geometry/doc/other/maxima/geod.mac

250 lines
7.7 KiB
Plaintext

/*
Copyright (c) 2018 Adeel Ahmad, Islamabad, Pakistan.
Contributed and/or modified by Adeel Ahmad, as part of Google Summer of Code 2018 program.
Use, modification and distribution is subject to the Boost Software License,
Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
This file is converted from GeographicLib, https://geographiclib.sourceforge.io
GeographicLib is originally written by Charles Karney.
Author: Charles Karney (2008-2017)
Last updated version of GeographicLib: 1.49
Original copyright notice:
Copyright (c) Charles Karney (2009-2015) <charles@karney.com> and
licensed under the MIT/X11 License. For more information, see
https://geographiclib.sourceforge.io
Compute the series expansions for the ellipsoidal geodesic problem.
References:
Charles F. F. Karney,
Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
https://doi.org/10.1007/s00190-012-0578-z
Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
The code below contains minor modifications to conform with
Boost Geometry style guidelines.
To run the code, start Maxima and enter
load("geod.mac")$
*/
taylordepth:5$
ataylor(expr,var,ord):=expand(ratdisrep(taylor(expr,var,0,ord)))$
jtaylor(expr,var1,var2,ord):=block([zz],expand(subst([zz=1],
ratdisrep(taylor(subst([var1=zz*var1,var2=zz*var2],expr),zz,0,ord)))))$
computeI1(maxpow):=block([sintegrand,sintegrandexp,s,sigma,tau1,k2,eps],
sintegrand:sqrt(1+k2*sin(sigma)^2),
sintegrandexp:ataylor(
(1-eps)*subst([k2=4*eps/(1-eps)^2],sintegrand),
eps,maxpow),
s:trigreduce(integrate(sintegrandexp,sigma)),
s:s-subst(sigma=0,s),
A1:expand(subst(sigma=2*%pi,s)/(2*%pi)),
tau1:ataylor(s/A1,eps,maxpow),
for i:1 thru maxpow do C1[i]:coeff(tau1,sin(2*i*sigma)),
if expand(tau1-sigma-sum(C1[i]*sin(2*i*sigma),i,1,maxpow)) # 0
then error("left over terms in B1"),
A1:A1/(1-eps),
'done)$
codeA1(maxpow):=block([tab2:" ",tab3:" "],
print("// The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
static inline CT evaluate_series_A1(CT eps) {
CT eps2 = math::sqr(eps);
CT t;
switch (SeriesOrder/2) {"),
for n:0 thru entier(maxpow/2) do block([
q:horner(ataylor(subst([eps=sqrt(eps2)],A1*(1-eps)-1),eps2,n)),
linel:1200],
print(concat(tab2,"case ",string(n),":")),
print(concat(tab3,"t = ",string(q),";")),
print(concat(tab3,"break;"))),
print(" }
return (t + eps) / (1 - eps);
}"),
'done)$
computeI2(maxpow):=block([sintegrand,sintegrandexp,s,sigma,tau1,k2,eps],
sintegrand:1/sqrt(1+k2*sin(sigma)^2),
sintegrandexp:ataylor(
(1+eps)*subst([k2=4*eps/(1-eps)^2],sintegrand),
eps,maxpow),
s:trigreduce(integrate(sintegrandexp,sigma)),
s:s-subst(sigma=0,s),
A2:expand(subst(sigma=2*%pi,s)/(2*%pi)),
tau1:ataylor(s/A2,eps,maxpow),
for i:1 thru maxpow do C2[i]:coeff(tau1,sin(2*i*sigma)),
if expand(tau1-sigma-sum(C2[i]*sin(2*i*sigma),i,1,maxpow)) # 0
then error("left over terms in B2"),
A2:A2/(1+eps),
'done)$
codeA2(maxpow):=block([tab2:" ",tab3:" "],
print("// The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
CT evaluate_series_A2(CT const& eps)
{
CT const eps2 = math::sqr(eps);
CT t;
switch (SeriesOrder/2) {"),
for n:0 thru entier(maxpow/2) do block([
q:horner(ataylor(subst([eps=sqrt(eps2)],A2*(1+eps)-1),eps2,n)),
linel:1200],
print(concat(tab2,"case ",string(n),":")),
print(concat(tab3,"t = ",string(q),";")),
print(concat(tab3,"break;"))),
print(" }
return (t - eps) / (1 + eps);
}"),
'done)$
computeI3(maxpow):=block([int,intexp,dlam,eta,del,eps,nu,f,z,n],
maxpow:maxpow-1,
int:subst([k2=4*eps/(1-eps)^2],
(2-f)/(1+(1-f)*sqrt(1+k2*sin(sigma)^2))),
int:subst([f=2*n/(1+n)],int),
intexp:jtaylor(int,n,eps,maxpow),
dlam:trigreduce(integrate(intexp,sigma)),
dlam:dlam-subst(sigma=0,dlam),
A3:expand(subst(sigma=2*%pi,dlam)/(2*%pi)),
eta:jtaylor(dlam/A3,n,eps,maxpow),
A3:jtaylor(A3,n,eps,maxpow),
for i:1 thru maxpow do C3[i]:coeff(eta,sin(2*i*sigma)),
if expand(eta-sigma-sum(C3[i]*sin(2*i*sigma),i,1,maxpow)) # 0
then error("left over terms in B3"),
'done)$
codeA3(maxpow):=block([tab2:" ",tab3:" "],
print("// The scale factor A3 = mean value of (d/dsigma)I3
static inline void evaluate_series_A3(CT const& n, CT c[])
{
switch (SeriesOrder) {"),
for nn:0 thru maxpow do block(
[q:if nn=0 then 0 else
jtaylor(subst([n=n],A3),n,eps,nn-1),
linel:1200],
print(concat(tab2,"case ",string(nn),":")),
for i : 0 thru nn-1 do
print(concat(tab3,"c[",i,"] = ",
string(horner(coeff(q,eps,i))),";")),
print(concat(tab3,"break;"))),
print(" }
}"),
'done)$
codeC1(maxpow):=block([tab2:" ",tab3:" "],
print("// The coefficients C1[l] in the Fourier expansion of B1
static inline evaluate_coeffs_C1(CT eps, CT c[]) {
CT eps2 = math::sqr(eps);
CT d = eps;
switch (SeriesOrder) {"),
for n:0 thru maxpow do (
print(concat(tab2,"case ",string(n),":")),
for m:1 thru n do block([q:d*horner(
subst([eps=sqrt(eps2)],ataylor(C1[m],eps,n)/eps^m)),
linel:1200],
if m>1 then print(concat(tab3,"d *= eps;")),
print(concat(tab3,"c[",string(m),"] = ",string(q),";"))),
print(concat(tab3,"break;"))),
print(" }
}"),
'done)$
revertI1(maxpow):=block([tau,eps,tauacc:1,sigacc:0],
for n:1 thru maxpow do (
tauacc:trigreduce(ataylor(
-sum(C1[j]*sin(2*j*tau),j,1,maxpow-n+1)*tauacc/n,
eps,maxpow)),
sigacc:sigacc+expand(diff(tauacc,tau,n-1))),
for i:1 thru maxpow do C1p[i]:coeff(sigacc,sin(2*i*tau)),
if expand(sigacc-sum(C1p[i]*sin(2*i*tau),i,1,maxpow)) # 0
then error("left over terms in B1p"),
'done)$
codeC1p(maxpow):=block([tab2:" ",tab3:" "],
print("// The coefficients C1p[l] in the Fourier expansion of B1p
static inline evaluate_coeffs_C1p(CT eps, CT c[])
{
CT const eps2 = math::sqr(eps);
CT d = eps;
switch (SeriesOrder) {"),
for n:0 thru maxpow do (
print(concat(tab2,"case ",string(n),":")),
for m:1 thru n do block([q:d*horner(
subst([eps=sqrt(eps2)],ataylor(C1p[m],eps,n)/eps^m)),
linel:1200],
if m>1 then print(concat(tab3,"d *= eps;")),
print(concat(tab3,"c[",string(m),"] = ",string(q),";"))),
print(concat(tab3,"break;"))),
print(" }
}"),
'done)$
codeC2(maxpow):=block([tab2:" ",tab3:" "],
print("// The coefficients C2[l] in the Fourier expansion of B2
static inline void evaluate_coeffs_C2(CT const& eps, CT c[])
{
CT const eps2 = math::sqr(eps);
CT d = eps;
switch (SeriesOrder) {"),
for n:0 thru maxpow do (
print(concat(tab2,"case ",string(n),":")),
for m:1 thru n do block([q:d*horner(
subst([eps=sqrt(eps2)],ataylor(C2[m],eps,n)/eps^m)),
linel:1200],
if m>1 then print(concat(tab3,"d *= eps;")),
print(concat(tab3,"c[",string(m),"] = ",string(q),";"))),
print(concat(tab3,"break;"))),
print(" }
}"),
'done)$
codeC3(maxpow):=block([tab2:" ",tab3:" "],
print("// The coefficients C3[l] in the Fourier expansion of B3
static inline void evaluate_coeffs_C3(CT const& n, CT c[])
{
const CT n2 = math::sqr(n);
switch (SeriesOrder) {"),
for nn:0 thru maxpow do block([c],
print(concat(tab2,"case ",string(nn),":")),
c:0,
for m:1 thru nn-1 do block(
[q:if nn = 0 then 0 else
jtaylor(subst([n=n],C3[m]),_n,eps,nn-1),
linel:1200],
for j:m thru nn-1 do (
print(concat(tab3,"c[",c,"] = ",
string(horner(coeff(q,eps,j))),";")),
c:c+1)
),
print(concat(tab3,"break;"))),
print(" }
}"),
'done)$
maxpow:8$
computeI1(maxpow)$
computeI2(maxpow)$
computeI3(maxpow)$
revertI1(maxpow)$
codeA1(maxpow)$
codeA2(maxpow)$
codeA3(maxpow)$
codeC1(maxpow)$
codeC2(maxpow)$
codeC3(maxpow)$
codeC1p(maxpow)$