container/test/flat_set_test.cpp

934 lines
30 KiB
C++

//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2004-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#include <boost/container/detail/config_begin.hpp>
#include <iostream>
#include <set>
#include <utility>
#include <vector>
#include <boost/container/flat_set.hpp>
#include <boost/container/detail/container_or_allocator_rebind.hpp>
#include "print_container.hpp"
#include "dummy_test_allocator.hpp"
#include "movable_int.hpp"
#include "set_test.hpp"
#include "propagate_allocator_test.hpp"
#include "emplace_test.hpp"
#include "container_common_tests.hpp"
#include "../../intrusive/test/iterator_test.hpp"
using namespace boost::container;
//Test recursive structures
class recursive_flat_set
{
public:
recursive_flat_set(const recursive_flat_set &c)
: id_(c.id_), flat_set_(c.flat_set_)
{}
recursive_flat_set & operator =(const recursive_flat_set &c)
{
id_ = c.id_;
flat_set_= c.flat_set_;
return *this;
}
int id_;
flat_set<recursive_flat_set> flat_set_;
flat_set<recursive_flat_set>::iterator it_;
flat_set<recursive_flat_set>::const_iterator cit_;
flat_set<recursive_flat_set>::reverse_iterator rit_;
flat_set<recursive_flat_set>::const_reverse_iterator crit_;
friend bool operator< (const recursive_flat_set &a, const recursive_flat_set &b)
{ return a.id_ < b.id_; }
};
//Test recursive structures
class recursive_flat_multiset
{
public:
recursive_flat_multiset(const recursive_flat_multiset &c)
: id_(c.id_), flat_multiset_(c.flat_multiset_)
{}
recursive_flat_multiset & operator =(const recursive_flat_multiset &c)
{
id_ = c.id_;
flat_multiset_= c.flat_multiset_;
return *this;
}
int id_;
flat_multiset<recursive_flat_multiset> flat_multiset_;
flat_multiset<recursive_flat_multiset>::iterator it_;
flat_multiset<recursive_flat_multiset>::const_iterator cit_;
flat_multiset<recursive_flat_multiset>::reverse_iterator rit_;
flat_multiset<recursive_flat_multiset>::const_reverse_iterator crit_;
friend bool operator< (const recursive_flat_multiset &a, const recursive_flat_multiset &b)
{ return a.id_ < b.id_; }
};
template<class C>
void test_move()
{
//Now test move semantics
C original;
C move_ctor(boost::move(original));
C move_assign;
move_assign = boost::move(move_ctor);
move_assign.swap(original);
}
namespace boost{
namespace container {
namespace test{
bool flat_tree_ordered_insertion_test()
{
using namespace boost::container;
const std::size_t NumElements = 100;
//Ordered insertion multiset
{
std::multiset<int> int_mset;
for(std::size_t i = 0; i != NumElements; ++i){
int_mset.insert(static_cast<int>(i));
}
//Construction insertion
flat_multiset<int> fmset(ordered_range, int_mset.begin(), int_mset.end());
if(!CheckEqualContainers(int_mset, fmset))
return false;
//Insertion when empty
fmset.clear();
fmset.insert(ordered_range, int_mset.begin(), int_mset.end());
if(!CheckEqualContainers(int_mset, fmset))
return false;
//Re-insertion
fmset.insert(ordered_range, int_mset.begin(), int_mset.end());
std::multiset<int> int_mset2(int_mset);
int_mset2.insert(int_mset.begin(), int_mset.end());
if(!CheckEqualContainers(int_mset2, fmset))
return false;
//Re-re-insertion
fmset.insert(ordered_range, int_mset2.begin(), int_mset2.end());
std::multiset<int> int_mset4(int_mset2);
int_mset4.insert(int_mset2.begin(), int_mset2.end());
if(!CheckEqualContainers(int_mset4, fmset))
return false;
//Re-re-insertion of even
std::multiset<int> int_even_mset;
for(std::size_t i = 0; i < NumElements; i+=2){
int_mset.insert(static_cast<int>(i));
}
fmset.insert(ordered_range, int_even_mset.begin(), int_even_mset.end());
int_mset4.insert(int_even_mset.begin(), int_even_mset.end());
if(!CheckEqualContainers(int_mset4, fmset))
return false;
//Re-re-insertion using in-place merge
fmset.reserve(fmset.size() + int_mset2.size());
fmset.insert(ordered_range, int_mset2.begin(), int_mset2.end());
std::multiset<int> int_mset5(int_mset2);
int_mset4.insert(int_mset5.begin(), int_mset5.end());
if(!CheckEqualContainers(int_mset4, fmset))
return false;
//Re-re-insertion of even
std::multiset<int> int_even_mset2;
for(std::size_t i = 0; i < NumElements; i+=2){
int_even_mset2.insert(static_cast<int>(i));
}
fmset.reserve(fmset.size() + int_even_mset2.size());
fmset.insert(ordered_range, int_even_mset2.begin(), int_even_mset2.end());
int_mset4.insert(int_even_mset2.begin(), int_even_mset2.end());
if(!CheckEqualContainers(int_mset4, fmset))
return false;
}
//Ordered insertion set
{
std::set<int> int_set;
for(std::size_t i = 0; i != NumElements; ++i){
int_set.insert(static_cast<int>(i));
}
//Construction insertion
flat_set<int> fset(ordered_unique_range, int_set.begin(), int_set.end());
if(!CheckEqualContainers(int_set, fset))
return false;
//Insertion when empty
fset.clear();
fset.insert(ordered_unique_range, int_set.begin(), int_set.end());
if(!CheckEqualContainers(int_set, fset))
return false;
//Re-insertion
fset.insert(ordered_unique_range, int_set.begin(), int_set.end());
std::set<int> int_set2(int_set);
int_set2.insert(int_set.begin(), int_set.end());
if(!CheckEqualContainers(int_set2, fset))
return false;
//Re-re-insertion
fset.insert(ordered_unique_range, int_set2.begin(), int_set2.end());
std::set<int> int_set4(int_set2);
int_set4.insert(int_set2.begin(), int_set2.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
//Re-re-insertion of even
std::set<int> int_even_set;
for(std::size_t i = 0; i < NumElements; i+=2){
int_even_set.insert(static_cast<int>(i));
}
fset.insert(ordered_unique_range, int_even_set.begin(), int_even_set.end());
int_set4.insert(int_even_set.begin(), int_even_set.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
//Partial Re-re-insertion of even
int_even_set.clear();
for(std::size_t i = 0; i < NumElements; i+=4){
int_even_set.insert(static_cast<int>(i));
}
fset.clear();
int_set4.clear();
//insert 0,4,8,12...
fset.insert(ordered_unique_range, int_even_set.begin(), int_even_set.end());
int_set4.insert(int_even_set.begin(), int_even_set.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
for(std::size_t i = 2; i < NumElements; i+=4){
int_even_set.insert(static_cast<int>(i));
}
//insert 0,2,4,6,8,10,12...
fset.insert(ordered_unique_range, int_even_set.begin(), int_even_set.end());
int_set4.insert(int_even_set.begin(), int_even_set.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
int_even_set.clear();
for(std::size_t i = 0; i < NumElements; i+=8){
int_even_set.insert(static_cast<int>(i));
}
fset.clear();
int_set4.clear();
//insert 0,8,16...
fset.insert(ordered_unique_range, int_even_set.begin(), int_even_set.end());
int_set4.insert(int_even_set.begin(), int_even_set.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
for(std::size_t i = 0; i < NumElements; i+=2){
int_even_set.insert(static_cast<int>(i));
}
//insert 0,2,4,6,8,10,12...
fset.insert(ordered_unique_range, int_even_set.begin(), int_even_set.end());
int_set4.insert(int_even_set.begin(), int_even_set.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
int_even_set.clear();
for(std::size_t i = 0; i < NumElements; i+=8){
int_even_set.insert(static_cast<int>(i));
int_even_set.insert(static_cast<int>(i+2));
}
int_even_set.insert(static_cast<int>(NumElements-2));
fset.clear();
int_set4.clear();
//insert 0,2,8,10...
fset.insert(ordered_unique_range, int_even_set.begin(), int_even_set.end());
int_set4.insert(int_even_set.begin(), int_even_set.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
for(std::size_t i = 0; i < NumElements; i+=2){
int_even_set.insert(static_cast<int>(i));
}
//insert 0,2,4,6,8,10,12...
fset.insert(ordered_unique_range, int_even_set.begin(), int_even_set.end());
int_set4.insert(int_even_set.begin(), int_even_set.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
//add even/odd values with not enough capacity
flat_set<int>().swap(fset);
int_set4.clear();
int_set.clear();
fset.reserve(int_even_set.size());
fset.insert(ordered_unique_range, int_even_set.begin(), int_even_set.end());
int_set4.insert(int_even_set.begin(), int_even_set.end());
for(std::size_t i = 0; i < NumElements*2; i+=2){
int_set.insert(static_cast<int>(i));
int_set.insert(static_cast<int>(i+1));
}
fset.insert(ordered_unique_range, int_set.begin(), int_set.end());
int_set4.insert(int_set.begin(), int_set.end());
if(!CheckEqualContainers(int_set4, fset))
return false;
}
return true;
}
bool constructor_template_auto_deduction_test()
{
#ifndef BOOST_CONTAINER_NO_CXX17_CTAD
using namespace boost::container;
const std::size_t NumElements = 100;
{
std::set<int> int_set;
for (std::size_t i = 0; i != NumElements; ++i) {
int_set.insert(static_cast<int>(i));
}
std::multiset<int> int_mset;
for (std::size_t i = 0; i != NumElements; ++i) {
int_mset.insert(static_cast<int>(i));
}
typedef std::less<int> comp_int_t;
typedef std::allocator<int> alloc_int_t;
//range
{
auto fset = flat_set(int_set.begin(), int_set.end());
if (!CheckEqualContainers(int_set, fset))
return false;
auto fmset = flat_multiset(int_mset.begin(), int_mset.end());
if (!CheckEqualContainers(int_mset, fmset))
return false;
}
//range+comp
{
auto fset = flat_set(int_set.begin(), int_set.end(), comp_int_t());
if (!CheckEqualContainers(int_set, fset))
return false;
auto fmset = flat_multiset(int_mset.begin(), int_mset.end(), comp_int_t());
if (!CheckEqualContainers(int_mset, fmset))
return false;
}
//range+comp+alloc
{
auto fset = flat_set(int_set.begin(), int_set.end(), comp_int_t(), alloc_int_t());
if (!CheckEqualContainers(int_set, fset))
return false;
auto fmset = flat_multiset(int_mset.begin(), int_mset.end(), comp_int_t(), alloc_int_t());
if (!CheckEqualContainers(int_mset, fmset))
return false;
}
//range+alloc
{
auto fset = flat_set(int_set.begin(), int_set.end(), alloc_int_t());
if (!CheckEqualContainers(int_set, fset))
return false;
auto fmset = flat_multiset(int_mset.begin(), int_mset.end(), alloc_int_t());
if (!CheckEqualContainers(int_mset, fmset))
return false;
}
//ordered_unique_range / ordered_range
//range
{
auto fset = flat_set(ordered_unique_range, int_set.begin(), int_set.end());
if (!CheckEqualContainers(int_set, fset))
return false;
auto fmset = flat_multiset(ordered_range, int_mset.begin(), int_mset.end());
if (!CheckEqualContainers(int_mset, fmset))
return false;
}
//range+comp
{
auto fset = flat_set(ordered_unique_range, int_set.begin(), int_set.end(), comp_int_t());
if (!CheckEqualContainers(int_set, fset))
return false;
auto fmset = flat_multiset(ordered_range, int_mset.begin(), int_mset.end(), comp_int_t());
if (!CheckEqualContainers(int_mset, fmset))
return false;
}
//range+comp+alloc
{
auto fset = flat_set(ordered_unique_range, int_set.begin(), int_set.end(), comp_int_t(), alloc_int_t());
if (!CheckEqualContainers(int_set, fset))
return false;
auto fmset = flat_multiset(ordered_range, int_mset.begin(), int_mset.end(), comp_int_t(), alloc_int_t());
if (!CheckEqualContainers(int_mset, fmset))
return false;
}
//range+alloc
{
auto fset = flat_set(ordered_unique_range, int_set.begin(), int_set.end(), alloc_int_t());
if (!CheckEqualContainers(int_set, fset))
return false;
auto fmset = flat_multiset(ordered_range, int_mset.begin(), int_mset.end(), alloc_int_t());
if (!CheckEqualContainers(int_mset, fmset))
return false;
}
}
#endif
return true;
}
template< class RandomIt >
void random_shuffle( RandomIt first, RandomIt last )
{
typedef typename boost::container::iterator_traits<RandomIt>::difference_type difference_type;
difference_type n = last - first;
for (difference_type i = n-1; i > 0; --i) {
difference_type j = std::rand() % (i+1);
if(j != i) {
boost::adl_move_swap(first[i], first[j]);
}
}
}
bool flat_tree_extract_adopt_test()
{
using namespace boost::container;
const std::size_t NumElements = 100;
//extract/adopt set
{
//Construction insertion
flat_set<int> fset;
for(std::size_t i = 0; i != NumElements; ++i){
fset.insert(static_cast<int>(i));
}
flat_set<int> fset_copy(fset);
flat_set<int>::sequence_type seq(fset.extract_sequence());
if(!fset.empty())
return false;
if(!CheckEqualContainers(seq, fset_copy))
return false;
seq.insert(seq.end(), fset_copy.begin(), fset_copy.end());
boost::container::test::random_shuffle(seq.begin(), seq.end());
fset.adopt_sequence(boost::move(seq));
if(!CheckEqualContainers(fset, fset_copy))
return false;
}
//extract/adopt set, ordered_unique_range
{
//Construction insertion
flat_set<int> fset;
for(std::size_t i = 0; i != NumElements; ++i){
fset.insert(static_cast<int>(i));
}
flat_set<int> fset_copy(fset);
flat_set<int>::sequence_type seq(fset.extract_sequence());
if(!fset.empty())
return false;
if(!CheckEqualContainers(seq, fset_copy))
return false;
fset.adopt_sequence(ordered_unique_range, boost::move(seq));
if(!CheckEqualContainers(fset, fset_copy))
return false;
}
//extract/adopt multiset
{
//Construction insertion
flat_multiset<int> fmset;
for(std::size_t i = 0; i != NumElements; ++i){
fmset.insert(static_cast<int>(i));
fmset.insert(static_cast<int>(i));
}
flat_multiset<int> fmset_copy(fmset);
flat_multiset<int>::sequence_type seq(fmset.extract_sequence());
if(!fmset.empty())
return false;
if(!CheckEqualContainers(seq, fmset_copy))
return false;
boost::container::test::random_shuffle(seq.begin(), seq.end());
fmset.adopt_sequence(boost::move(seq));
if(!CheckEqualContainers(fmset, fmset_copy))
return false;
}
//extract/adopt multiset, ordered_range
{
//Construction insertion
flat_multiset<int> fmset;
for(std::size_t i = 0; i != NumElements; ++i){
fmset.insert(static_cast<int>(i));
fmset.insert(static_cast<int>(i));
}
flat_multiset<int> fmset_copy(fmset);
flat_multiset<int>::sequence_type seq(fmset.extract_sequence());
if(!fmset.empty())
return false;
if(!CheckEqualContainers(seq, fmset_copy))
return false;
fmset.adopt_sequence(ordered_range, boost::move(seq));
if(!CheckEqualContainers(fmset, fmset_copy))
return false;
}
return true;
}
bool test_heterogeneous_lookups()
{
typedef flat_set<int, test::less_transparent> set_t;
typedef flat_multiset<int, test::less_transparent> mset_t;
set_t set1;
mset_t mset1;
const set_t &cset1 = set1;
const mset_t &cmset1 = mset1;
set1.insert(1);
set1.insert(1);
set1.insert(2);
set1.insert(2);
set1.insert(3);
mset1.insert(1);
mset1.insert(1);
mset1.insert(2);
mset1.insert(2);
mset1.insert(3);
const test::non_copymovable_int find_me(2);
//find
if(*set1.find(find_me) != 2)
return false;
if(*cset1.find(find_me) != 2)
return false;
if(*mset1.find(find_me) != 2)
return false;
if(*cmset1.find(find_me) != 2)
return false;
//count
if(set1.count(find_me) != 1)
return false;
if(cset1.count(find_me) != 1)
return false;
if(mset1.count(find_me) != 2)
return false;
if(cmset1.count(find_me) != 2)
return false;
//contains
if(!set1.contains(find_me))
return false;
if(!cset1.contains(find_me))
return false;
if(!mset1.contains(find_me))
return false;
if(!cmset1.contains(find_me))
return false;
//lower_bound
if(*set1.lower_bound(find_me) != 2)
return false;
if(*cset1.lower_bound(find_me) != 2)
return false;
if(*mset1.lower_bound(find_me) != 2)
return false;
if(*cmset1.lower_bound(find_me) != 2)
return false;
//upper_bound
if(*set1.upper_bound(find_me) != 3)
return false;
if(*cset1.upper_bound(find_me) != 3)
return false;
if(*mset1.upper_bound(find_me) != 3)
return false;
if(*cmset1.upper_bound(find_me) != 3)
return false;
//equal_range
if(*set1.equal_range(find_me).first != 2)
return false;
if(*cset1.equal_range(find_me).second != 3)
return false;
if(*mset1.equal_range(find_me).first != 2)
return false;
if(*cmset1.equal_range(find_me).second != 3)
return false;
return true;
}
// An ordered sequence of std:pair is also ordered by std::pair::first.
struct with_lookup_by_first
{
typedef void is_transparent;
inline bool operator()(std::pair<int, int> a, std::pair<int, int> b) const
{
return a < b;
}
inline bool operator()(std::pair<int, int> a, int first) const
{
return a.first < first;
}
inline bool operator()(int first, std::pair<int, int> b) const
{
return first < b.first;
}
};
bool test_heterogeneous_lookup_by_partial_key()
{
typedef flat_set<std::pair<int, int>, with_lookup_by_first> set_t;
set_t set1;
set1.insert(std::pair<int, int>(0, 1));
set1.insert(std::pair<int, int>(0, 2));
std::pair<set_t::iterator, set_t::iterator> const first_0_range = set1.equal_range(0);
if(2 != (first_0_range.second - first_0_range.first))
return false;
if(2 != set1.count(0))
return false;
return true;
}
}}}
template<class VoidAllocatorOrContainer>
struct GetSetContainer
{
template<class ValueType>
struct apply
{
typedef flat_set < ValueType
, std::less<ValueType>
, typename boost::container::dtl::container_or_allocator_rebind<VoidAllocatorOrContainer, ValueType>::type
> set_type;
typedef flat_multiset < ValueType
, std::less<ValueType>
, typename boost::container::dtl::container_or_allocator_rebind<VoidAllocatorOrContainer, ValueType>::type
> multiset_type;
};
};
template<typename FlatSetType>
bool test_support_for_initialization_list_for()
{
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
const std::initializer_list<int> il
= {1, 2};
const FlatSetType expected(il.begin(), il.end());
{
const FlatSetType sil = il;
if (sil != expected)
return false;
const FlatSetType sil_ordered(ordered_unique_range, il);
if(sil_ordered != expected)
return false;
FlatSetType sil_assign = {99};
sil_assign = il;
if(sil_assign != expected)
return false;
}
{
FlatSetType sil;
sil.insert(il);
if(sil != expected)
return false;
}
return true;
#endif
return true;
}
struct boost_container_flat_set;
struct boost_container_flat_multiset;
namespace boost {
namespace container {
namespace test {
template<>
struct alloc_propagate_base<boost_container_flat_set>
{
template <class T, class Allocator>
struct apply
{
typedef boost::container::flat_set<T, std::less<T>, Allocator> type;
};
};
template<>
struct alloc_propagate_base<boost_container_flat_multiset>
{
template <class T, class Allocator>
struct apply
{
typedef boost::container::flat_multiset<T, std::less<T>, Allocator> type;
};
};
}}} //boost::container::test
int main()
{
using namespace boost::container::test;
//Allocator argument container
{
flat_set<int> set_((flat_set<int>::allocator_type()));
flat_multiset<int> multiset_((flat_multiset<int>::allocator_type()));
}
//Now test move semantics
{
test_move<flat_set<recursive_flat_set> >();
test_move<flat_multiset<recursive_flat_multiset> >();
}
//Now test nth/index_of
{
flat_set<int> set;
flat_multiset<int> mset;
set.insert(0);
set.insert(1);
set.insert(2);
mset.insert(0);
mset.insert(1);
mset.insert(2);
if(!boost::container::test::test_nth_index_of(set))
return 1;
if(!boost::container::test::test_nth_index_of(mset))
return 1;
}
////////////////////////////////////
// Ordered insertion test
////////////////////////////////////
if(!flat_tree_ordered_insertion_test()){
return 1;
}
////////////////////////////////////
// Constructor Template Auto Deduction test
////////////////////////////////////
if (!constructor_template_auto_deduction_test()) {
return 1;
}
////////////////////////////////////
// Extract/Adopt test
////////////////////////////////////
if(!flat_tree_extract_adopt_test()){
return 1;
}
if (!boost::container::test::instantiate_constructors<flat_set<int>, flat_multiset<int> >())
return 1;
if(!test_heterogeneous_lookups()){
return 1;
}
if(!test_heterogeneous_lookup_by_partial_key()){
return 1;
}
////////////////////////////////////
// Testing allocator implementations
////////////////////////////////////
{
typedef std::set<int> MyStdSet;
typedef std::multiset<int> MyStdMultiSet;
if (0 != test::set_test
< GetSetContainer<std::allocator<void> >::apply<int>::set_type
, MyStdSet
, GetSetContainer<std::allocator<void> >::apply<int>::multiset_type
, MyStdMultiSet>()) {
std::cout << "Error in set_test<std::allocator<void> >" << std::endl;
return 1;
}
if (0 != test::set_test
< GetSetContainer<new_allocator<void> >::apply<int>::set_type
, MyStdSet
, GetSetContainer<new_allocator<void> >::apply<int>::multiset_type
, MyStdMultiSet>()) {
std::cout << "Error in set_test<new_allocator<void> >" << std::endl;
return 1;
}
if (0 != test::set_test
< GetSetContainer<new_allocator<void> >::apply<test::movable_int>::set_type
, MyStdSet
, GetSetContainer<new_allocator<void> >::apply<test::movable_int>::multiset_type
, MyStdMultiSet>()) {
std::cout << "Error in set_test<new_allocator<void> >" << std::endl;
return 1;
}
if (0 != test::set_test
< GetSetContainer<new_allocator<void> >::apply<test::copyable_int>::set_type
, MyStdSet
, GetSetContainer<new_allocator<void> >::apply<test::copyable_int>::multiset_type
, MyStdMultiSet>()) {
std::cout << "Error in set_test<new_allocator<void> >" << std::endl;
return 1;
}
if (0 != test::set_test
< GetSetContainer<new_allocator<void> >::apply<test::movable_and_copyable_int>::set_type
, MyStdSet
, GetSetContainer<new_allocator<void> >::apply<test::movable_and_copyable_int>::multiset_type
, MyStdMultiSet>()) {
std::cout << "Error in set_test<new_allocator<void> >" << std::endl;
return 1;
}
}
////////////////////////////////////
// Emplace testing
////////////////////////////////////
const test::EmplaceOptions SetOptions = (test::EmplaceOptions)(test::EMPLACE_HINT | test::EMPLACE_ASSOC);
if(!boost::container::test::test_emplace<flat_set<test::EmplaceInt>, SetOptions>())
return 1;
if(!boost::container::test::test_emplace<flat_multiset<test::EmplaceInt>, SetOptions>())
return 1;
if (!boost::container::test::test_set_methods_with_initializer_list_as_argument_for<flat_set<int> >())
return 1;
if (!boost::container::test::test_set_methods_with_initializer_list_as_argument_for<flat_multiset<int> >())
return 1;
////////////////////////////////////
// Allocator propagation testing
////////////////////////////////////
if(!boost::container::test::test_propagate_allocator<boost_container_flat_set>())
return 1;
if(!boost::container::test::test_propagate_allocator<boost_container_flat_multiset>())
return 1;
////////////////////////////////////
// Iterator testing
////////////////////////////////////
{
typedef boost::container::flat_set<int> cont_int;
cont_int a; a.insert(0); a.insert(1); a.insert(2);
boost::intrusive::test::test_iterator_random< cont_int >(a);
if(boost::report_errors() != 0) {
return 1;
}
}
{
typedef boost::container::flat_multiset<int> cont_int;
cont_int a; a.insert(0); a.insert(1); a.insert(2);
boost::intrusive::test::test_iterator_random< cont_int >(a);
if(boost::report_errors() != 0) {
return 1;
}
}
////////////////////////////////////
// has_trivial_destructor_after_move testing
////////////////////////////////////
{
typedef boost::container::dtl::identity<int> key_of_value_t;
// flat_set, default
{
typedef boost::container::flat_set<int> cont;
typedef boost::container::dtl::flat_tree<int, key_of_value_t, std::less<int>, void> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_set, default) test failed" << std::endl;
return 1;
}
}
// flat_set, vector
{
typedef boost::container::vector<int> alloc_or_cont_t;
typedef boost::container::flat_set<int, std::less<int>, alloc_or_cont_t> cont;
typedef boost::container::dtl::flat_tree<int, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_set, vector) test failed" << std::endl;
return 1;
}
}
// flat_set, std::vector
{
typedef std::vector<int> alloc_or_cont_t;
typedef boost::container::flat_set<int, std::less<int>, alloc_or_cont_t> cont;
typedef boost::container::dtl::flat_tree<int, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_set, std::vector) test failed" << std::endl;
return 1;
}
}
// flat_multiset, default
{
typedef boost::container::flat_multiset<int> cont;
typedef boost::container::dtl::flat_tree<int, key_of_value_t, std::less<int>, void> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_multiset, default) test failed" << std::endl;
return 1;
}
}
// flat_multiset, vector
{
typedef boost::container::vector<int> alloc_or_cont_t;
typedef boost::container::flat_multiset<int, std::less<int>, alloc_or_cont_t> cont;
typedef boost::container::dtl::flat_tree<int, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_multiset, vector) test failed" << std::endl;
return 1;
}
}
// flat_multiset, std::vector
{
typedef std::vector<int> alloc_or_cont_t;
typedef boost::container::flat_multiset<int, std::less<int>, alloc_or_cont_t> cont;
typedef boost::container::dtl::flat_tree<int, key_of_value_t, std::less<int>, alloc_or_cont_t> tree;
if (boost::has_trivial_destructor_after_move<cont>::value !=
boost::has_trivial_destructor_after_move<tree>::value) {
std::cerr << "has_trivial_destructor_after_move(flat_multiset, std::vector) test failed" << std::endl;
return 1;
}
}
}
return 0;
}
#include <boost/container/detail/config_end.hpp>