e26fd2ed98
* Synchronize each miscrosec test to the next second (#109) * Synchronize each miscrosec test to the next second The aim is to avoid false positives in test_microsec when the seconds, minutes or hours change during time read between the second_clock and the microsec_clock. * Improved readability of the microcec_time_clock test * Improve performance of adding and subtracting time durations from a ptime. (#99) Modifying ptime objects by adding and subtracting time durations was inefficient because it extracted the date and time of day and then re-constructed a ptime using the date and modified time of day. This can be avoided by using the existing time_system utilities which perform the operation by adjusting the number of ticks. Performance is improved by a factor of 48 on my system. * Update CI Scripts * Add time_duration helper functions: (#113) 1. is_positive() - Return boolean value to indicate whether or not time duration is positive. 2. is_zero() - Return boolean value to indicate whether or not time duration is zero. 3. abs() - Return a time_duration which is the absolute value of time duration. Added documentation for these helper functions and improved existing documentation to indicate constness, return values or static functions. * Cease dependence on MPL (#115)
142 lines
4.4 KiB
C++
142 lines
4.4 KiB
C++
/* Copyright (c) 2002,2003 CrystalClear Software, Inc.
|
|
* Use, modification and distribution is subject to the
|
|
* Boost Software License, Version 1.0. (See accompanying
|
|
* file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
*/
|
|
|
|
#include "boost/date_time/posix_time/posix_time.hpp"
|
|
#include "boost/date_time/microsec_time_clock.hpp"
|
|
#include "../testfrmwk.hpp"
|
|
#if defined(BOOST_HAS_FTIME)
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
void
|
|
sync_to_next_second()
|
|
{
|
|
using namespace boost::posix_time;
|
|
|
|
ptime t_prev;
|
|
ptime t_now = second_clock::local_time();
|
|
|
|
// Wait the next seconds
|
|
do
|
|
{
|
|
t_prev = t_now;
|
|
t_now = second_clock::local_time();
|
|
} while (t_now.time_of_day().seconds() == t_prev.time_of_day().seconds());
|
|
|
|
// Wait 300ms in order to avoid seconds of second_clock > microsec_clock.
|
|
t_now = microsec_clock::local_time();
|
|
t_prev = t_now;
|
|
do
|
|
{
|
|
t_now = microsec_clock::local_time();
|
|
} while (t_now - t_prev < milliseconds(300));
|
|
|
|
}
|
|
|
|
|
|
int
|
|
main()
|
|
{
|
|
#ifdef BOOST_DATE_TIME_HAS_HIGH_PRECISION_CLOCK
|
|
|
|
using namespace boost::posix_time;
|
|
|
|
std::cout << "Check local time of microsec_clock against second_clock" << std::endl;
|
|
|
|
ptime last = microsec_clock::local_time();
|
|
int max = 30;
|
|
for (int i=0; i<max; i++)
|
|
{
|
|
// Some systems loop too fast so "last is less" tests fail due to
|
|
// 'last' & 't2' being equal. These calls slow it down enough to
|
|
// make 'last' & 't2' different. Moreover, we must wait the next
|
|
// second to avoid a change in hour, minute or second field
|
|
// between acquisition of t1 and t2.
|
|
sync_to_next_second();
|
|
|
|
ptime t1 = second_clock::local_time();
|
|
std::cout << to_simple_string(t1) << std::endl;
|
|
|
|
ptime t2 = microsec_clock::local_time();
|
|
std::cout << to_simple_string(t2) << std::endl;
|
|
|
|
check("check equality of hours "
|
|
"between second_clock and microsec_clock timestamps",
|
|
t1.time_of_day().hours() == t2.time_of_day().hours());
|
|
|
|
check("check equality of minutes "
|
|
"between second_clock and microsec_clock timestamps",
|
|
t1.time_of_day().minutes() == t2.time_of_day().minutes());
|
|
|
|
check("check equality of seconds "
|
|
"between second_clock and microsec_clock timestamps",
|
|
t1.time_of_day().seconds() == t2.time_of_day().seconds());
|
|
|
|
check("check equality of date"
|
|
"between second_clock and microsec_clock timestamps",
|
|
t1.date() == t2.date());
|
|
|
|
if( !check("check that previous microsec_clock timestamp "
|
|
"is less than the current", last < t2) ) {
|
|
std::cout << to_simple_string(last) << " < "
|
|
<< to_simple_string(t2) << std::endl;
|
|
}
|
|
|
|
last = t2;
|
|
}
|
|
|
|
|
|
std::cout << "Check universal time of microsec_clock against second_clock" << std::endl;
|
|
max = 10;
|
|
last = microsec_clock::universal_time();
|
|
for (int i=0; i<max; i++)
|
|
{
|
|
// Some systems loop too fast so "last is less" tests fail due to
|
|
// 'last' & 't2' being equal. These calls slow it down enough to
|
|
// make 'last' & 't2' different. Moreover, we must wait the next
|
|
// second to avoid a change in hour, minute or second field
|
|
// between acquisition of t1 and t2.
|
|
sync_to_next_second();
|
|
|
|
ptime t1 = second_clock::universal_time();
|
|
std::cout << to_simple_string(t1) << std::endl;
|
|
|
|
ptime t2 = microsec_clock::universal_time();
|
|
std::cout << to_simple_string(t2) << std::endl;
|
|
|
|
check("check equality of hours "
|
|
"between second_clock and microsec_clock timestamps",
|
|
t1.time_of_day().hours() == t2.time_of_day().hours());
|
|
|
|
check("check equality of minutes "
|
|
"between second_clock and microsec_clock timestamps",
|
|
t1.time_of_day().minutes() == t2.time_of_day().minutes());
|
|
|
|
check("check equality of seconds "
|
|
"between second_clock and microsec_clock timestamps",
|
|
t1.time_of_day().seconds() == t2.time_of_day().seconds());
|
|
|
|
check("check equality of date"
|
|
"between second_clock and microsec_clock timestamps",
|
|
t1.date() == t2.date());
|
|
|
|
if( !check("check that previous microsec_clock timestamp "
|
|
"is less than the current", last < t2) ) {
|
|
std::cout << to_simple_string(last) << " < "
|
|
<< to_simple_string(t2) << std::endl;
|
|
}
|
|
|
|
last = t2;
|
|
}
|
|
|
|
#else
|
|
check("Get time of day micro second clock not supported due to inadequate compiler/platform", false);
|
|
#endif
|
|
return printTestStats();
|
|
|
|
}
|