62379dd5b9
* Implement Sobel and Scharr operators This commit adds Sobel and Scharr operators with support for 0th and 1st degrees with other degrees planned for later * Migrate and fix Harris example Generate Harris entries now uses signed image view. The Harris corner detector example now uses the Scharr filter generator and convolve_2d to reduce amount of code needed. * Fix and migrate Hessian example The Hessian example now uses signed image views and uses newly added kernel generators to compute gradients * Fix Harris and Hessian tests The tests broke due to migration to signed views in algorithms, but tests were not adjusted * Fix Jamfile for example/sobel_scharr.cpp * Cosmetic changes * Commented out fail tests * Fixed pixel16 used in image16s In Harris and Hessian tests, unsigned pixel values was used to construct signed image, which was causing appveyor to error out. * Reenable failing targets * Unify kernel generator interface This commit makes all kernel generator functions to return kernel_2d and adapts dependant threshold function to use the new interface * Migrate Hessian and Harris tests Migrate Hessian and Harris tests to new interface for kernel generators * Migrate Harris and Hessian examples Harris and Hessian examples now use new interface for kernel generation * Migrate simple_kernels tests simple_kernels are now using kernel_2d interface * Add missing return Normalized mean generation had missing return at the end of the function * Adapt code to namespace move This commit reacts to kernel_2d, convolve_2d being moved to namespace detail
208 lines
7.5 KiB
C++
208 lines
7.5 KiB
C++
//
|
|
// Copyright 2019 Olzhas Zhumabek <anonymous.from.applecity@gmail.com>
|
|
//
|
|
// Use, modification and distribution are subject to the Boost Software License,
|
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//
|
|
#include <boost/gil/image.hpp>
|
|
#include <boost/gil/image_view.hpp>
|
|
#include <boost/gil/extension/io/png.hpp>
|
|
#include <boost/gil/image_processing/numeric.hpp>
|
|
#include <boost/gil/image_processing/harris.hpp>
|
|
#include <boost/gil/extension/numeric/convolve.hpp>
|
|
#include <vector>
|
|
#include <functional>
|
|
#include <set>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
namespace gil = boost::gil;
|
|
|
|
// some images might produce artifacts
|
|
// when converted to grayscale,
|
|
// which was previously observed on
|
|
// canny edge detector for test input
|
|
// used for this example
|
|
gil::gray8_image_t to_grayscale(gil::rgb8_view_t original)
|
|
{
|
|
gil::gray8_image_t output_image(original.dimensions());
|
|
auto output = gil::view(output_image);
|
|
constexpr double max_channel_intensity = (std::numeric_limits<std::uint8_t>::max)();
|
|
for (long int y = 0; y < original.height(); ++y) {
|
|
for (long int x = 0; x < original.width(); ++x) {
|
|
// scale the values into range [0, 1] and calculate linear intensity
|
|
double red_intensity = original(x, y).at(std::integral_constant<int, 0>{})
|
|
/ max_channel_intensity;
|
|
double green_intensity = original(x, y).at(std::integral_constant<int, 1>{})
|
|
/ max_channel_intensity;
|
|
double blue_intensity = original(x, y).at(std::integral_constant<int, 2>{})
|
|
/ max_channel_intensity;
|
|
auto linear_luminosity = 0.2126 * red_intensity
|
|
+ 0.7152 * green_intensity
|
|
+ 0.0722 * blue_intensity;
|
|
|
|
// perform gamma adjustment
|
|
double gamma_compressed_luminosity = 0;
|
|
if (linear_luminosity < 0.0031308) {
|
|
gamma_compressed_luminosity = linear_luminosity * 12.92;
|
|
} else {
|
|
gamma_compressed_luminosity = 1.055 * std::pow(linear_luminosity, 1 / 2.4) - 0.055;
|
|
}
|
|
|
|
// since now it is scaled, descale it back
|
|
output(x, y) = gamma_compressed_luminosity * max_channel_intensity;
|
|
}
|
|
}
|
|
|
|
return output_image;
|
|
}
|
|
|
|
void apply_gaussian_blur(gil::gray8_view_t input_view, gil::gray8_view_t output_view)
|
|
{
|
|
constexpr static auto filterHeight = 5ull;
|
|
constexpr static auto filterWidth = 5ull;
|
|
constexpr static double filter[filterHeight][filterWidth] =
|
|
{
|
|
2, 4, 6, 4, 2,
|
|
4, 9, 12, 9, 4,
|
|
5, 12, 15, 12, 5,
|
|
4, 9, 12, 9, 4,
|
|
2, 4, 5, 4, 2,
|
|
};
|
|
constexpr double factor = 1.0 / 159;
|
|
constexpr double bias = 0.0;
|
|
|
|
const auto height = input_view.height();
|
|
const auto width = input_view.width();
|
|
for (long x = 0; x < width; ++x) {
|
|
for (long y = 0; y < height; ++y) {
|
|
double intensity = 0.0;
|
|
for (size_t filter_y = 0; filter_y < filterHeight; ++filter_y) {
|
|
for (size_t filter_x = 0; filter_x < filterWidth; ++filter_x) {
|
|
int image_x = x - filterWidth / 2 + filter_x;
|
|
int image_y = y - filterHeight / 2 + filter_y;
|
|
if (image_x >= input_view.width() || image_x < 0
|
|
|| image_y >= input_view.height() || image_y < 0) {
|
|
continue;
|
|
}
|
|
auto& pixel = input_view(image_x, image_y);
|
|
intensity += pixel.at(std::integral_constant<int, 0>{})
|
|
* filter[filter_y][filter_x];
|
|
}
|
|
}
|
|
auto& pixel = output_view(gil::point_t(x, y));
|
|
pixel = (std::min)((std::max)(int(factor * intensity + bias), 0), 255);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
std::vector<gil::point_t> suppress(
|
|
gil::gray32f_view_t harris_response,
|
|
double harris_response_threshold)
|
|
{
|
|
std::vector<gil::point_t> corner_points;
|
|
for (gil::gray32f_view_t::coord_t y = 1; y < harris_response.height() - 1; ++y)
|
|
{
|
|
for (gil::gray32f_view_t::coord_t x = 1; x < harris_response.width() - 1; ++x)
|
|
{
|
|
auto value = [](gil::gray32f_pixel_t pixel) {
|
|
return pixel.at(std::integral_constant<int, 0>{});
|
|
};
|
|
double values[9] = {
|
|
value(harris_response(x - 1, y - 1)),
|
|
value(harris_response(x, y - 1)),
|
|
value(harris_response(x + 1, y - 1)),
|
|
value(harris_response(x - 1, y)),
|
|
value(harris_response(x, y)),
|
|
value(harris_response(x + 1, y)),
|
|
value(harris_response(x - 1, y + 1)),
|
|
value(harris_response(x, y + 1)),
|
|
value(harris_response(x + 1, y + 1))
|
|
};
|
|
|
|
auto maxima = *std::max_element(
|
|
values,
|
|
values + 9,
|
|
[](double lhs, double rhs)
|
|
{
|
|
return lhs < rhs;
|
|
}
|
|
);
|
|
|
|
if (maxima == value(harris_response(x, y))
|
|
&& std::count(values, values + 9, maxima) == 1
|
|
&& maxima >= harris_response_threshold)
|
|
{
|
|
corner_points.emplace_back(x, y);
|
|
}
|
|
}
|
|
}
|
|
|
|
return corner_points;
|
|
}
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
if (argc != 6)
|
|
{
|
|
std::cout << "usage: " << argv[0] << " <input.png> <odd-window-size>"
|
|
" <discrimination-constant> <harris-response-threshold> <output.png>\n";
|
|
return -1;
|
|
}
|
|
|
|
std::size_t window_size = std::stoul(argv[2]);
|
|
double discrimnation_constant = std::stof(argv[3]);
|
|
long harris_response_threshold = std::stol(argv[4]);
|
|
|
|
gil::rgb8_image_t input_image;
|
|
|
|
gil::read_image(argv[1], input_image, gil::png_tag{});
|
|
|
|
auto input_view = gil::view(input_image);
|
|
auto grayscaled = to_grayscale(input_view);
|
|
gil::gray8_image_t smoothed_image(grayscaled.dimensions());
|
|
auto smoothed = gil::view(smoothed_image);
|
|
apply_gaussian_blur(gil::view(grayscaled), smoothed);
|
|
gil::gray16s_image_t x_gradient_image(grayscaled.dimensions());
|
|
gil::gray16s_image_t y_gradient_image(grayscaled.dimensions());
|
|
|
|
auto x_gradient = gil::view(x_gradient_image);
|
|
auto y_gradient = gil::view(y_gradient_image);
|
|
auto scharr_x = gil::generate_dx_scharr();
|
|
gil::detail::convolve_2d(smoothed, scharr_x, x_gradient);
|
|
auto scharr_y = gil::generate_dy_scharr();
|
|
gil::detail::convolve_2d(smoothed, scharr_y, y_gradient);
|
|
|
|
gil::gray32f_image_t m11(x_gradient.dimensions());
|
|
gil::gray32f_image_t m12_21(x_gradient.dimensions());
|
|
gil::gray32f_image_t m22(x_gradient.dimensions());
|
|
gil::compute_tensor_entries(
|
|
x_gradient,
|
|
y_gradient,
|
|
gil::view(m11),
|
|
gil::view(m12_21),
|
|
gil::view(m22)
|
|
);
|
|
|
|
gil::gray32f_image_t harris_response(x_gradient.dimensions());
|
|
auto gaussian_kernel = gil::generate_gaussian_kernel(window_size, 0.84089642);
|
|
gil::compute_harris_responses(
|
|
gil::view(m11),
|
|
gil::view(m12_21),
|
|
gil::view(m22),
|
|
gaussian_kernel,
|
|
discrimnation_constant,
|
|
gil::view(harris_response)
|
|
);
|
|
|
|
auto corner_points = suppress(gil::view(harris_response), harris_response_threshold);
|
|
for (auto point: corner_points)
|
|
{
|
|
input_view(point) = gil::rgb8_pixel_t(0, 0, 0);
|
|
input_view(point).at(std::integral_constant<int, 1>{}) = 255;
|
|
}
|
|
gil::write_view(argv[5], input_view, gil::png_tag{});
|
|
}
|