compute/example/black_scholes.cpp
2015-05-17 20:32:09 -07:00

169 lines
5.8 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <cstdlib>
#include <iostream>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/copy_n.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/utility/source.hpp>
namespace compute = boost::compute;
// return a random float between lo and hi
float rand_float(float lo, float hi)
{
float x = (float) std::rand() / (float) RAND_MAX;
return (1.0f - x) * lo + x * hi;
}
// this example demostrates a black-scholes option pricing kernel.
int main()
{
// number of options
const int N = 4000000;
// black-scholes parameters
const float risk_free_rate = 0.02f;
const float volatility = 0.30f;
// get default device and setup context
compute::device gpu = compute::system::default_device();
compute::context context(gpu);
compute::command_queue queue(context, gpu);
std::cout << "device: " << gpu.name() << std::endl;
// initialize option data on host
std::vector<float> stock_price_data(N);
std::vector<float> option_strike_data(N);
std::vector<float> option_years_data(N);
std::srand(5347);
for(int i = 0; i < N; i++){
stock_price_data[i] = rand_float(5.0f, 30.0f);
option_strike_data[i] = rand_float(1.0f, 100.0f);
option_years_data[i] = rand_float(0.25f, 10.0f);
}
// create memory buffers on the device
compute::vector<float> call_result(N, context);
compute::vector<float> put_result(N, context);
compute::vector<float> stock_price(N, context);
compute::vector<float> option_strike(N, context);
compute::vector<float> option_years(N, context);
// copy initial values to the device
compute::copy_n(stock_price_data.begin(), N, stock_price.begin(), queue);
compute::copy_n(option_strike_data.begin(), N, option_strike.begin(), queue);
compute::copy_n(option_years_data.begin(), N, option_years.begin(), queue);
// source code for black-scholes program
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
// approximation of the cumulative normal distribution function
static float cnd(float d)
{
const float A1 = 0.319381530f;
const float A2 = -0.356563782f;
const float A3 = 1.781477937f;
const float A4 = -1.821255978f;
const float A5 = 1.330274429f;
const float RSQRT2PI = 0.39894228040143267793994605993438f;
float K = 1.0f / (1.0f + 0.2316419f * fabs(d));
float cnd =
RSQRT2PI * exp(-0.5f * d * d) *
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
if(d > 0){
cnd = 1.0f - cnd;
}
return cnd;
}
// black-scholes option pricing kernel
__kernel void black_scholes(__global float *call_result,
__global float *put_result,
__global const float *stock_price,
__global const float *option_strike,
__global const float *option_years,
float risk_free_rate,
float volatility)
{
const uint opt = get_global_id(0);
float S = stock_price[opt];
float X = option_strike[opt];
float T = option_years[opt];
float R = risk_free_rate;
float V = volatility;
float sqrtT = sqrt(T);
float d1 = (log(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
float d2 = d1 - V * sqrtT;
float CNDD1 = cnd(d1);
float CNDD2 = cnd(d2);
float expRT = exp(-R * T);
call_result[opt] = S * CNDD1 - X * expRT * CNDD2;
put_result[opt] = X * expRT * (1.0f - CNDD2) - S * (1.0f - CNDD1);
}
);
// build black-scholes program
compute::program program = compute::program::create_with_source(source, context);
program.build();
// setup black-scholes kernel
compute::kernel kernel(program, "black_scholes");
kernel.set_arg(0, call_result);
kernel.set_arg(1, put_result);
kernel.set_arg(2, stock_price);
kernel.set_arg(3, option_strike);
kernel.set_arg(4, option_years);
kernel.set_arg(5, risk_free_rate);
kernel.set_arg(6, volatility);
// execute black-scholes kernel
queue.enqueue_1d_range_kernel(kernel, 0, N, 0);
// print out the first option's put and call prices
float call0, put0;
compute::copy_n(put_result.begin(), 1, &put0, queue);
compute::copy_n(call_result.begin(), 1, &call0, queue);
std::cout << "option 0 call price: " << call0 << std::endl;
std::cout << "option 0 put price: " << put0 << std::endl;
// due to the differences in the random-number generators between Operating Systems
// and/or compilers, we will get different "expected" results for this example
#ifdef __APPLE__
double expected_call0 = 0.000249461;
double expected_put0 = 26.2798;
#elif _MSC_VER
double expected_call0 = 8.21412;
double expected_put0 = 2.25904;
#else
double expected_call0 = 0.0999f;
double expected_put0 = 43.0524f;
#endif
// check option prices
if(std::abs(call0 - expected_call0) > 1e-4 || std::abs(put0 - expected_put0) > 1e-4){
std::cerr << "error: option prices are wrong" << std::endl;
return -1;
}
return 0;
}