container/bench/detail/varray.hpp
2018-09-15 01:12:17 +02:00

2243 lines
75 KiB
C++

// Boost.Container varray
//
// Copyright (c) 2012-2013 Adam Wulkiewicz, Lodz, Poland.
// Copyright (c) 2011-2013 Andrew Hundt.
// Copyright (c) 2014-2014 Ion Gaztanaga
//
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_CONTAINER_DETAIL_VARRAY_HPP
#define BOOST_CONTAINER_DETAIL_VARRAY_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/detail/addressof.hpp>
#include <boost/container/detail/algorithm.hpp> //algo_equal(), algo_lexicographical_compare
#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#include <boost/move/detail/fwd_macros.hpp>
#endif
#include <boost/container/detail/iterator.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/move/adl_move_swap.hpp> //adl_move_swap
#include "varray_util.hpp"
#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <boost/static_assert.hpp>
#ifndef BOOST_NO_EXCEPTIONS
#include <stdexcept>
#endif // BOOST_NO_EXCEPTIONS
/**
* @defgroup varray_non_member varray non-member functions
*/
namespace boost { namespace container { namespace dtl {
// Forward declaration
template <typename Value, std::size_t Capacity, typename Strategy>
class varray;
namespace strategy {
// TODO: Improve error messages
// possibly include N in the strategy, and provide size as an optoinal allocate_failed parameter?
// Example of current error with reserve(4) when capacity is 3:
// "boost/container/varray.hpp(66): size can't exceed the capacity"
// Could say
// "cannot reserve(4) due to fixed capacity of 3 elements"
//! @brief The default strategy.
//!
//! @tparam Value Type of element stored in the container.
template <typename Value>
struct def
{
typedef Value value_type;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef Value* pointer;
typedef const Value* const_pointer;
typedef Value& reference;
typedef const Value& const_reference;
static void allocate_failed()
{
BOOST_ASSERT_MSG(false, "size can't exceed the capacity");
}
};
//! @brief The strategy adapting info from passed Allocator.
//!
//! This strategy defines the same types that are defined in the Allocator.
//!
//! @tparam Allocator The Allocator which will be adapted.
template <typename Allocator>
struct allocator_adaptor
{
typedef typename Allocator::value_type value_type;
typedef typename Allocator::size_type size_type;
typedef typename Allocator::difference_type difference_type;
typedef typename Allocator::pointer pointer;
typedef typename Allocator::const_pointer const_pointer;
typedef typename Allocator::reference reference;
typedef typename Allocator::const_reference const_reference;
static void allocate_failed()
{
BOOST_ASSERT_MSG(false, "size can't exceed the capacity");
}
};
} // namespace strategy
struct varray_error_handler
{
template <typename V, std::size_t Capacity, typename S>
static void check_capacity(varray<V, Capacity, S> const&, std::size_t s)
{
if ( Capacity < s )
S::allocate_failed();
}
template <typename V, std::size_t C, typename S>
static void check_at(varray<V, C, S> const& v,
typename varray<V, C, S>::size_type i)
{
(void)v;
(void)i;
// TODO - use BOOST_THROW_EXCEPTION here?
#ifndef BOOST_NO_EXCEPTIONS
if ( v.size() <= i )
throw std::out_of_range("index out of bounds");
#else // BOOST_NO_EXCEPTIONS
BOOST_ASSERT_MSG(i < v.size(), "index out of bounds");
#endif // BOOST_NO_EXCEPTIONS
}
template <typename V, std::size_t C, typename S>
static void check_operator_brackets(varray<V, C, S> const& v,
typename varray<V, C, S>::size_type i)
{
(void)v;
(void)i;
BOOST_ASSERT_MSG(i < v.size(), "index out of bounds");
}
template <typename V, std::size_t C, typename S>
static void check_empty(varray<V, C, S> const& v)
{
(void)v;
BOOST_ASSERT_MSG(0 < v.size(), "the container is empty");
}
template <typename V, std::size_t C, typename S>
static void check_iterator_end_neq(varray<V, C, S> const& v,
typename varray<V, C, S>::const_iterator position)
{
(void)v;
(void)position;
BOOST_ASSERT_MSG(v.begin() <= position && position < v.end(), "iterator out of bounds");
}
template <typename V, std::size_t C, typename S>
static void check_iterator_end_eq(varray<V, C, S> const& v,
typename varray<V, C, S>::const_iterator position)
{
(void)v;
(void)position;
BOOST_ASSERT_MSG(v.begin() <= position && position <= v.end(), "iterator out of bounds");
}
};
template <typename Value, std::size_t Capacity, typename Strategy>
struct varray_traits
{
typedef typename Strategy::value_type value_type;
typedef typename Strategy::size_type size_type;
typedef typename Strategy::difference_type difference_type;
typedef typename Strategy::pointer pointer;
typedef typename Strategy::const_pointer const_pointer;
typedef typename Strategy::reference reference;
typedef typename Strategy::const_reference const_reference;
typedef varray_error_handler error_handler;
typedef false_type use_memop_in_swap_and_move;
typedef false_type use_optimized_swap;
typedef false_type disable_trivial_init;
};
/**
* @brief A variable-size array container with fixed capacity.
*
* varray is a sequence container like boost::container::vector with contiguous storage that can
* change in size, along with the static allocation, low overhead, and fixed capacity of boost::array.
*
* A varray is a sequence that supports random access to elements, constant time insertion and
* removal of elements at the end, and linear time insertion and removal of elements at the beginning or
* in the middle. The number of elements in a varray may vary dynamically up to a fixed capacity
* because elements are stored within the object itself similarly to an array. However, objects are
* initialized as they are inserted into varray unlike C arrays or std::array which must construct
* all elements on instantiation. The behavior of varray enables the use of statically allocated
* elements in cases with complex object lifetime requirements that would otherwise not be trivially
* possible.
*
* @par Error Handling
* Insertion beyond the capacity and out of bounds errors result in undefined behavior unless
* otherwise specified. In this respect if size() == capacity(), then varray::push_back()
* behaves like std::vector pop_front() if size() == empty(). The reason for this difference
* is because unlike vectors, varray does not perform allocation.
*
* @par Advanced Usage
* Error handling behavior can be modified to more closely match std::vector exception behavior
* when exceeding bounds by providing an alternate Strategy and varray_traits instantiation.
*
* @tparam Value The type of element that will be stored.
* @tparam Capacity The maximum number of elements varray can store, fixed at compile time.
* @tparam Strategy Defines the public typedefs and error handlers,
* implements StaticVectorStrategy and has some similarities
* to an Allocator.
*/
template <typename Value, std::size_t Capacity, typename Strategy = strategy::def<Value> >
class varray
{
typedef dtl::varray_traits<
Value, Capacity, Strategy
> vt;
typedef typename vt::error_handler errh;
typedef typename aligned_storage<
sizeof(Value[Capacity]),
boost::container::dtl::alignment_of<Value[Capacity]>::value
>::type aligned_storage_type;
template <typename V, std::size_t C, typename S>
friend class varray;
BOOST_COPYABLE_AND_MOVABLE(varray)
#ifdef BOOST_NO_CXX11_RVALUE_REFERENCES
public:
template <std::size_t C, typename S>
varray & operator=(varray<Value, C, S> & sv)
{
typedef varray<Value, C, S> other;
this->operator=(static_cast<const ::boost::rv<other> &>(const_cast<const other &>(sv)));
return *this;
}
#endif
public:
//! @brief The type of elements stored in the container.
typedef typename vt::value_type value_type;
//! @brief The unsigned integral type used by the container.
typedef typename vt::size_type size_type;
//! @brief The pointers difference type.
typedef typename vt::difference_type difference_type;
//! @brief The pointer type.
typedef typename vt::pointer pointer;
//! @brief The const pointer type.
typedef typename vt::const_pointer const_pointer;
//! @brief The value reference type.
typedef typename vt::reference reference;
//! @brief The value const reference type.
typedef typename vt::const_reference const_reference;
//! @brief The iterator type.
typedef pointer iterator;
//! @brief The const iterator type.
typedef const_pointer const_iterator;
//! @brief The reverse iterator type.
typedef boost::container::reverse_iterator<iterator> reverse_iterator;
//! @brief The const reverse iterator.
typedef boost::container::reverse_iterator<const_iterator> const_reverse_iterator;
//! @brief The type of a strategy used by the varray.
typedef Strategy strategy_type;
//! @brief Constructs an empty varray.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
varray()
: m_size(0)
{}
//! @pre <tt>count <= capacity()</tt>
//!
//! @brief Constructs a varray containing count value initialized Values.
//!
//! @param count The number of values which will be contained in the container.
//!
//! @par Throws
//! If Value's value initialization throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
explicit varray(size_type count)
: m_size(0)
{
this->resize(count); // may throw
}
//! @pre <tt>count <= capacity()</tt>
//!
//! @brief Constructs a varray containing count copies of value.
//!
//! @param count The number of copies of a values that will be contained in the container.
//! @param value The value which will be used to copy construct values.
//!
//! @par Throws
//! If Value's copy constructor throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
varray(size_type count, value_type const& value)
: m_size(0)
{
this->resize(count, value); // may throw
}
//! @pre
//! @li <tt>distance(first, last) <= capacity()</tt>
//! @li Iterator must meet the \c ForwardIterator.
//!
//! @brief Constructs a varray containing copy of a range <tt>[first, last)</tt>.
//!
//! @param first The iterator to the first element in range.
//! @param last The iterator to the one after the last element in range.
//!
//! @par Throws
//! If Value's constructor taking a dereferenced Iterator throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
template <typename Iterator>
varray(Iterator first, Iterator last)
: m_size(0)
{
this->assign(first, last); // may throw
}
//! @brief Constructs a copy of other varray.
//!
//! @param other The varray which content will be copied to this one.
//!
//! @par Throws
//! If Value's copy constructor throws.
//!
//! @par Complexity
//! Linear O(N).
varray(varray const& other)
: m_size(other.size())
{
namespace sv = varray_detail;
sv::uninitialized_copy(other.begin(), other.end(), this->begin()); // may throw
}
//! @pre <tt>other.size() <= capacity()</tt>.
//!
//! @brief Constructs a copy of other varray.
//!
//! @param other The varray which content will be copied to this one.
//!
//! @par Throws
//! If Value's copy constructor throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
template <std::size_t C, typename S>
varray(varray<value_type, C, S> const& other)
: m_size(other.size())
{
errh::check_capacity(*this, other.size()); // may throw
namespace sv = varray_detail;
sv::uninitialized_copy(other.begin(), other.end(), this->begin()); // may throw
}
//! @brief Copy assigns Values stored in the other varray to this one.
//!
//! @param other The varray which content will be copied to this one.
//!
//! @par Throws
//! If Value's copy constructor or copy assignment throws.
//!
//! @par Complexity
//! Linear O(N).
varray & operator=(BOOST_COPY_ASSIGN_REF(varray) other)
{
this->assign(other.begin(), other.end()); // may throw
return *this;
}
//! @pre <tt>other.size() <= capacity()</tt>
//!
//! @brief Copy assigns Values stored in the other varray to this one.
//!
//! @param other The varray which content will be copied to this one.
//!
//! @par Throws
//! If Value's copy constructor or copy assignment throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
template <std::size_t C, typename S>
// TEMPORARY WORKAROUND
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
varray & operator=(::boost::rv< varray<value_type, C, S> > const& other)
#else
varray & operator=(varray<value_type, C, S> const& other)
#endif
{
this->assign(other.begin(), other.end()); // may throw
return *this;
}
//! @brief Move constructor. Moves Values stored in the other varray to this one.
//!
//! @param other The varray which content will be moved to this one.
//!
//! @par Throws
//! @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor throws.
//! @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor throws.
//! @internal
//! @li It throws only if \c use_memop_in_swap_and_move is \c false_type - default.
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
varray(BOOST_RV_REF(varray) other)
{
typedef typename
vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;
this->move_ctor_dispatch(other, use_memop_in_swap_and_move());
}
//! @pre <tt>other.size() <= capacity()</tt>
//!
//! @brief Move constructor. Moves Values stored in the other varray to this one.
//!
//! @param other The varray which content will be moved to this one.
//!
//! @par Throws
//! @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor throws.
//! @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor throws.
//! @internal
//! @li It throws only if \c use_memop_in_swap_and_move is false_type - default.
//! @endinternal
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
template <std::size_t C, typename S>
varray(BOOST_RV_REF_3_TEMPL_ARGS(varray, value_type, C, S) other)
: m_size(other.m_size)
{
errh::check_capacity(*this, other.size()); // may throw
typedef typename
vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;
this->move_ctor_dispatch(other, use_memop_in_swap_and_move());
}
//! @brief Move assignment. Moves Values stored in the other varray to this one.
//!
//! @param other The varray which content will be moved to this one.
//!
//! @par Throws
//! @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor or move assignment throws.
//! @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor or copy assignment throws.
//! @internal
//! @li It throws only if \c use_memop_in_swap_and_move is \c false_type - default.
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
varray & operator=(BOOST_RV_REF(varray) other)
{
if ( &other == this )
return *this;
typedef typename
vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;
this->move_assign_dispatch(other, use_memop_in_swap_and_move());
return *this;
}
//! @pre <tt>other.size() <= capacity()</tt>
//!
//! @brief Move assignment. Moves Values stored in the other varray to this one.
//!
//! @param other The varray which content will be moved to this one.
//!
//! @par Throws
//! @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor or move assignment throws.
//! @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor or copy assignment throws.
//! @internal
//! @li It throws only if \c use_memop_in_swap_and_move is \c false_type - default.
//! @endinternal
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
template <std::size_t C, typename S>
varray & operator=(BOOST_RV_REF_3_TEMPL_ARGS(varray, value_type, C, S) other)
{
errh::check_capacity(*this, other.size()); // may throw
typedef typename
vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;
this->move_assign_dispatch(other, use_memop_in_swap_and_move());
return *this;
}
//! @brief Destructor. Destroys Values stored in this container.
//!
//! @par Throws
//! Nothing
//!
//! @par Complexity
//! Linear O(N).
~varray()
{
namespace sv = varray_detail;
sv::destroy(this->begin(), this->end());
}
//! @brief Swaps contents of the other varray and this one.
//!
//! @param other The varray which content will be swapped with this one's content.
//!
//! @par Throws
//! @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor or move assignment throws,
//! @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor or copy assignment throws,
//! @internal
//! @li It throws only if \c use_memop_in_swap_and_move and \c use_optimized_swap are \c false_type - default.
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
void swap(varray & other)
{
typedef typename
vt::use_optimized_swap use_optimized_swap;
this->swap_dispatch(other, use_optimized_swap());
}
//! @pre <tt>other.size() <= capacity() && size() <= other.capacity()</tt>
//!
//! @brief Swaps contents of the other varray and this one.
//!
//! @param other The varray which content will be swapped with this one's content.
//!
//! @par Throws
//! @li If \c boost::has_nothrow_move<Value>::value is \c true and Value's move constructor or move assignment throws,
//! @li If \c boost::has_nothrow_move<Value>::value is \c false and Value's copy constructor or copy assignment throws,
//! @internal
//! @li It throws only if \c use_memop_in_swap_and_move and \c use_optimized_swap are \c false_type - default.
//! @endinternal
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
template <std::size_t C, typename S>
void swap(varray<value_type, C, S> & other)
{
errh::check_capacity(*this, other.size());
errh::check_capacity(other, this->size());
typedef typename
vt::use_optimized_swap use_optimized_swap;
this->swap_dispatch(other, use_optimized_swap());
}
//! @pre <tt>count <= capacity()</tt>
//!
//! @brief Inserts or erases elements at the end such that
//! the size becomes count. New elements are value initialized.
//!
//! @param count The number of elements which will be stored in the container.
//!
//! @par Throws
//! If Value's value initialization throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
void resize(size_type count)
{
namespace sv = varray_detail;
typedef typename vt::disable_trivial_init dti;
if ( count < m_size )
{
sv::destroy(this->begin() + count, this->end());
}
else
{
errh::check_capacity(*this, count); // may throw
sv::uninitialized_fill(this->end(), this->begin() + count, dti()); // may throw
}
m_size = count; // update end
}
//! @pre <tt>count <= capacity()</tt>
//!
//! @brief Inserts or erases elements at the end such that
//! the size becomes count. New elements are copy constructed from value.
//!
//! @param count The number of elements which will be stored in the container.
//! @param value The value used to copy construct the new element.
//!
//! @par Throws
//! If Value's copy constructor throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
void resize(size_type count, value_type const& value)
{
if ( count < m_size )
{
namespace sv = varray_detail;
sv::destroy(this->begin() + count, this->end());
}
else
{
errh::check_capacity(*this, count); // may throw
std::uninitialized_fill(this->end(), this->begin() + count, value); // may throw
}
m_size = count; // update end
}
//! @pre <tt>count <= capacity()</tt>
//!
//! @brief This call has no effect because the Capacity of this container is constant.
//!
//! @param count The number of elements which the container should be able to contain.
//!
//! @par Throws
//! Nothing.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
void reserve(size_type count)
{
errh::check_capacity(*this, count); // may throw
}
//! @pre <tt>size() < capacity()</tt>
//!
//! @brief Adds a copy of value at the end.
//!
//! @param value The value used to copy construct the new element.
//!
//! @par Throws
//! If Value's copy constructor throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Constant O(1).
void push_back(value_type const& value)
{
typedef typename vt::disable_trivial_init dti;
errh::check_capacity(*this, m_size + 1); // may throw
namespace sv = varray_detail;
sv::construct(dti(), this->end(), value); // may throw
++m_size; // update end
}
//! @pre <tt>size() < capacity()</tt>
//!
//! @brief Moves value to the end.
//!
//! @param value The value to move construct the new element.
//!
//! @par Throws
//! If Value's move constructor throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Constant O(1).
void push_back(BOOST_RV_REF(value_type) value)
{
typedef typename vt::disable_trivial_init dti;
errh::check_capacity(*this, m_size + 1); // may throw
namespace sv = varray_detail;
sv::construct(dti(), this->end(), ::boost::move(value)); // may throw
++m_size; // update end
}
//! @pre <tt>!empty()</tt>
//!
//! @brief Destroys last value and decreases the size.
//!
//! @par Throws
//! Nothing by default.
//!
//! @par Complexity
//! Constant O(1).
void pop_back()
{
errh::check_empty(*this);
namespace sv = varray_detail;
sv::destroy(this->end() - 1);
--m_size; // update end
}
//! @pre
//! @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>.
//! @li <tt>size() < capacity()</tt>
//!
//! @brief Inserts a copy of element at position.
//!
//! @param position The position at which the new value will be inserted.
//! @param value The value used to copy construct the new element.
//!
//! @par Throws
//! @li If Value's copy constructor or copy assignment throws
//! @li If Value's move constructor or move assignment throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Constant or linear.
iterator insert(iterator position, value_type const& value)
{
return this->priv_insert(position, value);
}
//! @pre
//! @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>.
//! @li <tt>size() < capacity()</tt>
//!
//! @brief Inserts a move-constructed element at position.
//!
//! @param position The position at which the new value will be inserted.
//! @param value The value used to move construct the new element.
//!
//! @par Throws
//! If Value's move constructor or move assignment throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Constant or linear.
iterator insert(iterator position, BOOST_RV_REF(value_type) value)
{
return this->priv_insert(position, boost::move(value));
}
//! @pre
//! @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>.
//! @li <tt>size() + count <= capacity()</tt>
//!
//! @brief Inserts a count copies of value at position.
//!
//! @param position The position at which new elements will be inserted.
//! @param count The number of new elements which will be inserted.
//! @param value The value used to copy construct new elements.
//!
//! @par Throws
//! @li If Value's copy constructor or copy assignment throws.
//! @li If Value's move constructor or move assignment throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
iterator insert(iterator position, size_type count, value_type const& value)
{
errh::check_iterator_end_eq(*this, position);
errh::check_capacity(*this, m_size + count); // may throw
if ( position == this->end() )
{
std::uninitialized_fill(position, position + count, value); // may throw
m_size += count; // update end
}
else
{
namespace sv = varray_detail;
difference_type to_move = boost::container::iterator_distance(position, this->end());
// TODO - should following lines check for exception and revert to the old size?
if ( count < static_cast<size_type>(to_move) )
{
sv::uninitialized_move(this->end() - count, this->end(), this->end()); // may throw
m_size += count; // update end
sv::move_backward(position, position + to_move - count, this->end() - count); // may throw
std::fill_n(position, count, value); // may throw
}
else
{
std::uninitialized_fill(this->end(), position + count, value); // may throw
m_size += count - to_move; // update end
sv::uninitialized_move(position, position + to_move, position + count); // may throw
m_size += to_move; // update end
std::fill_n(position, to_move, value); // may throw
}
}
return position;
}
//! @pre
//! @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>.
//! @li <tt>distance(first, last) <= capacity()</tt>
//! @li \c Iterator must meet the \c ForwardIterator.
//!
//! @brief Inserts a copy of a range <tt>[first, last)</tt> at position.
//!
//! @param position The position at which new elements will be inserted.
//! @param first The iterator to the first element of a range used to construct new elements.
//! @param last The iterator to the one after the last element of a range used to construct new elements.
//!
//! @par Throws
//! @li If Value's constructor and assignment taking a dereferenced \c Iterator.
//! @li If Value's move constructor or move assignment throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Linear O(N).
template <typename Iterator>
iterator insert(iterator position, Iterator first, Iterator last)
{
this->insert_dispatch(position, first, last);
return position;
}
//! @pre \c position must be a valid iterator of \c *this in range <tt>[begin(), end())</tt>
//!
//! @brief Erases Value from position.
//!
//! @param position The position of the element which will be erased from the container.
//!
//! @par Throws
//! If Value's move assignment throws.
//!
//! @par Complexity
//! Linear O(N).
iterator erase(iterator position)
{
namespace sv = varray_detail;
errh::check_iterator_end_neq(*this, position);
//TODO - add empty check?
//errh::check_empty(*this);
sv::move(position + 1, this->end(), position); // may throw
sv::destroy(this->end() - 1);
--m_size;
return position;
}
//! @pre
//! @li \c first and \c last must define a valid range
//! @li iterators must be in range <tt>[begin(), end()]</tt>
//!
//! @brief Erases Values from a range <tt>[first, last)</tt>.
//!
//! @param first The position of the first element of a range which will be erased from the container.
//! @param last The position of the one after the last element of a range which will be erased from the container.
//!
//! @par Throws
//! If Value's move assignment throws.
//!
//! @par Complexity
//! Linear O(N).
iterator erase(iterator first, iterator last)
{
namespace sv = varray_detail;
errh::check_iterator_end_eq(*this, first);
errh::check_iterator_end_eq(*this, last);
difference_type n = boost::container::iterator_distance(first, last);
//TODO - add invalid range check?
//BOOST_ASSERT_MSG(0 <= n, "invalid range");
//TODO - add this->size() check?
//BOOST_ASSERT_MSG(n <= this->size(), "invalid range");
sv::move(last, this->end(), first); // may throw
sv::destroy(this->end() - n, this->end());
m_size -= n;
return first;
}
//! @pre <tt>distance(first, last) <= capacity()</tt>
//!
//! @brief Assigns a range <tt>[first, last)</tt> of Values to this container.
//!
//! @param first The iterator to the first element of a range used to construct new content of this container.
//! @param last The iterator to the one after the last element of a range used to construct new content of this container.
//!
//! @par Throws
//! If Value's copy constructor or copy assignment throws,
//!
//! @par Complexity
//! Linear O(N).
template <typename Iterator>
void assign(Iterator first, Iterator last)
{
this->assign_dispatch(first, last); // may throw
}
//! @pre <tt>count <= capacity()</tt>
//!
//! @brief Assigns a count copies of value to this container.
//!
//! @param count The new number of elements which will be container in the container.
//! @param value The value which will be used to copy construct the new content.
//!
//! @par Throws
//! If Value's copy constructor or copy assignment throws.
//!
//! @par Complexity
//! Linear O(N).
void assign(size_type count, value_type const& value)
{
if ( count < m_size )
{
namespace sv = varray_detail;
std::fill_n(this->begin(), count, value); // may throw
sv::destroy(this->begin() + count, this->end());
}
else
{
errh::check_capacity(*this, count); // may throw
std::fill_n(this->begin(), m_size, value); // may throw
std::uninitialized_fill(this->end(), this->begin() + count, value); // may throw
}
m_size = count; // update end
}
#if !defined(BOOST_CONTAINER_VARRAY_DISABLE_EMPLACE)
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! @pre <tt>size() < capacity()</tt>
//!
//! @brief Inserts a Value constructed with
//! \c std::forward<Args>(args)... in the end of the container.
//!
//! @param args The arguments of the constructor of the new element which will be created at the end of the container.
//!
//! @par Throws
//! If in-place constructor throws or Value's move constructor throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Constant O(1).
template<class ...Args>
void emplace_back(BOOST_FWD_REF(Args) ...args)
{
typedef typename vt::disable_trivial_init dti;
errh::check_capacity(*this, m_size + 1); // may throw
namespace sv = varray_detail;
sv::construct(dti(), this->end(), ::boost::forward<Args>(args)...); // may throw
++m_size; // update end
}
//! @pre
//! @li \c position must be a valid iterator of \c *this in range <tt>[begin(), end()]</tt>
//! @li <tt>size() < capacity()</tt>
//!
//! @brief Inserts a Value constructed with
//! \c std::forward<Args>(args)... before position
//!
//! @param position The position at which new elements will be inserted.
//! @param args The arguments of the constructor of the new element.
//!
//! @par Throws
//! If in-place constructor throws or if Value's move constructor or move assignment throws.
//! @internal
//! @li If a throwing error handler is specified, throws when the capacity is exceeded. (not by default).
//! @endinternal
//!
//! @par Complexity
//! Constant or linear.
template<class ...Args>
iterator emplace(iterator position, BOOST_FWD_REF(Args) ...args)
{
typedef typename vt::disable_trivial_init dti;
namespace sv = varray_detail;
errh::check_iterator_end_eq(*this, position);
errh::check_capacity(*this, m_size + 1); // may throw
if ( position == this->end() )
{
sv::construct(dti(), position, ::boost::forward<Args>(args)...); // may throw
++m_size; // update end
}
else
{
// TODO - should following lines check for exception and revert to the old size?
// TODO - should move be used only if it's nonthrowing?
value_type & r = *(this->end() - 1);
sv::construct(dti(), this->end(), boost::move(r)); // may throw
++m_size; // update end
sv::move_backward(position, this->end() - 2, this->end() - 1); // may throw
typename aligned_storage
<sizeof(value_type), alignment_of<value_type>::value>::type temp_storage;
value_type * val_p = static_cast<value_type*>(static_cast<void*>(&temp_storage));
sv::construct(dti(), val_p, ::boost::forward<Args>(args)...); // may throw
sv::scoped_destructor<value_type> d(val_p);
sv::assign(position, ::boost::move(*val_p)); // may throw
}
return position;
}
#else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || BOOST_CONTAINER_DOXYGEN_INVOKED
#define BOOST_CONTAINER_VARRAY_EMPLACE_CODE(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
void emplace_back(BOOST_MOVE_UREF##N)\
{\
typedef typename vt::disable_trivial_init dti;\
errh::check_capacity(*this, m_size + 1);/*may throw*/\
\
namespace sv = varray_detail;\
sv::construct(dti(), this->end() BOOST_MOVE_I##N BOOST_MOVE_FWD##N ); /*may throw*/\
++m_size; /*update end*/\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace(iterator position BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
typedef typename vt::disable_trivial_init dti;\
namespace sv = varray_detail;\
errh::check_iterator_end_eq(*this, position);\
errh::check_capacity(*this, m_size + 1); /*may throw*/\
if ( position == this->end() ){\
sv::construct(dti(), position BOOST_MOVE_I##N BOOST_MOVE_FWD##N ); /*may throw*/\
++m_size; /*update end*/\
}\
else{\
/* TODO - should following lines check for exception and revert to the old size? */\
/* TODO - should move be used only if it's nonthrowing? */\
value_type & r = *(this->end() - 1);\
sv::construct(dti(), this->end(), boost::move(r));/*may throw*/\
++m_size; /*update end*/\
sv::move_backward(position, this->end() - 2, this->end() - 1);/*may throw*/\
typename aligned_storage\
<sizeof(value_type), alignment_of<value_type>::value>::type temp_storage;\
value_type * val_p = static_cast<value_type*>(static_cast<void*>(&temp_storage));\
sv::construct(dti(), val_p BOOST_MOVE_I##N BOOST_MOVE_FWD##N ); /*may throw*/\
sv::scoped_destructor<value_type> d(val_p);\
sv::assign(position, ::boost::move(*val_p));/*may throw*/\
}\
return position;\
}\
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_VARRAY_EMPLACE_CODE)
#undef BOOST_CONTAINER_VARRAY_EMPLACE_CODE
#endif // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || BOOST_CONTAINER_DOXYGEN_INVOKED
#endif // !BOOST_CONTAINER_VARRAY_DISABLE_EMPLACE
//! @brief Removes all elements from the container.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
void clear()
{
namespace sv = varray_detail;
sv::destroy(this->begin(), this->end());
m_size = 0; // update end
}
//! @pre <tt>i < size()</tt>
//!
//! @brief Returns reference to the i-th element.
//!
//! @param i The element's index.
//!
//! @return reference to the i-th element
//! from the beginning of the container.
//!
//! @par Throws
//! \c std::out_of_range exception by default.
//!
//! @par Complexity
//! Constant O(1).
reference at(size_type i)
{
errh::check_at(*this, i); // may throw
return *(this->begin() + i);
}
//! @pre <tt>i < size()</tt>
//!
//! @brief Returns const reference to the i-th element.
//!
//! @param i The element's index.
//!
//! @return const reference to the i-th element
//! from the beginning of the container.
//!
//! @par Throws
//! \c std::out_of_range exception by default.
//!
//! @par Complexity
//! Constant O(1).
const_reference at(size_type i) const
{
errh::check_at(*this, i); // may throw
return *(this->begin() + i);
}
//! @pre <tt>i < size()</tt>
//!
//! @brief Returns reference to the i-th element.
//!
//! @param i The element's index.
//!
//! @return reference to the i-th element
//! from the beginning of the container.
//!
//! @par Throws
//! Nothing by default.
//!
//! @par Complexity
//! Constant O(1).
reference operator[](size_type i)
{
// TODO: Remove bounds check? std::vector and std::array operator[] don't check.
errh::check_operator_brackets(*this, i);
return *(this->begin() + i);
}
//! @pre <tt>i < size()</tt>
//!
//! @brief Returns const reference to the i-th element.
//!
//! @param i The element's index.
//!
//! @return const reference to the i-th element
//! from the beginning of the container.
//!
//! @par Throws
//! Nothing by default.
//!
//! @par Complexity
//! Constant O(1).
const_reference operator[](size_type i) const
{
errh::check_operator_brackets(*this, i);
return *(this->begin() + i);
}
//! @pre \c !empty()
//!
//! @brief Returns reference to the first element.
//!
//! @return reference to the first element
//! from the beginning of the container.
//!
//! @par Throws
//! Nothing by default.
//!
//! @par Complexity
//! Constant O(1).
reference front()
{
errh::check_empty(*this);
return *(this->begin());
}
//! @pre \c !empty()
//!
//! @brief Returns const reference to the first element.
//!
//! @return const reference to the first element
//! from the beginning of the container.
//!
//! @par Throws
//! Nothing by default.
//!
//! @par Complexity
//! Constant O(1).
const_reference front() const
{
errh::check_empty(*this);
return *(this->begin());
}
//! @pre \c !empty()
//!
//! @brief Returns reference to the last element.
//!
//! @return reference to the last element
//! from the beginning of the container.
//!
//! @par Throws
//! Nothing by default.
//!
//! @par Complexity
//! Constant O(1).
reference back()
{
errh::check_empty(*this);
return *(this->end() - 1);
}
//! @pre \c !empty()
//!
//! @brief Returns const reference to the first element.
//!
//! @return const reference to the last element
//! from the beginning of the container.
//!
//! @par Throws
//! Nothing by default.
//!
//! @par Complexity
//! Constant O(1).
const_reference back() const
{
errh::check_empty(*this);
return *(this->end() - 1);
}
//! @brief Pointer such that <tt>[data(), data() + size())</tt> is a valid range.
//! For a non-empty vector <tt>data() == &front()</tt>.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
Value * data()
{
return (addressof)(*(this->ptr()));
}
//! @brief Const pointer such that <tt>[data(), data() + size())</tt> is a valid range.
//! For a non-empty vector <tt>data() == &front()</tt>.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const Value * data() const
{
return (addressof)(*(this->ptr()));
}
//! @brief Returns iterator to the first element.
//!
//! @return iterator to the first element contained in the vector.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
iterator begin() { return this->ptr(); }
//! @brief Returns const iterator to the first element.
//!
//! @return const_iterator to the first element contained in the vector.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const_iterator begin() const { return this->ptr(); }
//! @brief Returns const iterator to the first element.
//!
//! @return const_iterator to the first element contained in the vector.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const_iterator cbegin() const { return this->ptr(); }
//! @brief Returns iterator to the one after the last element.
//!
//! @return iterator pointing to the one after the last element contained in the vector.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
iterator end() { return this->begin() + m_size; }
//! @brief Returns const iterator to the one after the last element.
//!
//! @return const_iterator pointing to the one after the last element contained in the vector.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const_iterator end() const { return this->begin() + m_size; }
//! @brief Returns const iterator to the one after the last element.
//!
//! @return const_iterator pointing to the one after the last element contained in the vector.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const_iterator cend() const { return this->cbegin() + m_size; }
//! @brief Returns reverse iterator to the first element of the reversed container.
//!
//! @return reverse_iterator pointing to the beginning
//! of the reversed varray.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
reverse_iterator rbegin() { return reverse_iterator(this->end()); }
//! @brief Returns const reverse iterator to the first element of the reversed container.
//!
//! @return const_reverse_iterator pointing to the beginning
//! of the reversed varray.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const_reverse_iterator rbegin() const { return reverse_iterator(this->end()); }
//! @brief Returns const reverse iterator to the first element of the reversed container.
//!
//! @return const_reverse_iterator pointing to the beginning
//! of the reversed varray.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const_reverse_iterator crbegin() const { return reverse_iterator(this->end()); }
//! @brief Returns reverse iterator to the one after the last element of the reversed container.
//!
//! @return reverse_iterator pointing to the one after the last element
//! of the reversed varray.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
reverse_iterator rend() { return reverse_iterator(this->begin()); }
//! @brief Returns const reverse iterator to the one after the last element of the reversed container.
//!
//! @return const_reverse_iterator pointing to the one after the last element
//! of the reversed varray.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const_reverse_iterator rend() const { return reverse_iterator(this->begin()); }
//! @brief Returns const reverse iterator to the one after the last element of the reversed container.
//!
//! @return const_reverse_iterator pointing to the one after the last element
//! of the reversed varray.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
const_reverse_iterator crend() const { return reverse_iterator(this->begin()); }
//! @brief Returns container's capacity.
//!
//! @return container's capacity.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
static size_type capacity() { return Capacity; }
//! @brief Returns container's capacity.
//!
//! @return container's capacity.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
static size_type max_size() { return Capacity; }
//! @brief Returns the number of stored elements.
//!
//! @return Number of elements contained in the container.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
size_type size() const { return m_size; }
//! @brief Queries if the container contains elements.
//!
//! @return true if the number of elements contained in the
//! container is equal to 0.
//!
//! @par Throws
//! Nothing.
//!
//! @par Complexity
//! Constant O(1).
bool empty() const { return 0 == m_size; }
private:
// @par Throws
// Nothing.
// @par Complexity
// Linear O(N).
template <std::size_t C, typename S>
void move_ctor_dispatch(varray<value_type, C, S> & other, true_type /*use_memop*/)
{
::memcpy(this->data(), other.data(), sizeof(Value) * other.m_size);
m_size = other.m_size;
}
// @par Throws
// @li If boost::has_nothrow_move<Value>::value is true and Value's move constructor throws
// @li If boost::has_nothrow_move<Value>::value is false and Value's copy constructor throws.
// @par Complexity
// Linear O(N).
template <std::size_t C, typename S>
void move_ctor_dispatch(varray<value_type, C, S> & other, false_type /*use_memop*/)
{
namespace sv = varray_detail;
sv::uninitialized_move_if_noexcept(other.begin(), other.end(), this->begin()); // may throw
m_size = other.m_size;
}
// @par Throws
// Nothing.
// @par Complexity
// Linear O(N).
template <std::size_t C, typename S>
void move_assign_dispatch(varray<value_type, C, S> & other, true_type /*use_memop*/)
{
this->clear();
::memcpy(this->data(), other.data(), sizeof(Value) * other.m_size);
boost::adl_move_swap(m_size, other.m_size);
}
// @par Throws
// @li If boost::has_nothrow_move<Value>::value is true and Value's move constructor or move assignment throws
// @li If boost::has_nothrow_move<Value>::value is false and Value's copy constructor or move assignment throws.
// @par Complexity
// Linear O(N).
template <std::size_t C, typename S>
void move_assign_dispatch(varray<value_type, C, S> & other, false_type /*use_memop*/)
{
namespace sv = varray_detail;
if ( m_size <= static_cast<size_type>(other.size()) )
{
sv::move_if_noexcept(other.begin(), other.begin() + m_size, this->begin()); // may throw
// TODO - perform uninitialized_copy first?
sv::uninitialized_move_if_noexcept(other.begin() + m_size, other.end(), this->end()); // may throw
}
else
{
sv::move_if_noexcept(other.begin(), other.end(), this->begin()); // may throw
sv::destroy(this->begin() + other.size(), this->end());
}
m_size = other.size(); // update end
}
// @par Throws
// Nothing.
// @par Complexity
// Linear O(N).
template <std::size_t C, typename S>
void swap_dispatch(varray<value_type, C, S> & other, true_type const& /*use_optimized_swap*/)
{
typedef typename
if_c<
Capacity < C,
aligned_storage_type,
typename varray<value_type, C, S>::aligned_storage_type
>::type
storage_type;
storage_type temp_storage;
value_type * temp_ptr = static_cast<value_type*>(static_cast<void*>(&temp_storage));
::memcpy(temp_ptr, this->data(), sizeof(Value) * this->size());
::memcpy(this->data(), other.data(), sizeof(Value) * other.size());
::memcpy(other.data(), temp_ptr, sizeof(Value) * this->size());
boost::adl_move_swap(m_size, other.m_size);
}
// @par Throws
// If Value's move constructor or move assignment throws
// but only if use_memop_in_swap_and_move is false_type - default.
// @par Complexity
// Linear O(N).
template <std::size_t C, typename S>
void swap_dispatch(varray<value_type, C, S> & other, false_type const& /*use_optimized_swap*/)
{
namespace sv = varray_detail;
typedef typename
vt::use_memop_in_swap_and_move use_memop_in_swap_and_move;
if ( this->size() < other.size() )
swap_dispatch_impl(this->begin(), this->end(), other.begin(), other.end(), use_memop_in_swap_and_move()); // may throw
else
swap_dispatch_impl(other.begin(), other.end(), this->begin(), this->end(), use_memop_in_swap_and_move()); // may throw
boost::adl_move_swap(m_size, other.m_size);
}
// @par Throws
// Nothing.
// @par Complexity
// Linear O(N).
void swap_dispatch_impl(iterator first_sm, iterator last_sm, iterator first_la, iterator last_la, true_type const& /*use_memop*/)
{
//BOOST_ASSERT_MSG(boost::container::iterator_distance(first_sm, last_sm) <= boost::container::iterator_distance(first_la, last_la));
namespace sv = varray_detail;
for (; first_sm != last_sm ; ++first_sm, ++first_la)
{
typename aligned_storage<
sizeof(value_type),
alignment_of<value_type>::value
>::type temp_storage;
value_type * temp_ptr = static_cast<value_type*>(static_cast<void*>(&temp_storage));
::memcpy(temp_ptr, (addressof)(*first_sm), sizeof(value_type));
::memcpy((addressof)(*first_sm), (addressof)(*first_la), sizeof(value_type));
::memcpy((addressof)(*first_la), temp_ptr, sizeof(value_type));
}
::memcpy(first_sm, first_la, sizeof(value_type) * boost::container::iterator_distance(first_la, last_la));
}
// @par Throws
// If Value's move constructor or move assignment throws.
// @par Complexity
// Linear O(N).
void swap_dispatch_impl(iterator first_sm, iterator last_sm, iterator first_la, iterator last_la, false_type const& /*use_memop*/)
{
//BOOST_ASSERT_MSG(boost::container::iterator_distance(first_sm, last_sm) <= boost::container::iterator_distance(first_la, last_la));
namespace sv = varray_detail;
for (; first_sm != last_sm ; ++first_sm, ++first_la)
{
//boost::adl_move_swap(*first_sm, *first_la); // may throw
value_type temp(boost::move(*first_sm)); // may throw
*first_sm = boost::move(*first_la); // may throw
*first_la = boost::move(temp); // may throw
}
sv::uninitialized_move(first_la, last_la, first_sm); // may throw
sv::destroy(first_la, last_la);
}
// insert
// @par Throws
// If Value's move constructor or move assignment throws
// or if Value's copy assignment throws.
// @par Complexity
// Linear O(N).
template <typename V>
iterator priv_insert(iterator position, V & value)
{
typedef typename vt::disable_trivial_init dti;
namespace sv = varray_detail;
errh::check_iterator_end_eq(*this, position);
errh::check_capacity(*this, m_size + 1); // may throw
if ( position == this->end() )
{
sv::construct(dti(), position, value); // may throw
++m_size; // update end
}
else
{
// TODO - should following lines check for exception and revert to the old size?
// TODO - should move be used only if it's nonthrowing?
value_type & r = *(this->end() - 1);
sv::construct(dti(), this->end(), boost::move(r)); // may throw
++m_size; // update end
sv::move_backward(position, this->end() - 2, this->end() - 1); // may throw
sv::assign(position, value); // may throw
}
return position;
}
// insert
// @par Throws
// If Value's move constructor, move assignment throws
// or if Value's copy constructor or copy assignment throws.
// @par Complexity
// Linear O(N).
template <typename Iterator>
typename iterator_enable_if_tag<Iterator, std::random_access_iterator_tag>::type
insert_dispatch(iterator position, Iterator first, Iterator last)
{
errh::check_iterator_end_eq(*this, position);
size_type count = boost::container::iterator_distance(first, last);
errh::check_capacity(*this, m_size + count); // may throw
if ( position == this->end() )
{
namespace sv = varray_detail;
sv::uninitialized_copy(first, last, position); // may throw
m_size += count; // update end
}
else
{
this->insert_in_the_middle(position, first, last, count); // may throw
}
}
// @par Throws
// If Value's move constructor, move assignment throws
// or if Value's copy constructor or copy assignment throws.
// @par Complexity
// Linear O(N).
template <typename Iterator, typename Category>
typename iterator_disable_if_tag<Iterator, std::random_access_iterator_tag>::type
insert_dispatch(iterator position, Iterator first, Iterator last)
{
errh::check_iterator_end_eq(*this, position);
if ( position == this->end() )
{
namespace sv = varray_detail;
std::ptrdiff_t d = boost::container::iterator_distance(position, this->begin() + Capacity);
std::size_t count = sv::uninitialized_copy_s(first, last, position, d); // may throw
errh::check_capacity(*this, count <= static_cast<std::size_t>(d) ? m_size + count : Capacity + 1); // may throw
m_size += count;
}
else
{
size_type count = boost::container::iterator_distance(first, last);
errh::check_capacity(*this, m_size + count); // may throw
this->insert_in_the_middle(position, first, last, count); // may throw
}
}
// @par Throws
// If Value's move constructor, move assignment throws
// or if Value's copy constructor or copy assignment throws.
// @par Complexity
// Linear O(N).
template <typename Iterator>
void insert_in_the_middle(iterator position, Iterator first, Iterator last, difference_type count)
{
namespace sv = varray_detail;
difference_type to_move = boost::container::iterator_distance(position, this->end());
// TODO - should following lines check for exception and revert to the old size?
if ( count < to_move )
{
sv::uninitialized_move(this->end() - count, this->end(), this->end()); // may throw
m_size += count; // update end
sv::move_backward(position, position + to_move - count, this->end() - count); // may throw
sv::copy(first, last, position); // may throw
}
else
{
Iterator middle_iter = first;
boost::container::iterator_advance(middle_iter, to_move);
sv::uninitialized_copy(middle_iter, last, this->end()); // may throw
m_size += count - to_move; // update end
sv::uninitialized_move(position, position + to_move, position + count); // may throw
m_size += to_move; // update end
sv::copy(first, middle_iter, position); // may throw
}
}
// assign
// @par Throws
// If Value's constructor or assignment taking dereferenced Iterator throws.
// @par Complexity
// Linear O(N).
template <typename Iterator>
typename iterator_enable_if_tag<Iterator, std::random_access_iterator_tag>::type
assign_dispatch(Iterator first, Iterator last)
{
namespace sv = varray_detail;
size_type s = boost::container::iterator_distance(first, last);
errh::check_capacity(*this, s); // may throw
if ( m_size <= static_cast<size_type>(s) )
{
sv::copy(first, first + m_size, this->begin()); // may throw
// TODO - perform uninitialized_copy first?
sv::uninitialized_copy(first + m_size, last, this->end()); // may throw
}
else
{
sv::copy(first, last, this->begin()); // may throw
sv::destroy(this->begin() + s, this->end());
}
m_size = s; // update end
}
// @par Throws
// If Value's constructor or assignment taking dereferenced Iterator throws.
// @par Complexity
// Linear O(N).
template <typename Iterator, typename Category>
typename iterator_disable_if_tag<Iterator, std::random_access_iterator_tag>::type
assign_dispatch(Iterator first, Iterator last)
{
namespace sv = varray_detail;
size_type s = 0;
iterator it = this->begin();
for ( ; it != this->end() && first != last ; ++it, ++first, ++s )
*it = *first; // may throw
sv::destroy(it, this->end());
std::ptrdiff_t d = boost::container::iterator_distance(it, this->begin() + Capacity);
std::size_t count = sv::uninitialized_copy_s(first, last, it, d); // may throw
s += count;
errh::check_capacity(*this, count <= static_cast<std::size_t>(d) ? s : Capacity + 1); // may throw
m_size = s; // update end
}
pointer ptr()
{
return pointer(static_cast<Value*>(static_cast<void*>(&m_storage)));
}
const_pointer ptr() const
{
return pointer(static_cast<const Value*>(static_cast<const void*>(&m_storage)));
}
size_type m_size;
aligned_storage_type m_storage;
};
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template<typename Value, typename Strategy>
class varray<Value, 0, Strategy>
{
typedef varray_traits<
Value, 0, Strategy
> vt;
typedef typename vt::size_type stored_size_type;
typedef typename vt::error_handler errh;
public:
typedef typename vt::value_type value_type;
typedef stored_size_type size_type;
typedef typename vt::difference_type difference_type;
typedef typename vt::pointer pointer;
typedef typename vt::const_pointer const_pointer;
typedef typename vt::reference reference;
typedef typename vt::const_reference const_reference;
typedef pointer iterator;
typedef const_pointer const_iterator;
typedef boost::container::reverse_iterator<iterator> reverse_iterator;
typedef boost::container::reverse_iterator<const_iterator> const_reverse_iterator;
// nothrow
varray() {}
// strong
explicit varray(size_type count)
{
errh::check_capacity(*this, count); // may throw
}
// strong
varray(size_type count, value_type const&)
{
errh::check_capacity(*this, count); // may throw
}
// strong
varray(varray const& other)
{
errh::check_capacity(*this, other.size());
}
// strong
template <size_t C, typename S>
varray(varray<value_type, C, S> const& other)
{
errh::check_capacity(*this, other.size()); // may throw
}
// strong
template <typename Iterator>
varray(Iterator first, Iterator last)
{
errh::check_capacity(*this, boost::container::iterator_distance(first, last)); // may throw
}
// basic
varray & operator=(varray const& other)
{
errh::check_capacity(*this, other.size());
return *this;
}
// basic
template <size_t C, typename S>
varray & operator=(varray<value_type, C, S> const& other)
{
errh::check_capacity(*this, other.size()); // may throw
return *this;
}
// nothrow
~varray() {}
// strong
void resize(size_type count)
{
errh::check_capacity(*this, count); // may throw
}
// strong
void resize(size_type count, value_type const&)
{
errh::check_capacity(*this, count); // may throw
}
// nothrow
void reserve(size_type count)
{
errh::check_capacity(*this, count); // may throw
}
// strong
void push_back(value_type const&)
{
errh::check_capacity(*this, 1); // may throw
}
// nothrow
void pop_back()
{
errh::check_empty(*this);
}
// basic
void insert(iterator position, value_type const&)
{
errh::check_iterator_end_eq(*this, position);
errh::check_capacity(*this, 1); // may throw
}
// basic
void insert(iterator position, size_type count, value_type const&)
{
errh::check_iterator_end_eq(*this, position);
errh::check_capacity(*this, count); // may throw
}
// basic
template <typename Iterator>
void insert(iterator, Iterator first, Iterator last)
{
errh::check_capacity(*this, boost::container::iterator_distance(first, last)); // may throw
}
// basic
void erase(iterator position)
{
errh::check_iterator_end_neq(*this, position);
}
// basic
void erase(iterator first, iterator last)
{
errh::check_iterator_end_eq(*this, first);
errh::check_iterator_end_eq(*this, last);
//BOOST_ASSERT_MSG(0 <= n, "invalid range");
}
// basic
template <typename Iterator>
void assign(Iterator first, Iterator last)
{
errh::check_capacity(*this, boost::container::iterator_distance(first, last)); // may throw
}
// basic
void assign(size_type count, value_type const&)
{
errh::check_capacity(*this, count); // may throw
}
// nothrow
void clear() {}
// strong
reference at(size_type i)
{
errh::check_at(*this, i); // may throw
return *(this->begin() + i);
}
// strong
const_reference at(size_type i) const
{
errh::check_at(*this, i); // may throw
return *(this->begin() + i);
}
// nothrow
reference operator[](size_type i)
{
errh::check_operator_brackets(*this, i);
return *(this->begin() + i);
}
// nothrow
const_reference operator[](size_type i) const
{
errh::check_operator_brackets(*this, i);
return *(this->begin() + i);
}
// nothrow
reference front()
{
errh::check_empty(*this);
return *(this->begin());
}
// nothrow
const_reference front() const
{
errh::check_empty(*this);
return *(this->begin());
}
// nothrow
reference back()
{
errh::check_empty(*this);
return *(this->end() - 1);
}
// nothrow
const_reference back() const
{
errh::check_empty(*this);
return *(this->end() - 1);
}
// nothrow
Value * data() { return (addressof)(*(this->ptr())); }
const Value * data() const { return (addressof)(*(this->ptr())); }
// nothrow
iterator begin() { return this->ptr(); }
const_iterator begin() const { return this->ptr(); }
const_iterator cbegin() const { return this->ptr(); }
iterator end() { return this->begin(); }
const_iterator end() const { return this->begin(); }
const_iterator cend() const { return this->cbegin(); }
// nothrow
reverse_iterator rbegin() { return reverse_iterator(this->end()); }
const_reverse_iterator rbegin() const { return reverse_iterator(this->end()); }
const_reverse_iterator crbegin() const { return reverse_iterator(this->end()); }
reverse_iterator rend() { return reverse_iterator(this->begin()); }
const_reverse_iterator rend() const { return reverse_iterator(this->begin()); }
const_reverse_iterator crend() const { return reverse_iterator(this->begin()); }
// nothrow
size_type capacity() const { return 0; }
size_type max_size() const { return 0; }
size_type size() const { return 0; }
bool empty() const { return true; }
private:
pointer ptr()
{
return pointer(reinterpret_cast<Value*>(this));
}
const_pointer ptr() const
{
return const_pointer(reinterpret_cast<const Value*>(this));
}
};
#endif // !BOOST_CONTAINER_DOXYGEN_INVOKED
//! @brief Checks if contents of two varrays are equal.
//!
//! @ingroup varray_non_member
//!
//! @param x The first varray.
//! @param y The second varray.
//!
//! @return \c true if containers have the same size and elements in both containers are equal.
//!
//! @par Complexity
//! Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator== (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin());
}
//! @brief Checks if contents of two varrays are not equal.
//!
//! @ingroup varray_non_member
//!
//! @param x The first varray.
//! @param y The second varray.
//!
//! @return \c true if containers have different size or elements in both containers are not equal.
//!
//! @par Complexity
//! Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator!= (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
return !(x==y);
}
//! @brief Lexicographically compares varrays.
//!
//! @ingroup varray_non_member
//!
//! @param x The first varray.
//! @param y The second varray.
//!
//! @return \c true if x compares lexicographically less than y.
//!
//! @par Complexity
//! Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator< (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
return ::boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
//! @brief Lexicographically compares varrays.
//!
//! @ingroup varray_non_member
//!
//! @param x The first varray.
//! @param y The second varray.
//!
//! @return \c true if y compares lexicographically less than x.
//!
//! @par Complexity
//! Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator> (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
return y<x;
}
//! @brief Lexicographically compares varrays.
//!
//! @ingroup varray_non_member
//!
//! @param x The first varray.
//! @param y The second varray.
//!
//! @return \c true if y don't compare lexicographically less than x.
//!
//! @par Complexity
//! Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator<= (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
return !(y<x);
}
//! @brief Lexicographically compares varrays.
//!
//! @ingroup varray_non_member
//!
//! @param x The first varray.
//! @param y The second varray.
//!
//! @return \c true if x don't compare lexicographically less than y.
//!
//! @par Complexity
//! Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
bool operator>= (varray<V, C1, S1> const& x, varray<V, C2, S2> const& y)
{
return !(x<y);
}
//! @brief Swaps contents of two varrays.
//!
//! This function calls varray::swap().
//!
//! @ingroup varray_non_member
//!
//! @param x The first varray.
//! @param y The second varray.
//!
//! @par Complexity
//! Linear O(N).
template<typename V, std::size_t C1, typename S1, std::size_t C2, typename S2>
inline void swap(varray<V, C1, S1> & x, varray<V, C2, S2> & y)
{
x.swap(y);
}
}}} // namespace boost::container::dtl
#include <boost/container/detail/config_end.hpp>
#endif // BOOST_CONTAINER_DETAIL_VARRAY_HPP