compute/perf/perf_copy_if.cpp
2015-05-17 20:32:09 -07:00

123 lines
4.1 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#include <boost/compute/core.hpp>
#include <boost/compute/closure.hpp>
#include <boost/compute/algorithm/copy_if.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/random/default_random_engine.hpp>
#include <boost/compute/random/uniform_int_distribution.hpp>
#include <boost/compute/random/uniform_real_distribution.hpp>
#include "perf.hpp"
namespace compute = boost::compute;
void test_copy_if_odd(compute::command_queue &queue)
{
// create input and output vectors on the device
const compute::context &context = queue.get_context();
compute::vector<int> input(PERF_N, context);
compute::vector<int> output(PERF_N, context);
// generate random numbers between 1 and 10
compute::default_random_engine rng(queue);
compute::uniform_int_distribution<int> d(1, 10);
d.generate(input.begin(), input.end(), rng, queue);
BOOST_COMPUTE_FUNCTION(bool, is_odd, (int x),
{
return x & 1;
});
perf_timer t;
for(size_t trial = 0; trial < PERF_TRIALS; trial++){
t.start();
compute::vector<int>::iterator i = compute::copy_if(
input.begin(), input.end(), output.begin(), is_odd, queue
);
queue.finish();
t.stop();
float ratio = float(std::distance(output.begin(), i)) / PERF_N;
if(PERF_N > 1000 && (ratio < 0.45f || ratio > 0.55f)){
std::cerr << "error: ratio is " << ratio << std::endl;
std::cerr << "error: ratio should be around 45-55%" << std::endl;
}
}
std::cout << "time: " << t.min_time() / 1e6 << " ms" << std::endl;
}
void test_copy_if_in_sphere(compute::command_queue &queue)
{
using boost::compute::float4_;
// create input and output vectors on the device
const compute::context &context = queue.get_context();
compute::vector<float4_> input_points(PERF_N, context);
compute::vector<float4_> output_points(PERF_N, context);
// generate random numbers in a cube
float radius = 5.0f;
compute::default_random_engine rng(queue);
compute::uniform_real_distribution<float> d(-radius, +radius);
d.generate(
compute::make_buffer_iterator<float>(input_points.get_buffer(), 0),
compute::make_buffer_iterator<float>(input_points.get_buffer(), PERF_N * 4),
rng,
queue
);
// predicate which returns true if the point lies within the sphere
BOOST_COMPUTE_CLOSURE(bool, is_in_sphere, (float4_ point), (radius),
{
// ignore fourth component
point.w = 0;
return length(point) < radius;
});
perf_timer t;
for(size_t trial = 0; trial < PERF_TRIALS; trial++){
t.start();
compute::vector<float4_>::iterator i = compute::copy_if(
input_points.begin(),
input_points.end(),
output_points.begin(),
is_in_sphere,
queue
);
queue.finish();
t.stop();
float ratio = float(std::distance(output_points.begin(), i)) / PERF_N;
if(PERF_N > 1000 && (ratio < 0.5f || ratio > 0.6f)){
std::cerr << "error: ratio is " << ratio << std::endl;
std::cerr << "error: ratio should be around 50-60%" << std::endl;
}
}
std::cout << "time: " << t.min_time() / 1e6 << " ms" << std::endl;
}
int main(int argc, char *argv[])
{
perf_parse_args(argc, argv);
// setup context and queue for the default device
boost::compute::device device = boost::compute::system::default_device();
boost::compute::context context(device);
boost::compute::command_queue queue(context, device);
std::cout << "device: " << device.name() << std::endl;
test_copy_if_odd(queue);
return 0;
}