geometry/test/strategies/transform_cs.cpp
2013-12-05 19:38:32 +01:00

150 lines
5.7 KiB
C++

// Boost.Geometry (aka GGL, Generic Geometry Library)
// Unit Test
// Copyright (c) 2007-2012 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2008-2012 Bruno Lalande, Paris, France.
// Copyright (c) 2009-2012 Mateusz Loskot, London, UK.
// Parts of Boost.Geometry are redesigned from Geodan's Geographic Library
// (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands.
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#include <geometry_test_common.hpp>
#include <boost/geometry/strategies/strategy_transform.hpp>
#include <boost/geometry/algorithms/transform.hpp>
#include <boost/geometry/geometries/point.hpp>
#include <boost/geometry/geometries/point_xy.hpp>
template <typename T, typename P>
inline T check_distance(P const& p)
{
T x = bg::get<0>(p);
T y = bg::get<1>(p);
T z = bg::get<2>(p);
return sqrt(x * x + y * y + z * z);
}
template <typename T>
void test_transformations_spherical()
{
T const input_long = 15.0;
T const input_lat = 5.0;
T const expected_long = 0.26179938779914943653855361527329;
T const expected_lat = 0.08726646259971647884618453842443;
// Can be checked using http://www.calc3d.com/ejavascriptcoordcalc.html
// (for phi use long, in radians, for theta use lat, in radians, they are listed there as "theta, phi")
T const expected_polar_x = 0.084186;
T const expected_polar_y = 0.0225576;
T const expected_polar_z = 0.996195;
// Can be checked with same URL using 90-theta for lat.
// So for theta use 85 degrees, in radians: 0.08726646259971647884618453842443
T const expected_equatorial_x = 0.962250;
T const expected_equatorial_y = 0.257834;
T const expected_equatorial_z = 0.0871557;
// 1: Spherical-polar (lat=5, so it is near the pole - on a unit sphere)
bg::model::point<T, 2, bg::cs::spherical<bg::degree> > sp(input_long, input_lat);
// 1a: to radian
bg::model::point<T, 2, bg::cs::spherical<bg::radian> > spr;
bg::transform(sp, spr);
BOOST_CHECK_CLOSE(bg::get<0>(spr), expected_long, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(spr), expected_lat, 0.001);
// 1b: to cartesian-3d
bg::model::point<T, 3, bg::cs::cartesian> pc3;
bg::transform(sp, pc3);
BOOST_CHECK_CLOSE(bg::get<0>(pc3), expected_polar_x, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(pc3), expected_polar_y, 0.001);
BOOST_CHECK_CLOSE(bg::get<2>(pc3), expected_polar_z, 0.001);
BOOST_CHECK_CLOSE(check_distance<T>(pc3), 1.0, 0.001);
// 1c: back
bg::transform(pc3, spr);
BOOST_CHECK_CLOSE(bg::get<0>(spr), expected_long, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(spr), expected_lat, 0.001);
// 2: Spherical-equatorial (lat=5, so it is near the equator)
bg::model::point<T, 2, bg::cs::spherical_equatorial<bg::degree> > se(input_long, input_lat);
// 2a: to radian
bg::model::point<T, 2, bg::cs::spherical_equatorial<bg::radian> > ser;
bg::transform(se, ser);
BOOST_CHECK_CLOSE(bg::get<0>(ser), expected_long, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(ser), expected_lat, 0.001);
bg::transform(se, pc3);
BOOST_CHECK_CLOSE(bg::get<0>(pc3), expected_equatorial_x, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(pc3), expected_equatorial_y, 0.001);
BOOST_CHECK_CLOSE(bg::get<2>(pc3), expected_equatorial_z, 0.001);
BOOST_CHECK_CLOSE(check_distance<T>(pc3), 1.0, 0.001);
// 2c: back
bg::transform(pc3, ser);
BOOST_CHECK_CLOSE(bg::get<0>(spr), expected_long, 0.001); // expected_long
BOOST_CHECK_CLOSE(bg::get<1>(spr), expected_lat, 0.001); // expected_lat
// 3: Spherical-polar including radius
bg::model::point<T, 3, bg::cs::spherical<bg::degree> > sp3(input_long, input_lat, 0.5);
// 3a: to radian
bg::model::point<T, 3, bg::cs::spherical<bg::radian> > spr3;
bg::transform(sp3, spr3);
BOOST_CHECK_CLOSE(bg::get<0>(spr3), expected_long, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(spr3), expected_lat, 0.001);
BOOST_CHECK_CLOSE(bg::get<2>(spr3), 0.5, 0.001);
// 3b: to cartesian-3d
bg::transform(sp3, pc3);
BOOST_CHECK_CLOSE(bg::get<0>(pc3), expected_polar_x / 2.0, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(pc3), expected_polar_y / 2.0, 0.001);
BOOST_CHECK_CLOSE(bg::get<2>(pc3), expected_polar_z / 2.0, 0.001);
BOOST_CHECK_CLOSE(check_distance<T>(pc3), 0.5, 0.001);
// 3c: back
bg::transform(pc3, spr3);
BOOST_CHECK_CLOSE(bg::get<0>(spr3), expected_long, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(spr3), expected_lat, 0.001);
BOOST_CHECK_CLOSE(bg::get<2>(spr3), 0.5, 0.001);
// 4: Spherical-equatorial including radius
bg::model::point<T, 3, bg::cs::spherical_equatorial<bg::degree> > se3(input_long, input_lat, 0.5);
// 4a: to radian
bg::model::point<T, 3, bg::cs::spherical_equatorial<bg::radian> > ser3;
bg::transform(se3, ser3);
BOOST_CHECK_CLOSE(bg::get<0>(ser3), expected_long, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(ser3), expected_lat, 0.001);
BOOST_CHECK_CLOSE(bg::get<2>(ser3), 0.5, 0.001);
// 4b: to cartesian-3d
bg::transform(se3, pc3);
BOOST_CHECK_CLOSE(bg::get<0>(pc3), expected_equatorial_x / 2.0, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(pc3), expected_equatorial_y / 2.0, 0.001);
BOOST_CHECK_CLOSE(bg::get<2>(pc3), expected_equatorial_z / 2.0, 0.001);
BOOST_CHECK_CLOSE(check_distance<T>(pc3), 0.5, 0.001);
// 4c: back
bg::transform(pc3, ser3);
BOOST_CHECK_CLOSE(bg::get<0>(ser3), expected_long, 0.001);
BOOST_CHECK_CLOSE(bg::get<1>(ser3), expected_lat, 0.001);
BOOST_CHECK_CLOSE(bg::get<2>(ser3), 0.5, 0.001);
}
int test_main(int, char* [])
{
test_transformations_spherical<double>();
return 0;
}