compute/example/opengl_sphere.cpp
2015-05-17 20:32:09 -07:00

243 lines
7.7 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <iostream>
#include <algorithm>
#include <GL/gl.h>
#include <vtkActor.h>
#include <vtkCamera.h>
#include <vtkgl.h>
#include <vtkInteractorStyleSwitch.h>
#include <vtkMapper.h>
#include <vtkObjectFactory.h>
#include <vtkOpenGLExtensionManager.h>
#include <vtkOpenGLRenderWindow.h>
#include <vtkProperty.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkSmartPointer.h>
#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/iota.hpp>
#include <boost/compute/interop/opengl.hpp>
#include <boost/compute/interop/vtk.hpp>
#include <boost/compute/utility/dim.hpp>
#include <boost/compute/utility/source.hpp>
namespace compute = boost::compute;
// tesselates a sphere with radius, phi_slices, and theta_slices. returns
// a shared opencl/opengl buffer containing the vertex data.
compute::opengl_buffer tesselate_sphere(float radius,
size_t phi_slices,
size_t theta_slices,
compute::command_queue &queue)
{
using compute::dim;
const compute::context &context = queue.get_context();
const size_t vertex_count = phi_slices * theta_slices;
// create opengl buffer
GLuint vbo;
vtkgl::GenBuffersARB(1, &vbo);
vtkgl::BindBufferARB(vtkgl::ARRAY_BUFFER, vbo);
vtkgl::BufferDataARB(vtkgl::ARRAY_BUFFER,
sizeof(float) * 4 * vertex_count,
NULL,
vtkgl::STREAM_DRAW);
vtkgl::BindBufferARB(vtkgl::ARRAY_BUFFER, 0);
// create shared opengl/opencl buffer
compute::opengl_buffer vertex_buffer(context, vbo);
// tesselate_sphere kernel source
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void tesselate_sphere(float radius,
uint phi_slices,
uint theta_slices,
__global float4 *vertex_buffer)
{
const uint phi_i = get_global_id(0);
const uint theta_i = get_global_id(1);
const float phi = phi_i * 2.f * M_PI_F / phi_slices;
const float theta = theta_i * 2.f * M_PI_F / theta_slices;
float4 v;
v.x = radius * cos(theta) * cos(phi);
v.y = radius * cos(theta) * sin(phi);
v.z = radius * sin(theta);
v.w = 1.f;
vertex_buffer[phi_i*phi_slices+theta_i] = v;
}
);
// build tesselate_sphere program
compute::program program =
compute::program::create_with_source(source, context);
program.build();
// setup tesselate_sphere kernel
compute::kernel kernel(program, "tesselate_sphere");
kernel.set_arg<compute::float_>(0, radius);
kernel.set_arg<compute::uint_>(1, phi_slices);
kernel.set_arg<compute::uint_>(2, theta_slices);
kernel.set_arg(3, vertex_buffer);
// acqurire buffer so that it is accessible to OpenCL
compute::opengl_enqueue_acquire_buffer(vertex_buffer, queue);
// execute tesselate_sphere kernel
queue.enqueue_nd_range_kernel(
kernel, dim(0, 0), dim(phi_slices, theta_slices), dim(1, 1)
);
// release buffer so that it is accessible to OpenGL
compute::opengl_enqueue_release_buffer(vertex_buffer, queue);
return vertex_buffer;
}
// simple vtkMapper subclass to render the tesselated sphere on the gpu.
class gpu_sphere_mapper : public vtkMapper
{
public:
vtkTypeMacro(gpu_sphere_mapper, vtkMapper)
static gpu_sphere_mapper* New()
{
return new gpu_sphere_mapper;
}
void Render(vtkRenderer *renderer, vtkActor *actor)
{
if(!m_initialized){
Initialize(renderer, actor);
m_initialized = true;
}
if(!m_tesselated){
m_vertex_count = m_phi_slices * m_theta_slices;
// tesselate sphere
m_vertex_buffer = tesselate_sphere(
m_radius, m_phi_slices, m_theta_slices, m_command_queue
);
// ensure tesselation is finished (seems to be required on AMD)
m_command_queue.finish();
// set tesselated flag to true
m_tesselated = true;
}
// draw sphere
glEnableClientState(GL_VERTEX_ARRAY);
vtkgl::BindBufferARB(vtkgl::ARRAY_BUFFER, m_vertex_buffer.get_opengl_object());
glVertexPointer(4, GL_FLOAT, sizeof(float)*4, 0);
glDrawArrays(GL_POINTS, 0, m_vertex_count);
}
void Initialize(vtkRenderer *renderer, vtkActor *actor)
{
// initialize opengl extensions
vtkOpenGLExtensionManager *extensions =
static_cast<vtkOpenGLRenderWindow *>(renderer->GetRenderWindow())
->GetExtensionManager();
extensions->LoadExtension("GL_ARB_vertex_buffer_object");
// initialize opencl/opengl shared context
m_context = compute::opengl_create_shared_context();
compute::device device = m_context.get_device();
std::cout << "device: " << device.name() << std::endl;
// create command queue for the gpu device
m_command_queue = compute::command_queue(m_context, device);
}
double* GetBounds()
{
static double bounds[6];
bounds[0] = -m_radius; bounds[1] = m_radius;
bounds[2] = -m_radius; bounds[3] = m_radius;
bounds[4] = -m_radius; bounds[5] = m_radius;
return bounds;
}
protected:
gpu_sphere_mapper()
{
m_radius = 5.0f;
m_phi_slices = 100;
m_theta_slices = 100;
m_initialized = false;
m_tesselated = false;
}
private:
float m_radius;
int m_phi_slices;
int m_theta_slices;
int m_vertex_count;
bool m_initialized;
bool m_tesselated;
compute::context m_context;
compute::command_queue m_command_queue;
compute::opengl_buffer m_vertex_buffer;
};
int main(int argc, char *argv[])
{
// create gpu sphere mapper
vtkSmartPointer<gpu_sphere_mapper> mapper =
vtkSmartPointer<gpu_sphere_mapper>::New();
// create actor for gpu sphere mapper
vtkSmartPointer<vtkActor> actor =
vtkSmartPointer<vtkActor>::New();
actor->GetProperty()->LightingOff();
actor->GetProperty()->SetInterpolationToFlat();
actor->SetMapper(mapper);
// create render window
vtkSmartPointer<vtkRenderer> renderer =
vtkSmartPointer<vtkRenderer>::New();
renderer->SetBackground(.1, .2, .31);
vtkSmartPointer<vtkRenderWindow> renderWindow =
vtkSmartPointer<vtkRenderWindow>::New();
renderWindow->SetSize(800, 600);
renderWindow->AddRenderer(renderer);
vtkSmartPointer<vtkRenderWindowInteractor> renderWindowInteractor =
vtkSmartPointer<vtkRenderWindowInteractor>::New();
vtkInteractorStyleSwitch *interactorStyle =
vtkInteractorStyleSwitch::SafeDownCast(
renderWindowInteractor->GetInteractorStyle()
);
interactorStyle->SetCurrentStyleToTrackballCamera();
renderWindowInteractor->SetRenderWindow(renderWindow);
renderer->AddActor(actor);
// render
renderer->ResetCamera();
vtkCamera *camera = renderer->GetActiveCamera();
camera->Elevation(-90.0);
renderWindowInteractor->Initialize();
renderWindow->Render();
renderWindowInteractor->Start();
return 0;
}