container/test/flat_map_test.cpp

839 lines
28 KiB
C++

//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2004-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#include <boost/container/detail/config_begin.hpp>
#include <vector>
#include <boost/container/flat_map.hpp>
#include <boost/container/allocator.hpp>
#include <boost/container/detail/container_or_allocator_rebind.hpp>
#include "print_container.hpp"
#include "dummy_test_allocator.hpp"
#include "movable_int.hpp"
#include "map_test.hpp"
#include "propagate_allocator_test.hpp"
#include "container_common_tests.hpp"
#include "emplace_test.hpp"
#include "../../intrusive/test/iterator_test.hpp"
#include <map>
#include <utility>
using namespace boost::container;
class recursive_flat_map
{
public:
recursive_flat_map(const recursive_flat_map &c)
: id_(c.id_), map_(c.map_)
{}
recursive_flat_map & operator =(const recursive_flat_map &c)
{
id_ = c.id_;
map_= c.map_;
return *this;
}
int id_;
flat_map<recursive_flat_map, recursive_flat_map> map_;
flat_map<recursive_flat_map, recursive_flat_map>::iterator it_;
flat_map<recursive_flat_map, recursive_flat_map>::const_iterator cit_;
flat_map<recursive_flat_map, recursive_flat_map>::reverse_iterator rit_;
flat_map<recursive_flat_map, recursive_flat_map>::const_reverse_iterator crit_;
friend bool operator< (const recursive_flat_map &a, const recursive_flat_map &b)
{ return a.id_ < b.id_; }
};
class recursive_flat_multimap
{
public:
recursive_flat_multimap(const recursive_flat_multimap &c)
: id_(c.id_), map_(c.map_)
{}
recursive_flat_multimap & operator =(const recursive_flat_multimap &c)
{
id_ = c.id_;
map_= c.map_;
return *this;
}
int id_;
flat_multimap<recursive_flat_multimap, recursive_flat_multimap> map_;
flat_multimap<recursive_flat_multimap, recursive_flat_multimap>::iterator it_;
flat_multimap<recursive_flat_multimap, recursive_flat_multimap>::const_iterator cit_;
flat_multimap<recursive_flat_multimap, recursive_flat_multimap>::reverse_iterator rit_;
flat_multimap<recursive_flat_multimap, recursive_flat_multimap>::const_reverse_iterator crit_;
friend bool operator< (const recursive_flat_multimap &a, const recursive_flat_multimap &b)
{ return a.id_ < b.id_; }
};
template<class C>
void test_move()
{
//Now test move semantics
C original;
C move_ctor(boost::move(original));
C move_assign;
move_assign = boost::move(move_ctor);
move_assign.swap(original);
}
namespace boost{
namespace container {
namespace test{
bool flat_tree_ordered_insertion_test()
{
using namespace boost::container;
const std::size_t NumElements = 100;
//Ordered insertion multimap
{
std::multimap<int, int> int_mmap;
for(std::size_t i = 0; i != NumElements; ++i){
int_mmap.insert(std::multimap<int, int>::value_type(static_cast<int>(i), static_cast<int>(i)));
}
//Construction insertion
flat_multimap<int, int> fmmap(ordered_range, int_mmap.begin(), int_mmap.end());
if(!CheckEqualContainers(int_mmap, fmmap))
return false;
//Insertion when empty
fmmap.clear();
fmmap.insert(ordered_range, int_mmap.begin(), int_mmap.end());
if(!CheckEqualContainers(int_mmap, fmmap))
return false;
//Re-insertion
fmmap.insert(ordered_range, int_mmap.begin(), int_mmap.end());
std::multimap<int, int> int_mmap2(int_mmap);
int_mmap2.insert(int_mmap.begin(), int_mmap.end());
if(!CheckEqualContainers(int_mmap2, fmmap))
return false;
//Re-re-insertion
fmmap.insert(ordered_range, int_mmap2.begin(), int_mmap2.end());
std::multimap<int, int> int_mmap4(int_mmap2);
int_mmap4.insert(int_mmap2.begin(), int_mmap2.end());
if(!CheckEqualContainers(int_mmap4, fmmap))
return false;
//Re-re-insertion of even
std::multimap<int, int> int_even_mmap;
for(std::size_t i = 0; i < NumElements; i+=2){
int_mmap.insert(std::multimap<int, int>::value_type(static_cast<int>(i), static_cast<int>(i)));
}
fmmap.insert(ordered_range, int_even_mmap.begin(), int_even_mmap.end());
int_mmap4.insert(int_even_mmap.begin(), int_even_mmap.end());
if(!CheckEqualContainers(int_mmap4, fmmap))
return false;
}
//Ordered insertion map
{
std::map<int, int> int_map;
for(std::size_t i = 0; i != NumElements; ++i){
int_map.insert(std::map<int, int>::value_type(static_cast<int>(i), static_cast<int>(i)));
}
//Construction insertion
flat_map<int, int> fmap(ordered_unique_range, int_map.begin(), int_map.end());
if(!CheckEqualContainers(int_map, fmap))
return false;
//Insertion when empty
fmap.clear();
fmap.insert(ordered_unique_range, int_map.begin(), int_map.end());
if(!CheckEqualContainers(int_map, fmap))
return false;
//Re-insertion
fmap.insert(ordered_unique_range, int_map.begin(), int_map.end());
std::map<int, int> int_map2(int_map);
int_map2.insert(int_map.begin(), int_map.end());
if(!CheckEqualContainers(int_map2, fmap))
return false;
//Re-re-insertion
fmap.insert(ordered_unique_range, int_map2.begin(), int_map2.end());
std::map<int, int> int_map4(int_map2);
int_map4.insert(int_map2.begin(), int_map2.end());
if(!CheckEqualContainers(int_map4, fmap))
return false;
//Re-re-insertion of even
std::map<int, int> int_even_map;
for(std::size_t i = 0; i < NumElements; i+=2){
int_map.insert(std::map<int, int>::value_type(static_cast<int>(i), static_cast<int>(i)));
}
fmap.insert(ordered_unique_range, int_even_map.begin(), int_even_map.end());
int_map4.insert(int_even_map.begin(), int_even_map.end());
if(!CheckEqualContainers(int_map4, fmap))
return false;
}
return true;
}
bool constructor_template_auto_deduction_test()
{
#ifndef BOOST_CONTAINER_NO_CXX17_CTAD
using namespace boost::container;
const std::size_t NumElements = 100;
{
std::map<int, int> int_map;
for(std::size_t i = 0; i != NumElements; ++i){
int_map.insert(std::map<int, int>::value_type(static_cast<int>(i), static_cast<int>(i)));
}
std::multimap<int, int> int_mmap;
for (std::size_t i = 0; i != NumElements; ++i) {
int_mmap.insert(std::multimap<int, int>::value_type(static_cast<int>(i), static_cast<int>(i)));
}
typedef std::less<int> comp_int_t;
typedef std::allocator<std::pair<int, int> > alloc_pair_int_t;
//range
{
auto fmap = flat_map(int_map.begin(), int_map.end());
if (!CheckEqualContainers(int_map, fmap))
return false;
auto fmmap = flat_multimap(int_mmap.begin(), int_mmap.end());
if (!CheckEqualContainers(int_mmap, fmmap))
return false;
}
//range+comp
{
auto fmap = flat_map(int_map.begin(), int_map.end(), comp_int_t());
if (!CheckEqualContainers(int_map, fmap))
return false;
auto fmmap = flat_multimap(int_mmap.begin(), int_mmap.end(), comp_int_t());
if (!CheckEqualContainers(int_mmap, fmmap))
return false;
}
//range+comp+alloc
{
auto fmap = flat_map(int_map.begin(), int_map.end(), comp_int_t(), alloc_pair_int_t());
if (!CheckEqualContainers(int_map, fmap))
return false;
auto fmmap = flat_multimap(int_mmap.begin(), int_mmap.end(), comp_int_t(), alloc_pair_int_t());
if (!CheckEqualContainers(int_mmap, fmmap))
return false;
}
//range+alloc
{
auto fmap = flat_map(int_map.begin(), int_map.end(), alloc_pair_int_t());
if (!CheckEqualContainers(int_map, fmap))
return false;
auto fmmap = flat_multimap(int_mmap.begin(), int_mmap.end(), alloc_pair_int_t());
if (!CheckEqualContainers(int_mmap, fmmap))
return false;
}
//ordered_unique_range / ordered_range
//range
{
auto fmap = flat_map(ordered_unique_range, int_map.begin(), int_map.end());
if(!CheckEqualContainers(int_map, fmap))
return false;
auto fmmap = flat_multimap(ordered_range, int_mmap.begin(), int_mmap.end());
if(!CheckEqualContainers(int_mmap, fmmap))
return false;
}
//range+comp
{
auto fmap = flat_map(ordered_unique_range, int_map.begin(), int_map.end(), comp_int_t());
if (!CheckEqualContainers(int_map, fmap))
return false;
auto fmmap = flat_multimap(ordered_range, int_mmap.begin(), int_mmap.end(), comp_int_t());
if (!CheckEqualContainers(int_mmap, fmmap))
return false;
}
//range+comp+alloc
{
auto fmap = flat_map(ordered_unique_range, int_map.begin(), int_map.end(), comp_int_t(), alloc_pair_int_t());
if (!CheckEqualContainers(int_map, fmap))
return false;
auto fmmap = flat_multimap(ordered_range, int_mmap.begin(), int_mmap.end(), comp_int_t(), alloc_pair_int_t());
if (!CheckEqualContainers(int_mmap, fmmap))
return false;
}
//range+alloc
{
auto fmap = flat_map(ordered_unique_range, int_map.begin(), int_map.end(),alloc_pair_int_t());
if (!CheckEqualContainers(int_map, fmap))
return false;
auto fmmap = flat_multimap(ordered_range, int_mmap.begin(), int_mmap.end(),alloc_pair_int_t());
if (!CheckEqualContainers(int_mmap, fmmap))
return false;
}
}
#endif
return true;
}
template< class RandomIt >
void random_shuffle( RandomIt first, RandomIt last )
{
typedef typename boost::container::iterator_traits<RandomIt>::difference_type difference_type;
difference_type n = last - first;
for (difference_type i = n-1; i > 0; --i) {
difference_type j = std::rand() % (i+1);
if(j != i) {
boost::adl_move_swap(first[i], first[j]);
}
}
}
bool flat_tree_extract_adopt_test()
{
using namespace boost::container;
const std::size_t NumElements = 100;
//extract/adopt map
{
//Construction insertion
flat_map<int, int> fmap;
for(std::size_t i = 0; i != NumElements; ++i){
fmap.emplace(static_cast<int>(i), -static_cast<int>(i));
}
flat_map<int, int> fmap_copy(fmap);
flat_map<int, int>::sequence_type seq(fmap.extract_sequence());
if(!fmap.empty())
return false;
if(!CheckEqualContainers(seq, fmap_copy))
return false;
seq.insert(seq.end(), fmap_copy.begin(), fmap_copy.end());
boost::container::test::random_shuffle(seq.begin(), seq.end());
fmap.adopt_sequence(boost::move(seq));
if(!CheckEqualContainers(fmap, fmap_copy))
return false;
}
//extract/adopt map, ordered_unique_range
{
//Construction insertion
flat_map<int, int> fmap;
for(std::size_t i = 0; i != NumElements; ++i){
fmap.emplace(static_cast<int>(i), -static_cast<int>(i));
}
flat_map<int, int> fmap_copy(fmap);
flat_map<int, int>::sequence_type seq(fmap.extract_sequence());
if(!fmap.empty())
return false;
if(!CheckEqualContainers(seq, fmap_copy))
return false;
fmap.adopt_sequence(ordered_unique_range, boost::move(seq));
if(!CheckEqualContainers(fmap, fmap_copy))
return false;
}
//extract/adopt multimap
{
//Construction insertion
flat_multimap<int, int> fmmap;
for(std::size_t i = 0; i != NumElements; ++i){
fmmap.emplace(static_cast<int>(i), -static_cast<int>(i));
fmmap.emplace(static_cast<int>(i), -static_cast<int>(i));
}
flat_multimap<int, int> fmmap_copy(fmmap);
flat_multimap<int, int>::sequence_type seq(fmmap.extract_sequence());
if(!fmmap.empty())
return false;
if(!CheckEqualContainers(seq, fmmap_copy))
return false;
boost::container::test::random_shuffle(seq.begin(), seq.end());
fmmap.adopt_sequence(boost::move(seq));
if(!CheckEqualContainers(fmmap, fmmap_copy))
return false;
}
//extract/adopt multimap, ordered_range
{
//Construction insertion
flat_multimap<int, int> fmmap;
for(std::size_t i = 0; i != NumElements; ++i){
fmmap.emplace(static_cast<int>(i), -static_cast<int>(i));
fmmap.emplace(static_cast<int>(i), -static_cast<int>(i));
}
flat_multimap<int, int> fmmap_copy(fmmap);
flat_multimap<int, int>::sequence_type seq(fmmap.extract_sequence());
if(!fmmap.empty())
return false;
if(!CheckEqualContainers(seq, fmmap_copy))
return false;
fmmap.adopt_sequence(ordered_range, boost::move(seq));
if(!CheckEqualContainers(fmmap, fmmap_copy))
return false;
}
return true;
}
}}}
template<class VoidAllocatorOrContainer>
struct GetMapContainer
{
template<class ValueType>
struct apply
{
typedef std::pair<ValueType, ValueType> type_t;
typedef flat_map< ValueType
, ValueType
, std::less<ValueType>
, typename boost::container::dtl::container_or_allocator_rebind<VoidAllocatorOrContainer, type_t>::type
> map_type;
typedef flat_multimap< ValueType
, ValueType
, std::less<ValueType>
, typename boost::container::dtl::container_or_allocator_rebind<VoidAllocatorOrContainer, type_t>::type
> multimap_type;
};
};
struct boost_container_flat_map;
struct boost_container_flat_multimap;
namespace boost { namespace container { namespace test {
template<>
struct alloc_propagate_base<boost_container_flat_map>
{
template <class T, class Allocator>
struct apply
{
typedef typename boost::container::allocator_traits<Allocator>::
template portable_rebind_alloc<std::pair<T, T> >::type TypeAllocator;
typedef boost::container::flat_map<T, T, std::less<T>, TypeAllocator> type;
};
};
template<>
struct alloc_propagate_base<boost_container_flat_multimap>
{
template <class T, class Allocator>
struct apply
{
typedef typename boost::container::allocator_traits<Allocator>::
template portable_rebind_alloc<std::pair<T, T> >::type TypeAllocator;
typedef boost::container::flat_multimap<T, T, std::less<T>, TypeAllocator> type;
};
};
template <class Key, class T, class Compare, class Allocator>
struct get_real_stored_allocator<flat_map<Key, T, Compare, Allocator> >
{
typedef typename flat_map<Key, T, Compare, Allocator>::impl_stored_allocator_type type;
};
template <class Key, class T, class Compare, class Allocator>
struct get_real_stored_allocator<flat_multimap<Key, T, Compare, Allocator> >
{
typedef typename flat_multimap<Key, T, Compare, Allocator>::impl_stored_allocator_type type;
};
bool test_heterogeneous_lookups()
{
BOOST_STATIC_ASSERT((dtl::is_transparent<less_transparent>::value));
BOOST_STATIC_ASSERT(!(dtl::is_transparent<std::less<int> >::value));
typedef flat_map<int, char, less_transparent> map_t;
typedef flat_multimap<int, char, less_transparent> mmap_t;
typedef map_t::value_type value_type;
map_t map1;
mmap_t mmap1;
const map_t &cmap1 = map1;
const mmap_t &cmmap1 = mmap1;
if(!map1.insert_or_assign(1, 'a').second)
return false;
if( map1.insert_or_assign(1, 'b').second)
return false;
if(!map1.insert_or_assign(2, 'c').second)
return false;
if( map1.insert_or_assign(2, 'd').second)
return false;
if(!map1.insert_or_assign(3, 'e').second)
return false;
if(map1.insert_or_assign(1, 'a').second)
return false;
if(map1.insert_or_assign(1, 'b').second)
return false;
if(map1.insert_or_assign(2, 'c').second)
return false;
if(map1.insert_or_assign(2, 'd').second)
return false;
if(map1.insert_or_assign(3, 'e').second)
return false;
mmap1.insert(value_type(1, 'a'));
mmap1.insert(value_type(1, 'b'));
mmap1.insert(value_type(2, 'c'));
mmap1.insert(value_type(2, 'd'));
mmap1.insert(value_type(3, 'e'));
const test::non_copymovable_int find_me(2);
//find
if(map1.find(find_me)->second != 'd')
return false;
if(cmap1.find(find_me)->second != 'd')
return false;
if(mmap1.find(find_me)->second != 'c')
return false;
if(cmmap1.find(find_me)->second != 'c')
return false;
//count
if(map1.count(find_me) != 1)
return false;
if(cmap1.count(find_me) != 1)
return false;
if(mmap1.count(find_me) != 2)
return false;
if(cmmap1.count(find_me) != 2)
return false;
//contains
if(!map1.contains(find_me))
return false;
if(!cmap1.contains(find_me))
return false;
if(!mmap1.contains(find_me))
return false;
if(!cmmap1.contains(find_me))
return false;
//lower_bound
if(map1.lower_bound(find_me)->second != 'd')
return false;
if(cmap1.lower_bound(find_me)->second != 'd')
return false;
if(mmap1.lower_bound(find_me)->second != 'c')
return false;
if(cmmap1.lower_bound(find_me)->second != 'c')
return false;
//upper_bound
if(map1.upper_bound(find_me)->second != 'e')
return false;
if(cmap1.upper_bound(find_me)->second != 'e')
return false;
if(mmap1.upper_bound(find_me)->second != 'e')
return false;
if(cmmap1.upper_bound(find_me)->second != 'e')
return false;
//equal_range
if(map1.equal_range(find_me).first->second != 'd')
return false;
if(cmap1.equal_range(find_me).second->second != 'e')
return false;
if(mmap1.equal_range(find_me).first->second != 'c')
return false;
if(cmmap1.equal_range(find_me).second->second != 'e')
return false;
return true;
}
// An ordered sequence of std:pair is also ordered by std::pair::first.
struct with_lookup_by_first
{
typedef void is_transparent;
inline bool operator()(std::pair<int, int> a, std::pair<int, int> b) const
{
return a < b;
}
inline bool operator()(std::pair<int, int> a, int first) const
{
return a.first < first;
}
inline bool operator()(int first, std::pair<int, int> b) const
{
return first < b.first;
}
};
bool test_heterogeneous_lookup_by_partial_key()
{
typedef flat_map<std::pair<int, int>,int, with_lookup_by_first> map_t;
map_t map1;
map1[std::pair<int, int>(0, 1)] = 3;
map1[std::pair<int, int>(0, 2)] = 3;
std::pair<map_t::iterator, map_t::iterator> const first_0_range = map1.equal_range(0);
if(2 != (first_0_range.second - first_0_range.first))
return false;
if(2 != map1.count(0))
return false;
return true;
}
}}} //namespace boost::container::test
int main()
{
using namespace boost::container::test;
//Allocator argument container
{
flat_map<int, int> map_((flat_map<int, int>::allocator_type()));
flat_multimap<int, int> multimap_((flat_multimap<int, int>::allocator_type()));
}
//Now test move semantics
{
test_move<flat_map<recursive_flat_map, recursive_flat_map> >();
test_move<flat_multimap<recursive_flat_multimap, recursive_flat_multimap> >();
}
//Now test nth/index_of
{
flat_map<int, int> map;
flat_multimap<int, int> mmap;
map.insert(std::pair<int, int>(0, 0));
map.insert(std::pair<int, int>(1, 0));
map.insert(std::pair<int, int>(2, 0));
mmap.insert(std::pair<int, int>(0, 0));
mmap.insert(std::pair<int, int>(1, 0));
mmap.insert(std::pair<int, int>(2, 0));
if(!boost::container::test::test_nth_index_of(map))
return 1;
if(!boost::container::test::test_nth_index_of(mmap))
return 1;
}
////////////////////////////////////
// Ordered insertion test
////////////////////////////////////
if(!flat_tree_ordered_insertion_test()){
return 1;
}
////////////////////////////////////
// Constructor Template Auto Deduction test
////////////////////////////////////
if(!constructor_template_auto_deduction_test()){
return 1;
}
////////////////////////////////////
// Extract/Adopt test
////////////////////////////////////
if(!flat_tree_extract_adopt_test()){
return 1;
}
if (!boost::container::test::instantiate_constructors<flat_map<int, int>, flat_multimap<int, int> >())
return 1;
if (!test_heterogeneous_lookups())
return 1;
if (!test_heterogeneous_lookup_by_partial_key())
return 1;
////////////////////////////////////
// Testing allocator implementations
////////////////////////////////////
{
typedef std::map<int, int> MyStdMap;
typedef std::multimap<int, int> MyStdMultiMap;
if (0 != test::map_test
< GetMapContainer<std::allocator<void> >::apply<int>::map_type
, MyStdMap
, GetMapContainer<std::allocator<void> >::apply<int>::multimap_type
, MyStdMultiMap>()) {
std::cout << "Error in map_test<std::allocator<void> >" << std::endl;
return 1;
}
if (0 != test::map_test
< GetMapContainer<new_allocator<void> >::apply<int>::map_type
, MyStdMap
, GetMapContainer<new_allocator<void> >::apply<int>::multimap_type
, MyStdMultiMap>()) {
std::cout << "Error in map_test<new_allocator<void> >" << std::endl;
return 1;
}
if (0 != test::map_test
< GetMapContainer<new_allocator<void> >::apply<test::movable_int>::map_type
, MyStdMap
, GetMapContainer<new_allocator<void> >::apply<test::movable_int>::multimap_type
, MyStdMultiMap>()) {
std::cout << "Error in map_test<new_allocator<void> >" << std::endl;
return 1;
}
if (0 != test::map_test
< GetMapContainer<new_allocator<void> >::apply<test::copyable_int>::map_type
, MyStdMap
, GetMapContainer<new_allocator<void> >::apply<test::copyable_int>::multimap_type
, MyStdMultiMap>()) {
std::cout << "Error in map_test<new_allocator<void> >" << std::endl;
return 1;
}
if (0 != test::map_test
< GetMapContainer<new_allocator<void> >::apply<test::movable_and_copyable_int>::map_type
, MyStdMap
, GetMapContainer<new_allocator<void> >::apply<test::movable_and_copyable_int>::multimap_type
, MyStdMultiMap>()) {
std::cout << "Error in map_test<new_allocator<void> >" << std::endl;
return 1;
}
}
if(!boost::container::test::test_map_support_for_initialization_list_for<flat_map<int, int> >())
return 1;
if (!boost::container::test::test_map_support_for_initialization_list_for<flat_multimap<int, int> >())
return 1;
////////////////////////////////////
// Emplace testing
////////////////////////////////////
const test::EmplaceOptions MapOptions = (test::EmplaceOptions)(test::EMPLACE_HINT_PAIR | test::EMPLACE_ASSOC_PAIR);
if(!boost::container::test::test_emplace<flat_map<test::EmplaceInt, test::EmplaceInt>, MapOptions>())
return 1;
if(!boost::container::test::test_emplace<flat_multimap<test::EmplaceInt, test::EmplaceInt>, MapOptions>())
return 1;
////////////////////////////////////
// Allocator propagation testing
////////////////////////////////////
if(!boost::container::test::test_propagate_allocator<boost_container_flat_map>())
return 1;
if(!boost::container::test::test_propagate_allocator<boost_container_flat_multimap>())
return 1;
////////////////////////////////////
// Iterator testing
////////////////////////////////////
{
typedef boost::container::flat_map<int, int> cont_int;
cont_int a; a.insert(cont_int::value_type(0, 9)); a.insert(cont_int::value_type(1, 9)); a.insert(cont_int::value_type(2, 9));
boost::intrusive::test::test_iterator_random< cont_int >(a);
if(boost::report_errors() != 0) {
return 1;
}
}
{
typedef boost::container::flat_multimap<int, int> cont_int;
cont_int a; a.insert(cont_int::value_type(0, 9)); a.insert(cont_int::value_type(1, 9)); a.insert(cont_int::value_type(2, 9));
boost::intrusive::test::test_iterator_random< cont_int >(a);
if(boost::report_errors() != 0) {
return 1;
}
}
////////////////////////////////////
// has_trivial_destructor_after_move testing
////////////////////////////////////
{
typedef boost::container::dtl::pair<int, int> value_t;
typedef boost::container::dtl::select1st<int> key_of_value_t;
// flat_map, default
{
typedef boost::container::new_allocator<value_t> alloc_or_cont_t;
typedef boost::container::flat_map<int, int> cont;
typedef boost::container::dtl::flat_tree<value_t, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_map, default) test failed" << std::endl;
return 1;
}
}
// flat_map, vector
{
typedef boost::container::vector<value_t> alloc_or_cont_t;
typedef boost::container::flat_map<int, int, std::less<int>, alloc_or_cont_t> cont;
typedef boost::container::dtl::flat_tree<value_t, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_map, vector) test failed" << std::endl;
return 1;
}
}
// flat_map, std::vector
{
typedef std::vector<value_t> alloc_or_cont_t;
typedef boost::container::flat_map<int, int, std::less<int>, alloc_or_cont_t> cont;
typedef boost::container::dtl::flat_tree<value_t, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_map, std::vector) test failed" << std::endl;
return 1;
}
}
// flat_multimap, default
{
typedef boost::container::new_allocator<value_t> alloc_or_cont_t;
typedef boost::container::flat_multimap<int, int> cont;
typedef boost::container::dtl::flat_tree<value_t, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_multimap, default) test failed" << std::endl;
return 1;
}
}
// flat_multimap, vector
{
typedef boost::container::vector<value_t> alloc_or_cont_t;
typedef boost::container::flat_multimap<int, int, std::less<int>, alloc_or_cont_t> cont;
typedef boost::container::dtl::flat_tree<value_t, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_multimap, vector) test failed" << std::endl;
return 1;
}
}
// flat_multimap, std::vector
{
typedef std::vector<value_t> alloc_or_cont_t;
typedef boost::container::flat_multimap<int, int, std::less<int>, alloc_or_cont_t> cont;
typedef boost::container::dtl::flat_tree<value_t, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_multimap, std::vector) test failed" << std::endl;
return 1;
}
}
}
return 0;
}
#include <boost/container/detail/config_end.hpp>