock::now();
monotonic_clock::duration elapsed = stop - start;
cout &lt;&lt; "paused " &lt;&lt; nanoseconds(elapsed).count() &lt;&lt; " nanoseconds\n";
start = monotonic_clock::now();
stop = monotonic_clock::now();
cout &lt;&lt; "monotonic_clock resolution estimate: " &lt;&lt; nanoseconds(stop-start).count() &lt;&lt; " nanoseconds\n";
}
void test_hi_resolution_clock()
{
cout &lt;&lt; "high_resolution_clock test" &lt;&lt; endl;
high_resolution_clock::duration delay = milliseconds(5);
high_resolution_clock::time_point start = high_resolution_clock::now();
while (high_resolution_clock::now() - start &lt;= delay)
;
high_resolution_clock::time_point stop = high_resolution_clock::now();
high_resolution_clock::duration elapsed = stop - start;
cout &lt;&lt; "paused " &lt;&lt; nanoseconds(elapsed).count() &lt;&lt; " nanoseconds\n";
start = high_resolution_clock::now();
stop = high_resolution_clock::now();
cout &lt;&lt; "high_resolution_clock resolution estimate: " &lt;&lt; nanoseconds(stop-start).count() &lt;&lt; " nanoseconds\n";
}
void test_mixed_clock()
{
cout &lt;&lt; "mixed clock test" &lt;&lt; endl;
high_resolution_clock::time_point hstart = high_resolution_clock::now();
cout &lt;&lt; "Add 5 milliseconds to a high_resolution_clock::time_point\n";
monotonic_clock::time_point mend = hstart + milliseconds(5);
bool b = hstart == mend;
system_clock::time_point sstart = system_clock::now();
std::cout &lt;&lt; "Subtracting system_clock::time_point from monotonic_clock::time_point doesn't compile\n";
<font color="#c80000">// mend - sstart; // doesn't compile</font>
cout &lt;&lt; "subtract high_resolution_clock::time_point from monotonic_clock::time_point"
" and add that to a system_clock::time_point\n";
system_clock::time_point send = sstart + duration_cast&lt;system_clock::duration&gt;(mend - hstart);
cout &lt;&lt; "subtract two system_clock::time_point's and output that in microseconds:\n";
microseconds ms = send - sstart;
cout &lt;&lt; ms.count() &lt;&lt; " microseconds\n";
}
void test_c_mapping()
{
cout &lt;&lt; "C map test\n";
using namespace std::datetime;
system_clock::time_point t1 = system_clock::now();
std::time_t c_time = system_clock::to_time_t(t1);
std::tm* tmptr = std::localtime(&amp;c_time);
std::cout &lt;&lt; "It is now " &lt;&lt; tmptr-&gt;tm_hour &lt;&lt; ':' &lt;&lt; tmptr-&gt;tm_min &lt;&lt; ':' &lt;&lt; tmptr-&gt;tm_sec &lt;&lt; ' '
&lt;&lt; tmptr-&gt;tm_year + 1900 &lt;&lt; '-' &lt;&lt; tmptr-&gt;tm_mon + 1 &lt;&lt; '-' &lt;&lt; tmptr-&gt;tm_mday &lt;&lt; '\n';
c_time = std::mktime(tmptr);
system_clock::time_point t2 = system_clock::from_time_t(c_time);
microseconds ms = t1 - t2;
std::cout &lt;&lt; "Round-tripping through the C interface truncated the precision by " &lt;&lt; ms.count() &lt;&lt; " microseconds\n";
}
void test_duration_division()
{
cout &lt;&lt; hours(3) / milliseconds(5) &lt;&lt; '\n';
cout &lt;&lt; milliseconds(5) / hours(3) &lt;&lt; '\n';
cout &lt;&lt; hours(1) / milliseconds(1) &lt;&lt; '\n';
}
namespace I_dont_like_the_default_duration_behavior
{
<font color="#c80000">// Here's how you override the duration's default constructor to do anything you want (in this case zero)</font>
template &lt;class R&gt;
class zero_default
{
public:
typedef R rep;
private:
rep rep_;
public:
zero_default(rep i = 0) : rep_(i) {}
operator rep() const {return rep_;}
zero_default&amp; operator+=(zero_default x) {rep_ += x.rep_; return *this;}
zero_default&amp; operator-=(zero_default x) {rep_ -= x.rep_; return *this;}
zero_default&amp; operator*=(zero_default x) {rep_ *= x.rep_; return *this;}
zero_default&amp; operator/=(zero_default x) {rep_ /= x.rep_; return *this;}
zero_default operator+ () const {return *this;}
zero_default operator- () const {return zero_default(-rep_);}
zero_default&amp; operator++() {++rep_; return *this;}
zero_default operator++(int) {return zero_default(rep_++);}
zero_default&amp; operator--() {--rep_; return *this;}
zero_default operator--(int) {return zero_default(rep_--);}
friend zero_default operator+(zero_default x, zero_default y) {return x += y;}
friend zero_default operator-(zero_default x, zero_default y) {return x -= y;}
friend zero_default operator*(zero_default x, zero_default y) {return x *= y;}
friend zero_default operator/(zero_default x, zero_default y) {return x /= y;}
friend bool operator==(zero_default x, zero_default y) {return x.rep_ == y.rep_;}
friend bool operator!=(zero_default x, zero_default y) {return !(x == y);}
friend bool operator&lt; (zero_default x, zero_default y) {return x.rep_ &lt; y.rep_;}
friend bool operator&lt;=(zero_default x, zero_default y) {return !(y &lt; x);}
friend bool operator&gt; (zero_default x, zero_default y) {return y &lt; x;}
friend bool operator&gt;=(zero_default x, zero_default y) {return !(x &lt; y);}
};
typedef std::datetime::duration&lt;zero_default&lt;long long&gt;, std::nano &gt; nanoseconds;
typedef std::datetime::duration&lt;zero_default&lt;long long&gt;, std::micro &gt; microseconds;
typedef std::datetime::duration&lt;zero_default&lt;long long&gt;, std::milli &gt; milliseconds;
typedef std::datetime::duration&lt;zero_default&lt;long long&gt; &gt; seconds;
typedef std::datetime::duration&lt;zero_default&lt;long long&gt;, std::ratio&lt;60&gt; &gt; minutes;
typedef std::datetime::duration&lt;zero_default&lt;long long&gt;, std::ratio&lt;3600&gt; &gt; hours;
void test()
{
milliseconds ms;
cout &lt;&lt; ms.count() &lt;&lt; '\n';
}
} <font color="#c80000">// I_dont_like_the_default_duration_behavior</font>
<font color="#c80000">// Build a min for two time_points</font>
template &lt;class Rep, class Period&gt;
void
print_duration(ostream&amp; os, duration&lt;Rep, Period&gt; d)
{
os &lt;&lt; d.count() &lt;&lt; " * " &lt;&lt; Period::num &lt;&lt; '/' &lt;&lt; Period::den &lt;&lt; " seconds\n";
}
<font color="#c80000">// Example min utility: returns the earliest time_point</font>
<font color="#c80000">// Being able to *easily* write this function is a major feature!</font>
template &lt;class Clock, class Duration1, class Duration2&gt;
inline
typename common_type&lt;time_point&lt;Clock, Duration1&gt;, time_point&lt;Clock, Duration2&gt; &gt;::type
min(time_point&lt;Clock, Duration1&gt; t1, time_point&lt;Clock, Duration2&gt; t2)
{
return t2 &lt; t1 ? t2 : t1;
}
void test_min()
{
typedef time_point&lt;system_clock, common_type&lt;system_clock::duration, seconds&gt;::type&gt; T1;
typedef time_point&lt;system_clock, common_type&lt;system_clock::duration, nanoseconds&gt;::type&gt; T2;
typedef common_type&lt;T1, T2&gt;::type T3;
<font color="#c80000">/*auto*/</font> T1 t1 = system_clock::now() + seconds(3);
<font color="#c80000">/*auto*/</font> T2 t2 = system_clock::now() + nanoseconds(3);
<font color="#c80000">/*auto*/</font> T3 t3 = min(t1, t2);
print_duration(cout, t1 - t3);
print_duration(cout, t2 - t3);
}
void explore_limits()
{
typedef duration&lt;long long, ratio_multiply&lt;ratio&lt;24*3652425,10000&gt;, hours::period&gt;::type&gt; Years;
monotonic_clock::time_point t1( Years(250));
monotonic_clock::time_point t2(-Years(250));
<font color="#c80000">// nanosecond resolution is likely to overflow. "up cast" to microseconds.</font>
<font color="#c80000">// The "up cast" trades precision for range.</font>
microseconds d = time_point_cast&lt;microseconds&gt;(t1) - time_point_cast&lt;microseconds&gt;(t2);
cout &lt;&lt; d.count() &lt;&lt; " microseconds\n";
}
void manipulate_clock_object(system_clock clock)
{
system_clock::duration delay = milliseconds(5);
system_clock::time_point start = clock.now();
while (clock.now() - start &lt;= delay)
;
system_clock::time_point stop = clock.now();
system_clock::duration elapsed = stop - start;
cout &lt;&lt; "paused " &lt;&lt; nanoseconds(elapsed).count() &lt;&lt; " nanoseconds\n";
};
template &lt;long long speed&gt;
struct cycle_count
{
typedef typename ratio_multiply&lt;ratio&lt;speed&gt;, mega&gt;::type frequency; <font color="#c80000">// Mhz</font>
typedef typename ratio_divide&lt;ratio&lt;1&gt;, frequency&gt;::type period;
typedef long long rep;
typedef std::datetime::duration&lt;rep, period&gt; duration;
typedef std::datetime::time_point&lt;cycle_count&gt; time_point;
static time_point now()
{
static long long tick = 0;
<font color="#c80000">// return exact cycle count</font>
return time_point(duration(++tick)); <font color="#c80000">// fake access to clock cycle count</font>
}
};
template &lt;long long speed&gt;
struct approx_cycle_count
{
static const long long frequency = speed * 1000000; <font color="#c80000">// MHz</font>
typedef nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
static const long long nanosec_per_sec = period::den;
typedef std::datetime::time_point&lt;approx_cycle_count&gt; time_point;
static time_point now()
{
static long long tick = 0;
<font color="#c80000">// return cycle count as an approximate number of nanoseconds</font>
<font color="#c80000">// compute as if nanoseconds is only duration in the std::lib</font>
return time_point(duration(++tick * nanosec_per_sec / frequency));
}
};
void cycle_count_delay()
{
{
typedef cycle_count&lt;400&gt; clock;
cout &lt;&lt; "\nSimulated " &lt;&lt; clock::frequency::num / mega::num &lt;&lt; "MHz clock which has a tick period of "
&lt;&lt; duration&lt;double, nano&gt;(clock::duration(1)).count() &lt;&lt; " nanoseconds\n";
nanoseconds delayns(500);
clock::duration delay = duration_cast&lt;clock::duration&gt;(delayns);
cout &lt;&lt; "delay = " &lt;&lt; delayns.count() &lt;&lt; " nanoseconds which is " &lt;&lt; delay.count() &lt;&lt; " cycles\n";
clock::time_point start = clock::now();
clock::time_point stop = start + delay;
while (clock::now() &lt; stop) <font color="#c80000">// no multiplies or divides in this loop</font>
;
clock::time_point end = clock::now();
clock::duration elapsed = end - start;
cout &lt;&lt; "paused " &lt;&lt; elapsed.count() &lt;&lt; " cycles ";
cout &lt;&lt; "which is " &lt;&lt; duration_cast&lt;nanoseconds&gt;(elapsed).count() &lt;&lt; " nanoseconds\n";
}
{
typedef approx_cycle_count&lt;400&gt; clock;
cout &lt;&lt; "\nSimulated " &lt;&lt; clock::frequency / 1000000 &lt;&lt; "MHz clock modeled with nanoseconds\n";
clock::duration delay = nanoseconds(500);
cout &lt;&lt; "delay = " &lt;&lt; delay.count() &lt;&lt; " nanoseconds\n";
clock::time_point start = clock::now();
clock::time_point stop = start + delay;
while (clock::now() &lt; stop) <font color="#c80000">// 1 multiplication and 1 division in this loop</font>
;
clock::time_point end = clock::now();
clock::duration elapsed = end - start;
cout &lt;&lt; "paused " &lt;&lt; elapsed.count() &lt;&lt; " nanoseconds\n";
}
{
typedef cycle_count&lt;1500&gt; clock;
cout &lt;&lt; "\nSimulated " &lt;&lt; clock::frequency::num / mega::num &lt;&lt; "MHz clock which has a tick period of "
&lt;&lt; duration&lt;double, nano&gt;(clock::duration(1)).count() &lt;&lt; " nanoseconds\n";
nanoseconds delayns(500);
clock::duration delay = duration_cast&lt;clock::duration&gt;(delayns);
cout &lt;&lt; "delay = " &lt;&lt; delayns.count() &lt;&lt; " nanoseconds which is " &lt;&lt; delay.count() &lt;&lt; " cycles\n";
clock::time_point start = clock::now();
clock::time_point stop = start + delay;
while (clock::now() &lt; stop) <font color="#c80000">// no multiplies or divides in this loop</font>
;
clock::time_point end = clock::now();
clock::duration elapsed = end - start;
cout &lt;&lt; "paused " &lt;&lt; elapsed.count() &lt;&lt; " cycles ";
cout &lt;&lt; "which is " &lt;&lt; duration_cast&lt;nanoseconds&gt;(elapsed).count() &lt;&lt; " nanoseconds\n";
}
{
typedef approx_cycle_count&lt;1500&gt; clock;
cout &lt;&lt; "\nSimulated " &lt;&lt; clock::frequency / 1000000 &lt;&lt; "MHz clock modeled with nanoseconds\n";
clock::duration delay = nanoseconds(500);
cout &lt;&lt; "delay = " &lt;&lt; delay.count() &lt;&lt; " nanoseconds\n";
clock::time_point start = clock::now();
clock::time_point stop = start + delay;
while (clock::now() &lt; stop) <font color="#c80000">// 1 multiplication and 1 division in this loop</font>
;
clock::time_point end = clock::now();
clock::duration elapsed = end - start;
cout &lt;&lt; "paused " &lt;&lt; elapsed.count() &lt;&lt; " nanoseconds\n";
}
}
void test_special_values()
{
std::cout &lt;&lt; "duration&lt;unsigned&gt;::min().count() = " &lt;&lt; duration&lt;unsigned&gt;::min().count() &lt;&lt; '\n';
std::cout &lt;&lt; "duration&lt;unsigned&gt;::zero().count() = " &lt;&lt; duration&lt;unsigned&gt;::zero().count() &lt;&lt; '\n';
std::cout &lt;&lt; "duration&lt;unsigned&gt;::max().count() = " &lt;&lt; duration&lt;unsigned&gt;::max().count() &lt;&lt; '\n';
std::cout &lt;&lt; "duration&lt;int&gt;::min().count() = " &lt;&lt; duration&lt;int&gt;::min().count() &lt;&lt; '\n';
std::cout &lt;&lt; "duration&lt;int&gt;::zero().count() = " &lt;&lt; duration&lt;int&gt;::zero().count() &lt;&lt; '\n';
std::cout &lt;&lt; "duration&lt;int&gt;::max().count() = " &lt;&lt; duration&lt;int&gt;::max().count() &lt;&lt; '\n';
}
int main()
{
basic_examples();
testStdUser();
testUser1();
testUser2();
drive_physics_function();
test_range();
test_extended_range();
inspect_all();
test_milliseconds();
test_with_xtime();
test_system_clock();
test_monotonic_clock();
test_hi_resolution_clock();
test_mixed_clock();
timeval_demo::test_xtime_clock();
runtime_resolution::test();
test_c_mapping();
test_duration_division();
I_dont_like_the_default_duration_behavior::test();
test_min();
#if VARIADIC_COMMON_TYPE
inspect_duration(common_type&lt;duration&lt;double&gt;, hours, microseconds&gt;::type(),
"common_type&lt;duration&lt;double&gt;, hours, microseconds&gt;::type");
#endif
explore_limits();
manipulate_clock_object(system_clock());
duration&lt;double, milli&gt; d = milliseconds(3) * 2.5;
inspect_duration(milliseconds(3) * 2.5, "milliseconds(3) * 2.5");
cout &lt;&lt; d.count() &lt;&lt; '\n';
<font color="#c80000">// milliseconds ms(3.5); // doesn't compile</font>
cout &lt;&lt; "milliseconds ms(3.5) doesn't compile\n";
cycle_count_delay();
test_special_values();
}
<font color="#c80000">/*
Output
Running basic examples
sleep_for 3000000 microseconds
sleep_for 1 microseconds
sleep_until 10:47:17.728293 which is 4499340 microseconds away
try_lock_for 30000 microseconds
try_lock_until 10:47:17.728285 which is 4499303 microseconds away
wait_for 60000000 microseconds
wait_until 10:47:17.728285 which is 4499264 microseconds away
sleep_for 250000 microseconds
sleep_until 10:47:14.729077 which is 1499979 microseconds away
***************
* testStdUser *
***************
100 hours expressed as hours = 100
100 hours expressed as nanoseconds = 360000000000000
200 hours expressed as nanoseconds = 720000000000000
300 hours expressed as nanoseconds = 1080000000000000
hr = ns; <font color="#c80000">// does not compile</font>
hr * ns; <font color="#c80000">// does not compile</font>
duration&lt;double&gt; has count() = 2.5
seconds sec = duration&lt;double&gt; won't compile
seconds has count() = 2
*************
* testUser1 *
*************
Speed = 24.5872 meters/sec
Acceleration = 9.81456 meters/sec^2
Distance = 13.5204 meters
There are 125/201168 miles/meter which is approximately 0.000621371
There are 201168/125 meters/mile which is approximately 1609.34
1 attosecond is 1e-18 seconds
sec = as; <font color="#c80000">// compiles</font>
1 second is 1e+18 attoseconds
as = sec; <font color="#c80000">// compiles</font>
*************
* testUser2 *
*************
100 years expressed as years = 100
100 years expressed as nanoseconds = 3155695200000000000
200 years expressed as nanoseconds = 6311390400000000000
300 years expressed as nanoseconds = inf
yr = ns; <font color="#c80000">// does not compile</font>
ps = yr; <font color="#c80000">// does not compile</font>
100 years expressed as picoseconds = inf
0.1 years expressed as picoseconds = 3155695200000000000
200 million years ago encoded in years: -200000000
200 million years ago encoded in days: -73048500000
200 million years ago encoded in millennium: -200000
Demonstrate "uninitialized protection" behavior:
nan
d = 3e-09
d = 10800
d = 0.666667
d = 10799.999999997
292 years of hours = 2559672hr
Add a nanosecond = 9214819200000000001ns
Find the difference = 1ns
244,000 years of hours = 2138904000hr
Add a microsecond = 7700054400000000001us
Find the difference = 1us
********* nanoseconds *********
The period of nanoseconds is 1e-09 seconds.
The frequency of nanoseconds is 1e+09 Hz.
The representation is integral
The precision is 1e-09 seconds.
The range is +/- 292.277 years.
sizeof(nanoseconds) = 8
********* microseconds *********
The period of microseconds is 1e-06 seconds.
The frequency of microseconds is 1e+06 Hz.
The representation is integral
The precision is 1e-06 seconds.
The range is +/- 292277 years.
sizeof(microseconds) = 8
********* milliseconds *********
The period of milliseconds is 0.001 seconds.
The frequency of milliseconds is 1000 Hz.
The representation is integral
The precision is 0.001 seconds.
The range is +/- 2.92277e+08 years.
sizeof(milliseconds) = 8
********* seconds *********
The period of seconds is 1 seconds.
The frequency of seconds is 1 Hz.
The representation is integral
The precision is 1 seconds.
The range is +/- 2.92277e+11 years.
sizeof(seconds) = 8
********* minutes *********
The period of minutes is 60 seconds.
The frequency of minutes is 0.0166667 Hz.
The representation is integral
The precision is 60 seconds.
The range is +/- 4083.06 years.
sizeof(minutes) = 4
********* hours *********
The period of hours is 3600 seconds.
The frequency of hours is 0.000277778 Hz.
The representation is integral
The precision is 3600 seconds.
The range is +/- 244984 years.
sizeof(hours) = 4
********* duration&lt;double&gt; *********
The period of duration&lt;double&gt; is 1 seconds.
The frequency of duration&lt;double&gt; is 1 Hz.
The representation is floating point
The precision is the most significant 15 decimal digits.
The range is +/- 5.69666e+300 years.
sizeof(duration&lt;double&gt;) = 8
success
test_with_xtime
{3,251000}
3251 milliseconds
{3,251000}
{3,0}
{3,1}
system_clock test
paused 5001000 nanoseconds
system_clock resolution estimate: 0 nanoseconds
monotonic_clock test
paused 5000181 nanoseconds
monotonic_clock resolution estimate: 97 nanoseconds
high_resolution_clock test
paused 5000277 nanoseconds
high_resolution_clock resolution estimate: 96 nanoseconds
mixed clock test
Add 5 milliseconds to a high_resolution_clock::time_point
Subtracting system_clock::time_point from monotonic_clock::time_point doesn't compile
subtract high_resolution_clock::time_point from monotonic_clock::time_point and add that to a system_clock::time_point
subtract two system_clock::time_point's and output that in microseconds:
5000 microseconds
timeval_demo system clock test
sizeof xtime_clock::time_point = 8
sizeof xtime_clock::duration = 8
sizeof xtime_clock::rep = 8
paused 5001000 nanoseconds
runtime_resolution test
paused 5000205 nanoseconds
C map test
It is now 10:47:13 2008-4-22
Round-tripping through the C interface truncated the precision by 255445 microseconds
2160000
0
3600000
0
2999998997 * 1/1000000000 seconds
0 * 1/1000000000 seconds
15778476000000000 microseconds
paused 5001000 nanoseconds
********* milliseconds(3) * 2.5 *********
The period of milliseconds(3) * 2.5 is 0.001 seconds.
The frequency of milliseconds(3) * 2.5 is 1000 Hz.
The representation is floating point
The precision is the most significant 15 decimal digits.
The range is +/- 5.69666e+297 years.
sizeof(milliseconds(3) * 2.5) = 8
7.5
milliseconds ms(3.5) doesn't compile
Simulated 400MHz clock which has a tick period of 2.5 nanoseconds
delay = 500 nanoseconds which is 200 cycles
paused 201 cycles which is 502 nanoseconds
Simulated 400MHz clock modeled with nanoseconds
delay = 500 nanoseconds
paused 503 nanoseconds
Simulated 1500MHz clock which has a tick period of 0.666667 nanoseconds
delay = 500 nanoseconds which is 750 cycles
paused 751 cycles which is 500 nanoseconds
Simulated 1500MHz clock modeled with nanoseconds
delay = 500 nanoseconds
paused 500 nanoseconds
duration&lt;unsigned&gt;::min().count() = 0
duration&lt;unsigned&gt;::zero().count() = 0
duration&lt;unsigned&gt;::max().count() = 4294967295
duration&lt;int&gt;::min().count() = -2147483647
duration&lt;int&gt;::zero().count() = 0
duration&lt;int&gt;::max().count() = 2147483647
*/</font>
<font color="#c80000">/*
Example disassemblies (to show efficiency).
Disclaimer: I don't pretend to understand the optimizations made.
Compiled with
g++ -O3 -arch x86_64 -S test2.cpp
x86 64-bit architecture
********************
system_clock::duration
time_subtraction(system_clock::time_point x, system_clock::time_point y)
{
return x - y;
}
pushq %rbp
LCFI25:
subq %rsi, %rdi
movq %rdi, %rax
movq %rsp, %rbp
LCFI26:
leave
ret
********************
seconds
time_subtract_to_seconds(system_clock::time_point x, system_clock::time_point y)
{
return duration_cast&lt;seconds&gt;(x - y);
}
subq %rsi, %rdi
movabsq $4835703278458516699, %rdx
pushq %rbp
LCFI25:
movq %rdi, %rax
sarq $63, %rdi
imulq %rdx
movq %rsp, %rbp
LCFI26:
leave
sarq $18, %rdx
subq %rdi, %rdx
movq %rdx, %rax
ret
********************
nanoseconds
time_subtract_to_nanoseconds(system_clock::time_point x, system_clock::time_point y)
{
return x - y;
}
pushq %rbp
LCFI25:
subq %rsi, %rdi
imulq $1000, %rdi, %rax
movq %rsp, %rbp
LCFI26:
leave
ret
********************
system_clock::time_point
time_plus_duration(system_clock::time_point x, system_clock::duration y)
{
return x + y;
}
pushq %rbp
LCFI37:
movq %rsp, %rbp
LCFI38:
leaq (%rsi,%rdi), %rax
leave
ret
********************
milliseconds
duration_plus_duration(milliseconds x, milliseconds y)
{
return x + y;
}
pushq %rbp
LCFI11:
leaq (%rdi,%rsi), %rax
movq %rsp, %rbp
LCFI12:
leave
ret
********************
nanoseconds
milliseconds_plus_nanoseconds(milliseconds x, nanoseconds y)
{
return x + y;
}
imulq $1000000, %rdi, %rdi
pushq %rbp
LCFI20:
movq %rsp, %rbp
LCFI21:
leave
leaq (%rdi,%rsi), %rax
ret
********************
milliseconds
nanoseconds_to_milliseconds(nanoseconds x)
{
return duration_cast&lt;milliseconds&gt;(x);
}
movq %rdi, %rax
movabsq $4835703278458516699, %rdx
pushq %rbp
LCFI13:
imulq %rdx
sarq $63, %rdi
movq %rsp, %rbp
LCFI14:
leave
sarq $18, %rdx
subq %rdi, %rdx
movq %rdx, %rax
ret
********************
nanoseconds
milliseconds_to_nanoseconds(milliseconds x)
{
return x;
}
pushq %rbp
LCFI13:
imulq $1000000, %rdi, %rax
movq %rsp, %rbp
LCFI14:
leave
ret
********************
hours
increment_hours(hours x)
{
return ++x;
}
pushq %rbp
LCFI11:
leaq 1(%rdi), %rax
movq %rsp, %rbp
LCFI12:
leave
ret
*/</font>
</pre>
</body></html>