compute/test/test_closure.cpp
2015-07-02 22:20:42 +02:00

224 lines
6.1 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#define BOOST_TEST_MODULE TestClosure
#include <boost/test/unit_test.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/closure.hpp>
#include <boost/compute/function.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/algorithm/transform_reduce.hpp>
#include <boost/compute/container/array.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/iterator/counting_iterator.hpp>
#include "check_macros.hpp"
#include "context_setup.hpp"
namespace compute = boost::compute;
BOOST_AUTO_TEST_CASE(add_two)
{
int two = 2;
BOOST_COMPUTE_CLOSURE(int, add_two, (int x), (two),
{
return x + two;
});
int data[] = { 1, 2, 3, 4 };
compute::vector<int> vector(data, data + 4, queue);
compute::transform(
vector.begin(), vector.end(), vector.begin(), add_two, queue
);
CHECK_RANGE_EQUAL(int, 4, vector, (3, 4, 5, 6));
}
BOOST_AUTO_TEST_CASE(add_two_and_pi)
{
int two = 2;
float pi = 3.14f;
BOOST_COMPUTE_CLOSURE(float, add_two_and_pi, (float x), (two, pi),
{
return x + two + pi;
});
float data[] = { 1.9f, 2.2f, 3.4f, 4.7f };
compute::vector<float> vector(data, data + 4, queue);
compute::transform(
vector.begin(), vector.end(), vector.begin(), add_two_and_pi, queue
);
std::vector<float> results(4);
compute::copy(vector.begin(), vector.end(), results.begin(), queue);
BOOST_CHECK_CLOSE(results[0], 7.04f, 1e-6);
BOOST_CHECK_CLOSE(results[1], 7.34f, 1e-6);
BOOST_CHECK_CLOSE(results[2], 8.54f, 1e-6);
BOOST_CHECK_CLOSE(results[3], 9.84f, 1e-6);
}
BOOST_AUTO_TEST_CASE(add_y)
{
// setup input and output vectors
int data[] = { 1, 2, 3, 4 };
compute::vector<int> input(data, data + 4, queue);
compute::vector<int> output(4, context);
// make closure which adds 'y' to each value
int y = 2;
BOOST_COMPUTE_CLOSURE(int, add_y, (int x), (y),
{
return x + y;
});
compute::transform(
input.begin(), input.end(), output.begin(), add_y, queue
);
CHECK_RANGE_EQUAL(int, 4, output, (3, 4, 5, 6));
// change y and run again
y = 4;
compute::transform(
input.begin(), input.end(), output.begin(), add_y, queue
);
CHECK_RANGE_EQUAL(int, 4, output, (5, 6, 7, 8));
}
BOOST_AUTO_TEST_CASE(scale_add_vec)
{
const int N = 10;
float s = 4.5;
compute::vector<float> a(N, context);
compute::vector<float> b(N, context);
a.assign(N, 1.0f, queue);
b.assign(N, 2.0f, queue);
BOOST_COMPUTE_CLOSURE(float, scaleAddVec, (float b, float a), (s),
{
return b * s + a;
});
compute::transform(b.begin(), b.end(), a.begin(), b.begin(), scaleAddVec, queue);
}
BOOST_AUTO_TEST_CASE(capture_vector)
{
int data[] = { 6, 7, 8, 9 };
compute::vector<int> vec(data, data + 4, queue);
BOOST_COMPUTE_CLOSURE(int, get_vec, (int i), (vec),
{
return vec[i];
});
// run using a counting iterator to copy from vec to output
compute::vector<int> output(4, context);
compute::transform(
compute::make_counting_iterator(0),
compute::make_counting_iterator(4),
output.begin(),
get_vec,
queue
);
CHECK_RANGE_EQUAL(int, 4, output, (6, 7, 8, 9));
// fill vec with 4's and run again
compute::fill(vec.begin(), vec.end(), 4, queue);
compute::transform(
compute::make_counting_iterator(0),
compute::make_counting_iterator(4),
output.begin(),
get_vec,
queue
);
CHECK_RANGE_EQUAL(int, 4, output, (4, 4, 4, 4));
}
BOOST_AUTO_TEST_CASE(capture_array)
{
int data[] = { 1, 2, 3, 4 };
compute::array<int, 4> array(context);
compute::copy(data, data + 4, array.begin(), queue);
BOOST_COMPUTE_CLOSURE(int, negative_array_value, (int i), (array),
{
return -array[i];
});
compute::vector<int> output(4, context);
compute::transform(
compute::make_counting_iterator(0),
compute::make_counting_iterator(4),
output.begin(),
negative_array_value,
queue
);
CHECK_RANGE_EQUAL(int, 4, output, (-1, -2, -3, -4));
}
BOOST_AUTO_TEST_CASE(triangle_area)
{
using compute::uint4_;
using compute::float4_;
compute::vector<uint4_> triangle_indices(context);
compute::vector<float4_> triangle_vertices(context);
triangle_vertices.push_back(float4_(0, 0, 0, 1), queue);
triangle_vertices.push_back(float4_(1, 1, 0, 1), queue);
triangle_vertices.push_back(float4_(1, 0, 0, 1), queue);
triangle_vertices.push_back(float4_(2, 0, 0, 1), queue);
triangle_indices.push_back(uint4_(0, 1, 2, 0), queue);
triangle_indices.push_back(uint4_(2, 1, 3, 0), queue);
queue.finish();
BOOST_COMPUTE_CLOSURE(float, triangle_area, (const uint4_ i), (triangle_vertices),
{
// load triangle vertices
const float4 a = triangle_vertices[i.x];
const float4 b = triangle_vertices[i.y];
const float4 c = triangle_vertices[i.z];
// return area of triangle
return length(cross(b-a, c-a)) / 2;
});
// compute area of each triangle
compute::vector<float> triangle_areas(triangle_indices.size(), context);
compute::transform(
triangle_indices.begin(),
triangle_indices.end(),
triangle_areas.begin(),
triangle_area,
queue
);
// compute total area of all triangles
float total_area = 0;
compute::transform_reduce(
triangle_indices.begin(),
triangle_indices.end(),
&total_area,
triangle_area,
compute::plus<float>(),
queue
);
BOOST_CHECK_CLOSE(total_area, 1.f, 1e-6);
}
BOOST_AUTO_TEST_SUITE_END()