compute/test/test_command_queue.cpp
2017-06-04 14:46:05 +02:00

353 lines
11 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#define BOOST_TEST_MODULE TestCommandQueue
#include <boost/test/unit_test.hpp>
#include <iostream>
#include <boost/compute/kernel.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/program.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/algorithm/fill.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/utility/dim.hpp>
#include <boost/compute/utility/source.hpp>
#include <boost/compute/detail/diagnostic.hpp>
#include "check_macros.hpp"
#include "context_setup.hpp"
namespace bc = boost::compute;
namespace compute = boost::compute;
BOOST_AUTO_TEST_CASE(get_context)
{
BOOST_VERIFY(queue.get_context() == context);
BOOST_VERIFY(queue.get_info<CL_QUEUE_CONTEXT>() == context.get());
}
BOOST_AUTO_TEST_CASE(get_device)
{
BOOST_VERIFY(queue.get_info<CL_QUEUE_DEVICE>() == device.get());
}
BOOST_AUTO_TEST_CASE(equality_operator)
{
compute::command_queue queue1(context, device);
BOOST_CHECK(queue1 == queue1);
compute::command_queue queue2 = queue1;
BOOST_CHECK(queue1 == queue2);
compute::command_queue queue3(context, device);
BOOST_CHECK(queue1 != queue3);
}
BOOST_AUTO_TEST_CASE(event_profiling)
{
bc::command_queue queue(context, device, bc::command_queue::enable_profiling);
int data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
bc::buffer buffer(context, sizeof(data));
bc::event event =
queue.enqueue_write_buffer_async(buffer,
0,
sizeof(data),
static_cast<const void *>(data));
queue.finish();
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_queued);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_submit);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_start);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_end);
}
BOOST_AUTO_TEST_CASE(kernel_profiling)
{
// create queue with profiling enabled
boost::compute::command_queue queue(
context, device, boost::compute::command_queue::enable_profiling
);
// input data
int data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
boost::compute::buffer buffer(context, sizeof(data));
// copy input data to device
queue.enqueue_write_buffer(buffer, 0, sizeof(data), data);
// setup kernel
const char source[] =
"__kernel void iscal(__global int *buffer, int alpha)\n"
"{\n"
" buffer[get_global_id(0)] *= alpha;\n"
"}\n";
boost::compute::program program =
boost::compute::program::create_with_source(source, context);
program.build();
boost::compute::kernel kernel(program, "iscal");
kernel.set_arg(0, buffer);
kernel.set_arg(1, 2);
// execute kernel
size_t global_work_offset = 0;
size_t global_work_size = 8;
boost::compute::event event =
queue.enqueue_nd_range_kernel(kernel,
size_t(1),
&global_work_offset,
&global_work_size,
0);
// wait until kernel is finished
event.wait();
// check profiling information
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_queued);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_submit);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_start);
event.get_profiling_info<cl_ulong>(bc::event::profiling_command_end);
// read results back to host
queue.enqueue_read_buffer(buffer, 0, sizeof(data), data);
// check results
BOOST_CHECK_EQUAL(data[0], 2);
BOOST_CHECK_EQUAL(data[1], 4);
BOOST_CHECK_EQUAL(data[2], 6);
BOOST_CHECK_EQUAL(data[3], 8);
BOOST_CHECK_EQUAL(data[4], 10);
BOOST_CHECK_EQUAL(data[5], 12);
BOOST_CHECK_EQUAL(data[6], 14);
BOOST_CHECK_EQUAL(data[7], 16);
}
BOOST_AUTO_TEST_CASE(construct_from_cl_command_queue)
{
// create cl_command_queue
cl_command_queue cl_queue;
#ifdef BOOST_COMPUTE_CL_VERSION_2_0
if (device.check_version(2, 0)){ // runtime check
cl_queue =
clCreateCommandQueueWithProperties(context, device.id(), 0, 0);
} else
#endif // BOOST_COMPUTE_CL_VERSION_2_0
{
// Suppress deprecated declarations warning
BOOST_COMPUTE_DISABLE_DEPRECATED_DECLARATIONS();
cl_queue =
clCreateCommandQueue(context, device.id(), 0, 0);
BOOST_COMPUTE_ENABLE_DEPRECATED_DECLARATIONS();
}
BOOST_VERIFY(cl_queue);
// create boost::compute::command_queue
boost::compute::command_queue queue(cl_queue);
// check queue
BOOST_CHECK(queue.get_context() == context);
BOOST_CHECK(cl_command_queue(queue) == cl_queue);
// cleanup cl_command_queue
clReleaseCommandQueue(cl_queue);
}
#ifdef BOOST_COMPUTE_CL_VERSION_1_1
BOOST_AUTO_TEST_CASE(write_buffer_rect)
{
REQUIRES_OPENCL_VERSION(1, 1);
// skip this test on AMD GPUs due to a buggy implementation
// of the clEnqueueWriteBufferRect() function
if(device.vendor() == "Advanced Micro Devices, Inc." &&
device.type() & boost::compute::device::gpu){
std::cerr << "skipping write_buffer_rect test on AMD GPU" << std::endl;
return;
}
int data[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
boost::compute::buffer buffer(context, 8 * sizeof(int));
// copy every other value to the buffer
size_t buffer_origin[] = { 0, 0, 0 };
size_t host_origin[] = { 0, 0, 0 };
size_t region[] = { sizeof(int), sizeof(int), 1 };
queue.enqueue_write_buffer_rect(
buffer,
buffer_origin,
host_origin,
region,
sizeof(int),
0,
2 * sizeof(int),
0,
data
);
// check output values
int output[4];
queue.enqueue_read_buffer(buffer, 0, 4 * sizeof(int), output);
BOOST_CHECK_EQUAL(output[0], 1);
BOOST_CHECK_EQUAL(output[1], 3);
BOOST_CHECK_EQUAL(output[2], 5);
BOOST_CHECK_EQUAL(output[3], 7);
}
#endif // BOOST_COMPUTE_CL_VERSION_1_1
static bool nullary_kernel_executed = false;
static void nullary_kernel()
{
nullary_kernel_executed = true;
}
BOOST_AUTO_TEST_CASE(native_kernel)
{
cl_device_exec_capabilities exec_capabilities =
device.get_info<CL_DEVICE_EXECUTION_CAPABILITIES>();
if(!(exec_capabilities & CL_EXEC_NATIVE_KERNEL)){
std::cerr << "skipping native_kernel test: "
<< "device does not support CL_EXEC_NATIVE_KERNEL"
<< std::endl;
return;
}
compute::vector<int> vector(1000, context);
compute::fill(vector.begin(), vector.end(), 42, queue);
BOOST_CHECK_EQUAL(nullary_kernel_executed, false);
queue.enqueue_native_kernel(&nullary_kernel);
queue.finish();
BOOST_CHECK_EQUAL(nullary_kernel_executed, true);
}
BOOST_AUTO_TEST_CASE(copy_with_wait_list)
{
int data1[] = { 1, 3, 5, 7 };
int data2[] = { 2, 4, 6, 8 };
compute::buffer buf1(context, 4 * sizeof(int));
compute::buffer buf2(context, 4 * sizeof(int));
compute::event write_event1 =
queue.enqueue_write_buffer_async(buf1, 0, buf1.size(), data1);
compute::event write_event2 =
queue.enqueue_write_buffer_async(buf2, 0, buf2.size(), data2);
compute::event read_event1 =
queue.enqueue_read_buffer_async(buf1, 0, buf1.size(), data2, write_event1);
compute::event read_event2 =
queue.enqueue_read_buffer_async(buf2, 0, buf2.size(), data1, write_event2);
read_event1.wait();
read_event2.wait();
CHECK_HOST_RANGE_EQUAL(int, 4, data1, (2, 4, 6, 8));
CHECK_HOST_RANGE_EQUAL(int, 4, data2, (1, 3, 5, 7));
}
#ifndef BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
BOOST_AUTO_TEST_CASE(enqueue_kernel_with_extents)
{
using boost::compute::dim;
using boost::compute::uint_;
const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE(
__kernel void foo(__global int *output1, __global int *output2)
{
output1[get_global_id(0)] = get_local_id(0);
output2[get_global_id(1)] = get_local_id(1);
}
);
compute::kernel kernel =
compute::kernel::create_with_source(source, "foo", context);
compute::vector<uint_> output1(4, context);
compute::vector<uint_> output2(4, context);
kernel.set_arg(0, output1);
kernel.set_arg(1, output2);
queue.enqueue_nd_range_kernel(kernel, dim(0, 0), dim(4, 4), dim(1, 1));
CHECK_RANGE_EQUAL(int, 4, output1, (0, 0, 0, 0));
CHECK_RANGE_EQUAL(int, 4, output2, (0, 0, 0, 0));
// Maximum number of work-items that can be specified in each
// dimension of the work-group to clEnqueueNDRangeKernel.
std::vector<size_t> max_work_item_sizes =
device.get_info<CL_DEVICE_MAX_WORK_ITEM_SIZES>();
if(max_work_item_sizes[0] < size_t(2)) {
return;
}
queue.enqueue_nd_range_kernel(kernel, dim(0, 0), dim(4, 4), dim(2, 1));
CHECK_RANGE_EQUAL(int, 4, output1, (0, 1, 0, 1));
CHECK_RANGE_EQUAL(int, 4, output2, (0, 0, 0, 0));
if(max_work_item_sizes[1] < size_t(2)) {
return;
}
queue.enqueue_nd_range_kernel(kernel, dim(0, 0), dim(4, 4), dim(2, 2));
CHECK_RANGE_EQUAL(int, 4, output1, (0, 1, 0, 1));
CHECK_RANGE_EQUAL(int, 4, output2, (0, 1, 0, 1));
}
#endif // BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
#ifdef BOOST_COMPUTE_CL_VERSION_2_1
BOOST_AUTO_TEST_CASE(get_default_device_queue)
{
REQUIRES_OPENCL_VERSION(2, 1);
boost::compute::command_queue default_device_queue(
context, device,
boost::compute::command_queue::on_device |
boost::compute::command_queue::on_device_default |
boost::compute::command_queue::enable_out_of_order_execution
);
BOOST_CHECK_NO_THROW(queue.get_info<CL_QUEUE_DEVICE_DEFAULT>());
BOOST_CHECK_EQUAL(
queue.get_default_device_queue(),
default_device_queue
);
}
BOOST_AUTO_TEST_CASE(set_as_default_device_queue)
{
REQUIRES_OPENCL_VERSION(2, 1);
boost::compute::command_queue new_default_device_queue(
context, device,
boost::compute::command_queue::on_device |
boost::compute::command_queue::enable_out_of_order_execution
);
new_default_device_queue.set_as_default_device_queue();
BOOST_CHECK_EQUAL(
queue.get_default_device_queue(),
new_default_device_queue
);
}
#endif
BOOST_AUTO_TEST_SUITE_END()