gil/test/legacy/pixel.cpp
Mateusz Łoskot 5611bd5807
Replace Boost.MPL with Boost.MP11 (#274)
Use type traits and features of C++11, then use Boost.MP11.
Remove unused and unnecessary metafunctions in `detail` namespace.
Remove explicit access to ::type as no longer necessary with MP11.
Clean up and reformat code according to the current guidelines.

Legacy tests have been updated where necessary to accommodate
switch to MP11.

Replace std::is_integral with gil::detail::is_channel_integral
Replacing boost::is_integral with std::is_integral is C++ UB:

    C++11 / 20.11.2 Header <type_traits> synopsis
    1 The behavior of a program that adds specializations for any
    of the class templates defined in this subclause is undefined
    unless otherwise specified.


Implements also proposal in #93
Closes #229
2019-04-14 22:13:45 +02:00

323 lines
12 KiB
C++

//
// Copyright 2005-2007 Adobe Systems Incorporated
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
#include <boost/gil.hpp>
#include <boost/core/ignore_unused.hpp>
#include <boost/mp11.hpp>
#include <exception>
#include <iostream>
#include <iterator>
#include <type_traits>
using namespace boost::gil;
using std::swap;
using namespace boost;
void error_if(bool condition);
struct increment {
template <typename Incrementable> void operator()(Incrementable& x) const { ++x; }
};
struct prev
{
template <typename Subtractable>
auto operator()(const Subtractable& x) const -> typename channel_traits<Subtractable>::value_type
{
using return_type = typename channel_traits<Subtractable>::value_type;
return static_cast<return_type>(x - 1);
}
};
struct set_to_one{ int operator()() const { return 1; } };
// Construct with two pixel types. They must be compatible and the second must be mutable
template <typename C1, typename C2>
struct do_basic_test : public C1, public C2
{
using pixel1_t = typename C1::type;
using pixel2_t = typename C2::type;
using pixel1_value_t = typename C1::pixel_t::value_type;
using pixel2_value_t = typename C2::pixel_t::value_type;
using pixel_value_t = pixel1_value_t;
do_basic_test(const pixel_value_t& v) : C1(v), C2(v) {}
void test_all() {
test_heterogeneous();
// test homogeneous algorithms - fill, max, min
static const int num_chan = num_channels<typename C2::pixel_t>::value;
static_fill(C2::_pixel, gil::at_c<0>(C1::_pixel)+1);
error_if(gil::at_c<0>(C2::_pixel) != gil::at_c<num_chan-1>(C2::_pixel));
C2::_pixel = C1::_pixel;
error_if(static_max(C2::_pixel) != static_max(C1::_pixel));
error_if(static_min(C2::_pixel) != static_min(C1::_pixel));
error_if(static_max(C2::_pixel) < static_min(C2::_pixel));
// test operator[]
C2::_pixel[0] = C1::_pixel[0]+1;
error_if(C2::_pixel[0] != C1::_pixel[0]+1);
}
void test_heterogeneous() {
// Both must be pixel types (not necessarily pixel values). The second must be mutable. They must be compatible
boost::function_requires<PixelConcept<typename C1::pixel_t> >();
boost::function_requires<MutablePixelConcept<typename C2::pixel_t> >();
boost::function_requires<PixelsCompatibleConcept<typename C1::pixel_t,typename C2::pixel_t> >();
C2::_pixel = C1::_pixel; // test operator=
error_if(C1::_pixel != C2::_pixel); // test operator==
// construct a pixel value from it
pixel1_value_t v1(C1::_pixel);
pixel2_value_t v2(C2::_pixel);
error_if(v1 != v2);
// construct from a pixel value
pixel1_t c1(v1);
pixel2_t c2(v2);
error_if(c1 != c2);
// Invert the first semantic channel.
C2::_pixel = C1::_pixel;
semantic_at_c<0>(C2::_pixel) = channel_invert(semantic_at_c<0>(C2::_pixel));
error_if(C1::_pixel == C2::_pixel); // now they must not be equal
// test pixel algorithms
C2::_pixel = C1::_pixel;
static_for_each(C2::_pixel, increment());
static_transform(C2::_pixel, C2::_pixel, prev());
error_if(C1::_pixel!=C2::_pixel);
static_generate(C2::_pixel, set_to_one());
error_if(gil::at_c<0>(C2::_pixel) != 1);
// Test swap if both are mutable and if their value type is the same
// (We know the second one is mutable)
using p1_ref = typename boost::add_reference<typename C1::type>::type;
using is_swappable = std::integral_constant
<
bool,
pixel_reference_is_mutable<p1_ref>::value &&
std::is_same<pixel1_value_t, pixel2_value_t>::value
>;
test_swap(is_swappable{});
}
void test_swap(std::false_type) {}
void test_swap(std::true_type) {
// test swap
static_fill(C1::_pixel, 0);
static_fill(C2::_pixel, 1);
pixel_value_t pv1(C1::_pixel);
pixel_value_t pv2(C2::_pixel);
error_if(C2::_pixel == C1::_pixel);
swap(C1::_pixel, C2::_pixel);
error_if(C1::_pixel != pv2 || C2::_pixel != pv1);
}
};
template <typename PixelValue, int Tag=0>
class value_core
{
public:
using type = PixelValue;
using pixel_t = type;
type _pixel;
value_core() : _pixel(0) {}
value_core(const type& val) : _pixel(val) { // test copy constructor
boost::function_requires<PixelValueConcept<pixel_t> >();
type p2; // test default constructor
boost::ignore_unused(p2);
}
};
template <typename PixelRef, int Tag=0>
class reference_core : public value_core<typename std::remove_reference<PixelRef>::type::value_type, Tag>
{
public:
using type = PixelRef;
using pixel_t = typename boost::remove_reference<PixelRef>::type;
using parent_t = value_core<typename pixel_t::value_type, Tag>;
type _pixel;
reference_core() : parent_t(), _pixel(parent_t::_pixel) {}
reference_core(const typename pixel_t::value_type& val) : parent_t(val), _pixel(parent_t::_pixel) {
boost::function_requires<PixelConcept<pixel_t> >();
}
};
// Use a subset of pixel models that covers all color spaces, channel depths, reference/value, planar/interleaved, const/mutable
// color conversion will be invoked on pairs of them. Having an exhaustive binary check would be too big/expensive.
using representative_pixels_t = mp11::mp_list
<
value_core<gray8_pixel_t>,
reference_core<gray16_pixel_t&>,
value_core<bgr8_pixel_t>,
reference_core<rgb8_planar_ref_t>,
value_core<argb32_pixel_t>,
reference_core<cmyk32f_pixel_t&>,
reference_core<abgr16c_ref_t>, // immutable reference
reference_core<rgb32fc_planar_ref_t>
>;
template <typename Pixel1>
struct ccv2 {
template <typename P1, typename P2>
void color_convert_compatible(const P1& p1, P2& p2, std::true_type) {
using value_t = typename P1::value_type;
p2 = p1;
value_t converted;
color_convert(p1, converted);
error_if(converted != p2);
}
template <typename P1, typename P2>
void color_convert_compatible(const P1& p1, P2& p2, std::false_type) {
color_convert(p1,p2);
}
template <typename P1, typename P2>
void color_convert_impl(const P1& p1, P2& p2) {
using is_compatible = typename pixels_are_compatible<P1,P2>::type;
color_convert_compatible(p1, p2, is_compatible());
}
template <typename Pixel2>
void operator()(Pixel2) {
// convert from Pixel1 to Pixel2 (or, if Pixel2 is immutable, to its value type)
using p2_is_mutable = pixel_reference_is_mutable<typename Pixel2::type>;
using pixel_model_t = typename std::remove_reference<typename Pixel2::type>::type;
using p2_value_t = typename pixel_model_t::value_type;
using pixel2_mutable = mp11::mp_if<p2_is_mutable, Pixel2, value_core<p2_value_t>>;
Pixel1 p1;
pixel2_mutable p2;
color_convert_impl(p1._pixel, p2._pixel);
}
};
struct ccv1 {
template <typename Pixel>
void operator()(Pixel) {
mp11::mp_for_each<representative_pixels_t>(ccv2<Pixel>());
}
};
void test_color_convert() {
mp11::mp_for_each<representative_pixels_t>(ccv1());
}
void test_packed_pixel()
{
using rgb565_pixel_t = packed_pixel_type<uint16_t, mp11::mp_list_c<unsigned,5,6,5>, rgb_layout_t>::type;
boost::function_requires<PixelValueConcept<rgb565_pixel_t> >();
static_assert(sizeof(rgb565_pixel_t) == 2, "");
// define a bgr556 pixel
using bgr556_pixel_t = packed_pixel_type<uint16_t, mp11::mp_list_c<unsigned,5,6,5>, bgr_layout_t>::type;
boost::function_requires<PixelValueConcept<bgr556_pixel_t> >();
// Create a zero packed pixel and a full regular unpacked pixel.
rgb565_pixel_t r565;//((uint16_t)0);
rgb8_pixel_t rgb_full(255,255,255);
// Convert all channels of the unpacked pixel to the packed one & ensure the packed one is full
get_color(r565,red_t()) = channel_convert<kth_element_type<rgb565_pixel_t, 0>::type>(get_color(rgb_full,red_t()));
get_color(r565,green_t()) = channel_convert<kth_element_type<rgb565_pixel_t, 1>::type>(get_color(rgb_full,green_t()));
get_color(r565,blue_t()) = channel_convert<kth_element_type<rgb565_pixel_t, 2>::type>(get_color(rgb_full,blue_t()));
error_if(r565 != rgb565_pixel_t((uint16_t)65535));
// rgb565 is compatible with bgr556. Test interoperability
boost::function_requires<PixelsCompatibleConcept<rgb565_pixel_t,bgr556_pixel_t> >();
do_basic_test<value_core<rgb565_pixel_t,0>, value_core<bgr556_pixel_t,1> >(r565).test_heterogeneous();
color_convert(r565,rgb_full);
color_convert(rgb_full,r565);
// Test bit-aligned pixel reference
using bgr121_ref_t = const bit_aligned_pixel_reference<std::uint8_t, mp11::mp_list_c<int,1,2,1>, bgr_layout_t, true>;
using rgb121_ref_t = const bit_aligned_pixel_reference<std::uint8_t, mp11::mp_list_c<int,1,2,1>, rgb_layout_t, true>;
using rgb121_pixel_t = rgb121_ref_t::value_type;
rgb121_pixel_t p121;
do_basic_test<reference_core<bgr121_ref_t,0>, reference_core<rgb121_ref_t,1> >(p121).test_heterogeneous();
do_basic_test<value_core<rgb121_pixel_t,0>, reference_core<rgb121_ref_t,1> >(p121).test_heterogeneous();
static_assert(pixel_reference_is_proxy<rgb8_planar_ref_t>::value, "");
static_assert(pixel_reference_is_proxy<bgr121_ref_t>::value, "");
static_assert(!pixel_reference_is_proxy<rgb8_pixel_t>::value, "");
static_assert(!pixel_reference_is_proxy<rgb8_pixel_t&>::value, "");
static_assert(!pixel_reference_is_proxy<rgb8_pixel_t const&>::value, "");
static_assert(pixel_reference_is_mutable<rgb8_pixel_t&>::value, "");
static_assert(!pixel_reference_is_mutable<rgb8_pixel_t const&>::value, "");
static_assert(pixel_reference_is_mutable<rgb8_planar_ref_t>::value, "");
static_assert(pixel_reference_is_mutable<rgb8_planar_ref_t const&>::value, "");
static_assert(!pixel_reference_is_mutable<rgb8c_planar_ref_t>::value, "");
static_assert(!pixel_reference_is_mutable<rgb8c_planar_ref_t const&>::value, "");
static_assert(pixel_reference_is_mutable<bgr121_ref_t>::value, "");
static_assert(!pixel_reference_is_mutable<bgr121_ref_t::const_reference>::value, "");
}
void test_pixel() {
test_packed_pixel();
rgb8_pixel_t rgb8(1,2,3);
do_basic_test<value_core<rgb8_pixel_t,0>, reference_core<rgb8_pixel_t&,1> >(rgb8).test_all();
do_basic_test<value_core<bgr8_pixel_t,0>, reference_core<rgb8_planar_ref_t,1> >(rgb8).test_all();
do_basic_test<reference_core<rgb8_planar_ref_t,0>, reference_core<bgr8_pixel_t&,1> >(rgb8).test_all();
do_basic_test<reference_core<const rgb8_pixel_t&,0>, reference_core<rgb8_pixel_t&,1> >(rgb8).test_all();
test_color_convert();
// Semantic vs physical channel accessors. Named channel accessors
bgr8_pixel_t bgr8(rgb8);
error_if(bgr8[0] == rgb8[0]);
error_if(dynamic_at_c(bgr8,0) == dynamic_at_c(rgb8,0));
error_if(gil::at_c<0>(bgr8) == gil::at_c<0>(rgb8));
error_if(semantic_at_c<0>(bgr8) != semantic_at_c<0>(rgb8));
error_if(get_color(bgr8,blue_t()) != get_color(rgb8,blue_t()));
// Assigning a grayscale channel to a pixel
gray16_pixel_t g16(34);
g16 = 8;
uint16_t g = get_color(g16,gray_color_t());
error_if(g != 8);
error_if(g16 != 8);
}
int main()
{
try
{
test_pixel();
return EXIT_SUCCESS;
}
catch (std::exception const& e)
{
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;
}
catch (...)
{
return EXIT_FAILURE;
}
}