169 lines
5.8 KiB
C++
169 lines
5.8 KiB
C++
//---------------------------------------------------------------------------//
|
|
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0
|
|
// See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt
|
|
//
|
|
// See http://boostorg.github.com/compute for more information.
|
|
//---------------------------------------------------------------------------//
|
|
|
|
#include <cstdlib>
|
|
#include <iostream>
|
|
|
|
#include <boost/compute/command_queue.hpp>
|
|
#include <boost/compute/system.hpp>
|
|
#include <boost/compute/algorithm/copy_n.hpp>
|
|
#include <boost/compute/container/vector.hpp>
|
|
#include <boost/compute/utility/source.hpp>
|
|
|
|
namespace compute = boost::compute;
|
|
|
|
// return a random float between lo and hi
|
|
float rand_float(float lo, float hi)
|
|
{
|
|
float x = (float) std::rand() / (float) RAND_MAX;
|
|
|
|
return (1.0f - x) * lo + x * hi;
|
|
}
|
|
|
|
// this example demostrates a black-scholes option pricing kernel.
|
|
int main()
|
|
{
|
|
// number of options
|
|
const int N = 4000000;
|
|
|
|
// black-scholes parameters
|
|
const float risk_free_rate = 0.02f;
|
|
const float volatility = 0.30f;
|
|
|
|
// get default device and setup context
|
|
compute::device gpu = compute::system::default_device();
|
|
compute::context context(gpu);
|
|
compute::command_queue queue(context, gpu);
|
|
std::cout << "device: " << gpu.name() << std::endl;
|
|
|
|
// initialize option data on host
|
|
std::vector<float> stock_price_data(N);
|
|
std::vector<float> option_strike_data(N);
|
|
std::vector<float> option_years_data(N);
|
|
|
|
std::srand(5347);
|
|
for(int i = 0; i < N; i++){
|
|
stock_price_data[i] = rand_float(5.0f, 30.0f);
|
|
option_strike_data[i] = rand_float(1.0f, 100.0f);
|
|
option_years_data[i] = rand_float(0.25f, 10.0f);
|
|
}
|
|
|
|
// create memory buffers on the device
|
|
compute::vector<float> call_result(N, context);
|
|
compute::vector<float> put_result(N, context);
|
|
compute::vector<float> stock_price(N, context);
|
|
compute::vector<float> option_strike(N, context);
|
|
compute::vector<float> option_years(N, context);
|
|
|
|
// copy initial values to the device
|
|
compute::copy_n(stock_price_data.begin(), N, stock_price.begin(), queue);
|
|
compute::copy_n(option_strike_data.begin(), N, option_strike.begin(), queue);
|
|
compute::copy_n(option_years_data.begin(), N, option_years.begin(), queue);
|
|
|
|
// source code for black-scholes program
|
|
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
|
|
// approximation of the cumulative normal distribution function
|
|
static float cnd(float d)
|
|
{
|
|
const float A1 = 0.319381530f;
|
|
const float A2 = -0.356563782f;
|
|
const float A3 = 1.781477937f;
|
|
const float A4 = -1.821255978f;
|
|
const float A5 = 1.330274429f;
|
|
const float RSQRT2PI = 0.39894228040143267793994605993438f;
|
|
|
|
float K = 1.0f / (1.0f + 0.2316419f * fabs(d));
|
|
float cnd =
|
|
RSQRT2PI * exp(-0.5f * d * d) *
|
|
(K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
|
|
|
|
if(d > 0){
|
|
cnd = 1.0f - cnd;
|
|
}
|
|
|
|
return cnd;
|
|
}
|
|
|
|
// black-scholes option pricing kernel
|
|
__kernel void black_scholes(__global float *call_result,
|
|
__global float *put_result,
|
|
__global const float *stock_price,
|
|
__global const float *option_strike,
|
|
__global const float *option_years,
|
|
float risk_free_rate,
|
|
float volatility)
|
|
{
|
|
const uint opt = get_global_id(0);
|
|
|
|
float S = stock_price[opt];
|
|
float X = option_strike[opt];
|
|
float T = option_years[opt];
|
|
float R = risk_free_rate;
|
|
float V = volatility;
|
|
|
|
float sqrtT = sqrt(T);
|
|
float d1 = (log(S / X) + (R + 0.5f * V * V) * T) / (V * sqrtT);
|
|
float d2 = d1 - V * sqrtT;
|
|
float CNDD1 = cnd(d1);
|
|
float CNDD2 = cnd(d2);
|
|
|
|
float expRT = exp(-R * T);
|
|
call_result[opt] = S * CNDD1 - X * expRT * CNDD2;
|
|
put_result[opt] = X * expRT * (1.0f - CNDD2) - S * (1.0f - CNDD1);
|
|
}
|
|
);
|
|
|
|
// build black-scholes program
|
|
compute::program program = compute::program::create_with_source(source, context);
|
|
program.build();
|
|
|
|
// setup black-scholes kernel
|
|
compute::kernel kernel(program, "black_scholes");
|
|
kernel.set_arg(0, call_result);
|
|
kernel.set_arg(1, put_result);
|
|
kernel.set_arg(2, stock_price);
|
|
kernel.set_arg(3, option_strike);
|
|
kernel.set_arg(4, option_years);
|
|
kernel.set_arg(5, risk_free_rate);
|
|
kernel.set_arg(6, volatility);
|
|
|
|
// execute black-scholes kernel
|
|
queue.enqueue_1d_range_kernel(kernel, 0, N, 0);
|
|
|
|
// print out the first option's put and call prices
|
|
float call0, put0;
|
|
compute::copy_n(put_result.begin(), 1, &put0, queue);
|
|
compute::copy_n(call_result.begin(), 1, &call0, queue);
|
|
|
|
std::cout << "option 0 call price: " << call0 << std::endl;
|
|
std::cout << "option 0 put price: " << put0 << std::endl;
|
|
|
|
// due to the differences in the random-number generators between Operating Systems
|
|
// and/or compilers, we will get different "expected" results for this example
|
|
#ifdef __APPLE__
|
|
double expected_call0 = 0.000249461;
|
|
double expected_put0 = 26.2798;
|
|
#elif _MSC_VER
|
|
double expected_call0 = 8.21412;
|
|
double expected_put0 = 2.25904;
|
|
#else
|
|
double expected_call0 = 0.0999f;
|
|
double expected_put0 = 43.0524f;
|
|
#endif
|
|
|
|
// check option prices
|
|
if(std::abs(call0 - expected_call0) > 1e-4 || std::abs(put0 - expected_put0) > 1e-4){
|
|
std::cerr << "error: option prices are wrong" << std::endl;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|