geometry/test/strategies/andoyer.cpp
Adam Wulkiewicz 7d2026dd84 Merge branch 'develop' into feature/projections
Conflicts:
	include/boost/geometry/geometry.hpp
	test/Jamfile.v2
2018-01-21 01:51:04 +01:00

347 lines
13 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Unit Test
// Copyright (c) 2007-2016 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2016 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2016 Mateusz Loskot, London, UK.
// This file was modified by Oracle on 2014-2017.
// Modifications copyright (c) 2014-2017 Oracle and/or its affiliates.
// Contributed and/or modified by Vissarion Fysikopoulos, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <geometry_test_common.hpp>
#include <boost/concept_check.hpp>
#include <boost/geometry/algorithms/assign.hpp>
#include <boost/geometry/algorithms/distance.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/geometry/srs/spheroid.hpp>
#include <boost/geometry/strategies/concepts/distance_concept.hpp>
#include <boost/geometry/strategies/geographic/distance_andoyer.hpp>
#include <boost/geometry/strategies/geographic/side_andoyer.hpp>
#include <test_common/test_point.hpp>
#ifdef HAVE_TTMATH
# include <boost/geometry/extensions/contrib/ttmath_stub.hpp>
#endif
double make_deg(double deg, double min, double sec)
{
return deg + min / 60.0 + sec / 3600.0;
}
double to_rad(double deg)
{
return bg::math::pi<double>() * deg / 180.0;
}
double to_deg(double rad)
{
return 180.0 * rad / bg::math::pi<double>();
}
double normlized_deg(double deg)
{
if (deg > 180)
return deg - 360;
else if (deg < -180)
return deg + 360;
else
return deg;
}
template <typename P1, typename P2>
void test_distance(double lon1, double lat1, double lon2, double lat2, double expected_km)
{
// Set radius type, but for integer coordinates we want to have floating point radius type
typedef typename bg::promote_floating_point
<
typename bg::coordinate_type<P1>::type
>::type rtype;
typedef bg::srs::spheroid<rtype> stype;
typedef bg::strategy::distance::andoyer<stype> andoyer_type;
typedef bg::strategy::distance::geographic<bg::strategy::andoyer, stype> geographic_type;
typedef bg::formula::andoyer_inverse<rtype, true, false> andoyer_inverse_type;
BOOST_CONCEPT_ASSERT
(
(bg::concepts::PointDistanceStrategy<andoyer_type, P1, P2>)
);
andoyer_type andoyer;
geographic_type geographic;
typedef typename bg::strategy::distance
::services::return_type<andoyer_type, P1, P2>::type return_type;
P1 p1;
P2 p2;
bg::assign_values(p1, lon1, lat1);
bg::assign_values(p2, lon2, lat2);
return_type d_strategy = andoyer.apply(p1, p2);
return_type d_strategy2 = geographic.apply(p1, p2);
return_type d_function = bg::distance(p1, p2, andoyer);
double diff = bg::math::longitude_distance_signed<bg::degree>(lon1, lon2);
return_type d_formula;
// if the points lay on a meridian, distance strategy calls the special formula
// for meridian distance that returns different result than andoyer formula
// for nearly antipodal points
if (bg::math::equals(diff, 0.0)
|| bg::math::equals(bg::math::abs(diff), 180.0))
{
d_formula = d_strategy;
}
else
{
d_formula = andoyer_inverse_type::apply(to_rad(lon1), to_rad(lat1),
to_rad(lon2), to_rad(lat2),
stype()).distance;
}
BOOST_CHECK_CLOSE(d_strategy / 1000.0, expected_km, 0.001);
BOOST_CHECK_CLOSE(d_strategy2 / 1000.0, expected_km, 0.001);
BOOST_CHECK_CLOSE(d_function / 1000.0, expected_km, 0.001);
BOOST_CHECK_CLOSE(d_formula / 1000.0, expected_km, 0.001);
}
template <typename PS, typename P>
void test_azimuth(double lon1, double lat1,
double lon2, double lat2,
double expected_azimuth_deg)
{
// Set radius type, but for integer coordinates we want to have floating point radius type
typedef typename bg::promote_floating_point
<
typename bg::coordinate_type<PS>::type
>::type rtype;
typedef bg::srs::spheroid<rtype> stype;
typedef bg::formula::andoyer_inverse<rtype, false, true> andoyer_inverse_type;
rtype a_formula = andoyer_inverse_type::apply(to_rad(lon1), to_rad(lat1), to_rad(lon2), to_rad(lat2), stype()).azimuth;
rtype azimuth_deg = to_deg(a_formula);
if (bg::math::equals(azimuth_deg, -180.0))
azimuth_deg = 180.0;
if (bg::math::equals(expected_azimuth_deg, -180.0))
expected_azimuth_deg = 180.0;
if (bg::math::equals(expected_azimuth_deg, 0.0))
{
BOOST_CHECK(bg::math::equals(azimuth_deg, expected_azimuth_deg));
}
else
{
BOOST_CHECK_CLOSE(azimuth_deg, expected_azimuth_deg, 0.001);
}
}
template <typename P1, typename P2>
void test_distazi(double lon1, double lat1, double lon2, double lat2,
double expected_km, double expected_azimuth_deg)
{
test_distance<P1, P2>(lon1, lat1, lon2, lat2, expected_km);
test_azimuth<P1, P2>(lon1, lat1, lon2, lat2, expected_azimuth_deg);
}
// requires SW->NE
template <typename P1, typename P2>
void test_distazi_symm(double lon1, double lat1, double lon2, double lat2,
double expected_km, double expected_azimuth_deg,
bool is_antipodal = false)
{
double d180 = is_antipodal ? 0 : 180;
test_distazi<P1, P2>(lon1, lat1, lon2, lat2, expected_km, expected_azimuth_deg);
test_distazi<P1, P2>(-lon1, lat1, -lon2, lat2, expected_km, -expected_azimuth_deg);
test_distazi<P1, P2>(lon1, -lat1, lon2, -lat2, expected_km, d180 - expected_azimuth_deg);
test_distazi<P1, P2>(-lon1, -lat1, -lon2, -lat2, expected_km, -d180 + expected_azimuth_deg);
}
template <typename P1, typename P2>
void test_distazi_symmNS(double lon1, double lat1, double lon2, double lat2,
double expected_km, double expected_azimuth_deg)
{
test_distazi<P1, P2>(lon1, lat1, lon2, lat2, expected_km, expected_azimuth_deg);
test_distazi<P1, P2>(lon1, -lat1, lon2, -lat2, expected_km, 180 - expected_azimuth_deg);
}
template <typename PS, typename P>
void test_side(double lon1, double lat1,
double lon2, double lat2,
double lon, double lat,
int expected_side)
{
// Set radius type, but for integer coordinates we want to have floating point radius type
typedef typename bg::promote_floating_point
<
typename bg::coordinate_type<PS>::type
>::type rtype;
typedef bg::srs::spheroid<rtype> stype;
typedef bg::strategy::side::andoyer<stype> strategy_type;
typedef bg::strategy::side::geographic<bg::strategy::andoyer, stype> strategy2_type;
strategy_type strategy;
strategy2_type strategy2;
PS p1, p2;
P p;
bg::assign_values(p1, lon1, lat1);
bg::assign_values(p2, lon2, lat2);
bg::assign_values(p, lon, lat);
int side = strategy.apply(p1, p2, p);
int side2 = strategy2.apply(p1, p2, p);
BOOST_CHECK_EQUAL(side, expected_side);
BOOST_CHECK_EQUAL(side2, expected_side);
}
template <typename P1, typename P2>
void test_all()
{
// polar
test_distazi<P1, P2>(0, 90, 1, 80,
1116.814237, 179);
// no point difference
test_distazi<P1, P2>(4, 52, 4, 52,
0.0, 0.0);
// normal cases
test_distazi<P1, P2>(4, 52, 3, 40,
1336.039890, -176.3086);
test_distazi<P1, P2>(3, 52, 4, 40,
1336.039890, 176.3086);
test_distazi<P1, P2>(make_deg(17, 19, 43.28),
make_deg(40, 30, 31.151),
18, 40,
80.323245,
make_deg(134, 27, 50.05));
// antipodal
// ok? in those cases shorter path would pass through a pole
// but 90 or -90 would be consistent with distance?
test_distazi<P1, P2>(0, 0, 180, 0, 20003.9, 0.0);
test_distazi<P1, P2>(0, 0, -180, 0, 20003.9, 0.0);
test_distazi<P1, P2>(-90, 0, 90, 0, 20003.9, 0.0);
test_distazi<P1, P2>(90, 0, -90, 0, 20003.9, 0.0);
// 0, 45, 90 ...
for (int i = 0 ; i < 360 ; i += 45)
{
// 0 45 90 ...
double l = normlized_deg(i);
// -1 44 89 ...
double l1 = normlized_deg(i - 1);
// 1 46 91 ...
double l2 = normlized_deg(i + 1);
// near equator
test_distazi_symm<P1, P2>(l1, -1, l2, 1, 313.7956, 45.1964);
// near poles
test_distazi_symmNS<P1, P2>(l, -89.5, l, 89.5, 19892.2, 0.0);
test_distazi_symmNS<P1, P2>(l, -89.6, l, 89.6, 19914.6, 0.0);
test_distazi_symmNS<P1, P2>(l, -89.7, l, 89.7, 19936.9, 0.0);
test_distazi_symmNS<P1, P2>(l, -89.8, l, 89.8, 19959.2, 0.0);
test_distazi_symmNS<P1, P2>(l, -89.9, l, 89.9, 19981.6, 0.0);
test_distazi_symmNS<P1, P2>(l, -89.99, l, 89.99, 20001.7, 0.0);
test_distazi_symmNS<P1, P2>(l, -89.999, l, 89.999, 20003.7, 0.0);
// antipodal
test_distazi_symmNS<P1, P2>(l, -90, l, 90, 20003.9, 0.0);
test_distazi_symm<P1, P2>(normlized_deg(l-10.0), -10.0, normlized_deg(l+135), 45, 14892.1, 34.1802);
test_distazi_symm<P1, P2>(normlized_deg(l-30.0), -30.0, normlized_deg(l+135), 45, 17890.7, 33.7002);
test_distazi_symm<P1, P2>(normlized_deg(l-40.0), -40.0, normlized_deg(l+135), 45, 19319.7, 33.4801);
test_distazi_symm<P1, P2>(normlized_deg(l-41.0), -41.0, normlized_deg(l+135), 45, 19459.1, 33.2408);
test_distazi_symm<P1, P2>(normlized_deg(l-42.0), -42.0, normlized_deg(l+135), 45, 19597.8, 32.7844);
test_distazi_symm<P1, P2>(normlized_deg(l-43.0), -43.0, normlized_deg(l+135), 45, 19735.8, 31.7784);
test_distazi_symm<P1, P2>(normlized_deg(l-44.0), -44.0, normlized_deg(l+135), 45, 19873.0, 28.5588);
test_distazi_symm<P1, P2>(normlized_deg(l-44.1), -44.1, normlized_deg(l+135), 45, 19886.7, 27.8304);
test_distazi_symm<P1, P2>(normlized_deg(l-44.2), -44.2, normlized_deg(l+135), 45, 19900.4, 26.9173);
test_distazi_symm<P1, P2>(normlized_deg(l-44.3), -44.3, normlized_deg(l+135), 45, 19914.1, 25.7401);
test_distazi_symm<P1, P2>(normlized_deg(l-44.4), -44.4, normlized_deg(l+135), 45, 19927.7, 24.1668);
test_distazi_symm<P1, P2>(normlized_deg(l-44.5), -44.5, normlized_deg(l+135), 45, 19941.4, 21.9599);
test_distazi_symm<P1, P2>(normlized_deg(l-44.6), -44.6, normlized_deg(l+135), 45, 19955.0, 18.6438);
test_distazi_symm<P1, P2>(normlized_deg(l-44.7), -44.7, normlized_deg(l+135), 45, 19968.6, 13.1096);
test_distazi_symm<P1, P2>(normlized_deg(l-44.8), -44.8, normlized_deg(l+135), 45, 19982.3, 2.0300);
// nearly antipodal
test_distazi_symm<P1, P2>(normlized_deg(l-44.9), -44.9, normlized_deg(l+135), 45, 19995.9, 0.0);
test_distazi_symm<P1, P2>(normlized_deg(l-44.95), -44.95, normlized_deg(l+135), 45, 20002.7, 0.0);
test_distazi_symm<P1, P2>(normlized_deg(l-44.99), -44.99, normlized_deg(l+135), 45, 20008.1, 0.0);
test_distazi_symm<P1, P2>(normlized_deg(l-44.999), -44.999, normlized_deg(l+135), 45, 20009.4, 0.0);
// antipodal
test_distazi_symm<P1, P2>(normlized_deg(l-45), -45, normlized_deg(l+135), 45, 20003.92, 0.0, true);
}
/* SQL Server gives:
1116.82586908528, 0, 1336.02721932545
with:
SELECT 0.001 * geography::STGeomFromText('POINT(0 90)', 4326).STDistance(geography::STGeomFromText('POINT(1 80)', 4326))
union SELECT 0.001 * geography::STGeomFromText('POINT(4 52)', 4326).STDistance(geography::STGeomFromText('POINT(4 52)', 4326))
union SELECT 0.001 * geography::STGeomFromText('POINT(4 52)', 4326).STDistance(geography::STGeomFromText('POINT(3 40)', 4326))
*/
test_side<P1, P2>(0, 0, 0, 1, 0, 2, 0);
test_side<P1, P2>(0, 0, 0, 1, 0, -2, 0);
test_side<P1, P2>(10, 0, 10, 1, 10, 2, 0);
test_side<P1, P2>(10, 0, 10, -1, 10, 2, 0);
test_side<P1, P2>(10, 0, 10, 1, 0, 2, 1); // left
test_side<P1, P2>(10, 0, 10, -1, 0, 2, -1); // right
test_side<P1, P2>(-10, -10, 10, 10, 10, 0, -1); // right
test_side<P1, P2>(-10, -10, 10, 10, -10, 0, 1); // left
test_side<P1, P2>(170, -10, -170, 10, -170, 0, -1); // right
test_side<P1, P2>(170, -10, -170, 10, 170, 0, 1); // left
}
template <typename P>
void test_all()
{
test_all<P, P>();
}
int test_main(int, char* [])
{
//test_all<float[2]>();
//test_all<double[2]>();
//test_all<bg::model::point<int, 2, bg::cs::geographic<bg::degree> > >();
//test_all<bg::model::point<float, 2, bg::cs::geographic<bg::degree> > >();
test_all<bg::model::point<double, 2, bg::cs::geographic<bg::degree> > >();
#if defined(HAVE_TTMATH)
test_all<bg::model::point<ttmath::Big<1,4>, 2, bg::cs::geographic<bg::degree> > >();
test_all<bg::model::point<ttmath_big, 2, bg::cs::geographic<bg::degree> > >();
#endif
return 0;
}