compute/perf/perf_cart_to_polar.cpp
2015-05-17 20:32:09 -07:00

159 lines
4.4 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#define _USE_MATH_DEFINES
#include <algorithm>
#include <iostream>
#include <vector>
#include <boost/compute/system.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/algorithm/copy_n.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/container/vector.hpp>
#include "perf.hpp"
namespace compute = boost::compute;
using compute::float2_;
float rand_float()
{
return (float(rand()) / float(RAND_MAX)) * 1000.f;
}
void serial_cartesian_to_polar(const float *input, size_t n, float *output)
{
for(size_t i = 0; i < n; i++){
float x = input[i*2+0];
float y = input[i*2+1];
float magnitude = std::sqrt(x*x + y*y);
float angle = std::atan2(y, x) * 180.f / M_PI;
output[i*2+0] = magnitude;
output[i*2+1] = angle;
}
}
void serial_polar_to_cartesian(const float *input, size_t n, float *output)
{
for(size_t i = 0; i < n; i++){
float magnitude = input[i*2+0];
float angle = input[i*2+1];
float x = magnitude * cos(angle);
float y = magnitude * sin(angle);
output[i*2+0] = x;
output[i*2+1] = y;
}
}
// converts from cartesian coordinates (x, y) to polar coordinates (magnitude, angle)
BOOST_COMPUTE_FUNCTION(float2_, cartesian_to_polar, (float2_ p),
{
float x = p.x;
float y = p.y;
float magnitude = sqrt(x*x + y*y);
float angle = atan2(y, x) * 180.f / M_PI;
return (float2)(magnitude, angle);
});
// converts from polar coordinates (magnitude, angle) to cartesian coordinates (x, y)
BOOST_COMPUTE_FUNCTION(float2_, polar_to_cartesian, (float2_ p),
{
float magnitude = p.x;
float angle = p.y;
float x = magnitude * cos(angle);
float y = magnitude * sin(angle);
return (float2)(x, y)
});
int main(int argc, char *argv[])
{
perf_parse_args(argc, argv);
std::cout << "size: " << PERF_N << std::endl;
// setup context and queue for the default device
compute::device device = compute::system::default_device();
compute::context context(device);
compute::command_queue queue(context, device);
std::cout << "device: " << device.name() << std::endl;
// create vector of random numbers on the host
std::vector<float> host_vector(PERF_N*2);
std::generate(host_vector.begin(), host_vector.end(), rand_float);
// create vector on the device and copy the data
compute::vector<float2_> device_vector(PERF_N, context);
compute::copy_n(
reinterpret_cast<float2_ *>(&host_vector[0]),
PERF_N,
device_vector.begin(),
queue
);
perf_timer t;
for(size_t trial = 0; trial < PERF_TRIALS; trial++){
t.start();
compute::transform(
device_vector.begin(),
device_vector.end(),
device_vector.begin(),
cartesian_to_polar,
queue
);
queue.finish();
t.stop();
}
std::cout << "time: " << t.min_time() / 1e6 << " ms" << std::endl;
// perform saxpy on host
t.clear();
for(size_t trial = 0; trial < PERF_TRIALS; trial++){
t.start();
serial_cartesian_to_polar(&host_vector[0], PERF_N, &host_vector[0]);
t.stop();
}
std::cout << "host time: " << t.min_time() / 1e6 << " ms" << std::endl;
std::vector<float> device_data(PERF_N*2);
compute::copy(
device_vector.begin(),
device_vector.end(),
reinterpret_cast<float2_ *>(&device_data[0]),
queue
);
for(size_t i = 0; i < PERF_N; i++){
float host_value = host_vector[i];
float device_value = device_data[i];
if(std::abs(device_value - host_value) > 1e-3){
std::cout << "ERROR: "
<< "value at " << i << " "
<< "device_value (" << device_value << ") "
<< "!= "
<< "host_value (" << host_value << ")"
<< std::endl;
return -1;
}
}
return 0;
}