1068 lines
37 KiB
OpenEdge ABL
1068 lines
37 KiB
OpenEdge ABL
\documentclass[11pt]{report}
|
|
|
|
%\input{defs}
|
|
\usepackage{math}
|
|
\usepackage{jweb}
|
|
\usepackage{lgrind}
|
|
\usepackage{times}
|
|
\usepackage{fullpage}
|
|
\usepackage{graphicx}
|
|
|
|
\newif\ifpdf
|
|
\ifx\pdfoutput\undefined
|
|
\pdffalse
|
|
\else
|
|
\pdfoutput=1
|
|
\pdftrue
|
|
\fi
|
|
|
|
\ifpdf
|
|
\usepackage[
|
|
pdftex,
|
|
colorlinks=true, %change to true for the electronic version
|
|
linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue
|
|
]{hyperref}
|
|
\fi
|
|
|
|
\ifpdf
|
|
\newcommand{\stlconcept}[1]{\href{https://boost.org/sgi/stl/#1.html}{{\small \textsf{#1}}}}
|
|
\newcommand{\bglconcept}[1]{\href{http://www.boost.org/libs/graph/doc/#1.html}{{\small \textsf{#1}}}}
|
|
\newcommand{\pmconcept}[1]{\href{http://www.boost.org/libs/property_map/#1.html}{{\small \textsf{#1}}}}
|
|
\newcommand{\myhyperref}[2]{\hyperref[#1]{#2}}
|
|
\newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.pdf}}\caption{#2}\label{fig:#1}\end{figure}}
|
|
\else
|
|
\newcommand{\myhyperref}[2]{#2}
|
|
\newcommand{\bglconcept}[1]{{\small \textsf{#1}}}
|
|
\newcommand{\pmconcept}[1]{{\small \textsf{#1}}}
|
|
\newcommand{\stlconcept}[1]{{\small \textsf{#1}}}
|
|
\newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.eps}}\caption{#2}\label{fig:#1}\end{figure}}
|
|
\fi
|
|
|
|
\newcommand{\code}[1]{{\small{\em \textbf{#1}}}}
|
|
|
|
|
|
\newcommand{\isomorphic}{\cong}
|
|
|
|
\begin{document}
|
|
|
|
\title{An Implementation of Isomorphism Testing}
|
|
\author{Jeremy G. Siek}
|
|
|
|
\maketitle
|
|
|
|
\section{Introduction}
|
|
|
|
This paper documents the implementation of the \code{isomorphism()}
|
|
function of the Boost Graph Library. The implementation was by Jeremy
|
|
Siek with algorithmic improvements and test code from Douglas Gregor
|
|
and Brian Osman. The \code{isomorphism()} function answers the
|
|
question, ``are these two graphs equal?'' By \emph{equal} we mean
|
|
the two graphs have the same structure---the vertices and edges are
|
|
connected in the same way. The mathematical name for this kind of
|
|
equality is \emph{isomorphism}.
|
|
|
|
More precisely, an \emph{isomorphism} is a one-to-one mapping of the
|
|
vertices in one graph to the vertices of another graph such that
|
|
adjacency is preserved. Another words, given graphs $G_{1} =
|
|
(V_{1},E_{1})$ and $G_{2} = (V_{2},E_{2})$, an isomorphism is a
|
|
function $f$ such that for all pairs of vertices $a,b$ in $V_{1}$,
|
|
edge $(a,b)$ is in $E_{1}$ if and only if edge $(f(a),f(b))$ is in
|
|
$E_{2}$.
|
|
|
|
Both graphs must be the same size, so let $N = |V_1| = |V_2|$. The
|
|
graph $G_1$ is \emph{isomorphic} to $G_2$ if an isomorphism exists
|
|
between the two graphs, which we denote by $G_1 \isomorphic G_2$.
|
|
|
|
In the following discussion we will need to use several notions from
|
|
graph theory. The graph $G_s=(V_s,E_s)$ is a \emph{subgraph} of graph
|
|
$G=(V,E)$ if $V_s \subseteq V$ and $E_s \subseteq E$. An
|
|
\emph{induced subgraph}, denoted by $G[V_s]$, of a graph $G=(V,E)$
|
|
consists of the vertices in $V_s$, which is a subset of $V$, and every
|
|
edge $(u,v)$ in $E$ such that both $u$ and $v$ are in $V_s$. We use
|
|
the notation $E[V_s]$ to mean the edges in $G[V_s]$.
|
|
|
|
In some places we express a function as a set of pairs, so the set $f
|
|
= \{ \pair{a_1}{b_1}, \ldots, \pair{a_n}{b_n} \}$
|
|
means $f(a_i) = b_i$ for $i=1,\ldots,n$.
|
|
|
|
\section{Exhaustive Backtracking Search}
|
|
\label{sec:backtracking}
|
|
|
|
The algorithm used by the \code{isomorphism()} function is, at
|
|
first approximation, an exhaustive search implemented via
|
|
backtracking. The backtracking algorithm is a recursive function. At
|
|
each stage we will try to extend the match that we have found so far.
|
|
So suppose that we have already determined that some subgraph of $G_1$
|
|
is isomorphic to a subgraph of $G_2$. We then try to add a vertex to
|
|
each subgraph such that the new subgraphs are still isomorphic to one
|
|
another. At some point we may hit a dead end---there are no vertices
|
|
that can be added to extend the isomorphic subgraphs. We then
|
|
backtrack to previous smaller matching subgraphs, and try extending
|
|
with a different vertex choice. The process ends by either finding a
|
|
complete mapping between $G_1$ and $G_2$ and return true, or by
|
|
exhausting all possibilities and returning false.
|
|
|
|
We consider the vertices of $G_1$ for addition to the matched subgraph
|
|
in a specific order, so assume that the vertices of $G_1$ are labeled
|
|
$1,\ldots,N$ according to that order. As we will see later, a good
|
|
ordering of the vertices is by DFS discover time. Let $G_1[k]$ denote
|
|
the subgraph of $G_1$ induced by the first $k$ vertices, with $G_1[0]$
|
|
being an empty graph. We also consider the edges of $G_1$ in a
|
|
specific order. We always examine edges in the current subgraph
|
|
$G_1[k]$ first, that is, edges $(u,v)$ where both $u \leq k$ and $v
|
|
\leq k$. This ordering of edges can be acheived by sorting the edges
|
|
according to number of the larger of the source and target vertex.
|
|
|
|
Each step of the backtracking search examines an edge $(u,v)$ of $G_1$
|
|
and decides whether to continue or go back. There are three cases to
|
|
consider:
|
|
|
|
\begin{enumerate}
|
|
|
|
\item $i \leq k \Land j \leq k$. Both $i$ and $j$ are in $G_1[k]$. We
|
|
check to make sure the $(f(i),f(j)) \in E_2[S]$.
|
|
|
|
\item $i \leq k \Land j > k$. $i$ is in the matched subgraph $G_1[k]$,
|
|
but $j$ is not. We are about to increment $k$ try to grow the matched
|
|
subgraph to include $j$. However, first we need to finalize our check
|
|
of the isomorphism between subgraphs $G_1[k]$ and $G_2[S]$. At this
|
|
point we are guaranteed to have seen all the edges to and from vertex $k$
|
|
(because the edges are sorted), and in previous steps we have checked
|
|
that for each edge incident on $k$ in $G_1[k]$ there is a matching
|
|
edge in $G_2[S]$. However we have not checked that for each edge
|
|
incident on $f(k)$ in $E_2[S]$, there is a matching edge in $E_1[k]$
|
|
(we need to check the ``only if'' part of the ``if and only if'').
|
|
Therefore we scan through all the edges $(u,v)$ incident on $f(k)$ and
|
|
make sure that $(f^{-1}(u),f^{-1}(v)) \in E_1[k]$. Once this check has
|
|
been performed, we add $f(k)$ to $S$, we increment $k$ (so now $k=j$),
|
|
and then try assigning the new $k$ to any of the eligible vertices in
|
|
$V_2 - S$. More about what ``eligible'' means later.
|
|
|
|
\item $i > k \Land j \leq k$. This case will not occur due to the DFS
|
|
numbering of the vertices. There is an edge $(i,j)$ so $i$ must be
|
|
less than $j$.
|
|
|
|
\item $i > k \Land j > k$. Neither $i$ or $j$ is in the matched
|
|
subgraph $G_1[k]$. This situation only happens at the very beginning
|
|
of the search, or when $i$ and $j$ are not reachable from any of the
|
|
vertices in $G_1[k]$. This means the smaller of $i$ and $j$ must be
|
|
the root of a DFS tree. We assign $r$ to any of the eligible vertices
|
|
in $V_2 - S$, and then proceed as if we were in Case 2.
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
@d Match function
|
|
@{
|
|
bool match(edge_iter iter)
|
|
{
|
|
if (iter != ordered_edges.end()) {
|
|
ordered_edge edge = *iter;
|
|
size_type k_num = edge.k_num;
|
|
vertex1_t k = dfs_vertices[k_num];
|
|
vertex1_t u;
|
|
if (edge.source != -1) // might be a ficticious edge
|
|
u = dfs_vertices[edge.source];
|
|
vertex1_t v = dfs_vertices[edge.target];
|
|
if (edge.source == -1) { // root node
|
|
@<$v$ is a DFS tree root@>
|
|
} else if (f_assigned[v] == false) {
|
|
@<$v$ is an unmatched vertex, $(u,v)$ is a tree edge@>
|
|
} else {
|
|
@<Check to see if there is an edge in $G_2$ to match $(u,v)$@>
|
|
}
|
|
} else
|
|
return true;
|
|
return false;
|
|
} // match()
|
|
@}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
The basic idea will be to examine $G_1$ one edge at a time, trying to
|
|
create a vertex mapping such that each edge matches one in $G_2$. We
|
|
are going to consider the edges of $G_1$ in a specific order, so we
|
|
will label the edges $0,\ldots,|E_1|-1$.
|
|
|
|
At each stage of the recursion we
|
|
start with an isomorphism $f_{k-1}$ between $G_1[k-1]$ and a subgraph
|
|
of $G_2$, which we denote by $G_2[S]$, so $G_1[k-1] \isomorphic
|
|
G_2[S]$. The vertex set $S$ is the subset of $V_2$ that corresponds
|
|
via $f_{k-1}$ to the first $k-1$ vertices in $G_1$.
|
|
|
|
We also order the edges of $G_1$
|
|
|
|
|
|
|
|
We try to extend the isomorphism by finding a vertex $v \in V_2 - S$
|
|
that matches with vertex $k$. If a matching vertex is found, we have a
|
|
new isomorphism $f_k$ with $G_1[k] \isomorphic G_2[S \union \{ v \}]$.
|
|
|
|
|
|
|
|
|
|
\begin{tabbing}
|
|
IS\=O\=M\=O\=RPH($k$, $S$, $f_{k-1}$) $\equiv$ \\
|
|
\>\textbf{if} ($k = |V_1|+1$) \\
|
|
\>\>\textbf{return} true \\
|
|
\>\textbf{for} each vertex $v \in V_2 - S$ \\
|
|
\>\>\textbf{if} (MATCH($k$, $v$)) \\
|
|
\>\>\>$f_k = f_{k-1} \union \pair{k}{v}$ \\
|
|
\>\>\>ISOMORPH($k+1$, $S \union \{ v \}$, $f_k$)\\
|
|
\>\>\textbf{else}\\
|
|
\>\>\>\textbf{return} false \\
|
|
\\
|
|
ISOMORPH($0$, $G_1$, $\emptyset$, $G_2$)
|
|
\end{tabbing}
|
|
|
|
The basic idea of the match operation is to check whether $G_1[k]$ is
|
|
isomorphic to $G_2[S \union \{ v \}]$. We already know that $G_1[k-1]
|
|
\isomorphic G_2[S]$ with the mapping $f_{k-1}$, so all we need to do
|
|
is verify that the edges in $E_1[k] - E_1[k-1]$ connect vertices that
|
|
correspond to the vertices connected by the edges in $E_2[S \union \{
|
|
v \}] - E_2[S]$. The edges in $E_1[k] - E_1[k-1]$ are all the
|
|
out-edges $(k,j)$ and in-edges $(j,k)$ of $k$ where $j$ is less than
|
|
or equal to $k$ according to the ordering. The edges in $E_2[S \union
|
|
\{ v \}] - E_2[S]$ consists of all the out-edges $(v,u)$ and
|
|
in-edges $(u,v)$ of $v$ where $u \in S$.
|
|
|
|
\begin{tabbing}
|
|
M\=ATCH($k$, $v$) $\equiv$ \\
|
|
\>$out_k \leftarrow \forall (k,j) \in E_1[k] - E_1[k-1] \Big( (v,f(j)) \in E_2[S \union \{ v \}] - E_2[S] \Big)$ \\
|
|
\>$in_k \leftarrow \forall (j,k) \in E_1[k] - E_1[k-1] \Big( (f(j),v) \in E_2[S \union \{ v \}] - E_2[S] \Big)$ \\
|
|
\>$out_v \leftarrow \forall (v,u) \in E_2[S \union \{ v \}] - E_2[S] \Big( (k,f^{-1}(u)) \in E_1[k] - E_1[k-1] \Big)$ \\
|
|
\>$in_v \leftarrow \forall (u,v) \in E_2[S \union \{ v \}] - E_2[S] \Big( (f^{-1}(u),k) \in E_1[k] - E_1[k-1] \Big)$ \\
|
|
\>\textbf{return} $out_k \Land in_k \Land out_v \Land in_v$
|
|
\end{tabbing}
|
|
|
|
The problem with the exhaustive backtracking algorithm is that there
|
|
are $N!$ possible vertex mappings, and $N!$ gets very large as $N$
|
|
increases, so we need to prune the search space. We use the pruning
|
|
techniques described in
|
|
\cite{deo77:_new_algo_digraph_isomorph,fortin96:_isomorph,reingold77:_combin_algo}
|
|
that originated in
|
|
\cite{sussenguth65:_isomorphism,unger64:_isomorphism}.
|
|
|
|
\section{Vertex Invariants}
|
|
\label{sec:vertex-invariants}
|
|
|
|
One way to reduce the search space is through the use of \emph{vertex
|
|
invariants}. The idea is to compute a number for each vertex $i(v)$
|
|
such that $i(v) = i(v')$ if there exists some isomorphism $f$ where
|
|
$f(v) = v'$. Then when we look for a match to some vertex $v$, we only
|
|
need to consider those vertices that have the same vertex invariant
|
|
number. The number of vertices in a graph with the same vertex
|
|
invariant number $i$ is called the \emph{invariant multiplicity} for
|
|
$i$. In this implementation, by default we use the out-degree of the
|
|
vertex as the vertex invariant, though the user can also supply there
|
|
own invariant function. The ability of the invariant function to prune
|
|
the search space varies widely with the type of graph.
|
|
|
|
As a first check to rule out graphs that have no possibility of
|
|
matching, one can create a list of computed vertex invariant numbers
|
|
for the vertices in each graph, sort the two lists, and then compare
|
|
them. If the two lists are different then the two graphs are not
|
|
isomorphic. If the two lists are the same then the two graphs may be
|
|
isomorphic.
|
|
|
|
Also, we extend the MATCH operation to use the vertex invariants to
|
|
help rule out vertices.
|
|
|
|
\section{Vertex Order}
|
|
|
|
A good choice of the labeling for the vertices (which determines the
|
|
order in which the subgraph $G_1[k]$ is grown) can also reduce the
|
|
search space. In the following we discuss two labeling heuristics.
|
|
|
|
\subsection{Most Constrained First}
|
|
|
|
Consider the most constrained vertices first. That is, examine
|
|
lower-degree vertices before higher-degree vertices. This reduces the
|
|
search space because it chops off a trunk before the trunk has a
|
|
chance to blossom out. We can generalize this to use vertex
|
|
invariants. We examine vertices with low invariant multiplicity
|
|
before examining vertices with high invariant multiplicity.
|
|
|
|
\subsection{Adjacent First}
|
|
|
|
The MATCH operation only considers edges when the other vertex already
|
|
has a mapping defined. This means that the MATCH operation can only
|
|
weed out vertices that are adjacent to vertices that have already been
|
|
matched. Therefore, when choosing the next vertex to examine, it is
|
|
desirable to choose one that is adjacent a vertex already in $S_1$.
|
|
|
|
\subsection{DFS Order, Starting with Lowest Multiplicity}
|
|
|
|
For this implementation, we combine the above two heuristics in the
|
|
following way. To implement the ``adjacent first'' heuristic we apply
|
|
DFS to the graph, and use the DFS discovery order as our vertex
|
|
order. To comply with the ``most constrained first'' heuristic we
|
|
order the roots of our DFS trees by invariant multiplicity.
|
|
|
|
|
|
|
|
\section{Implementation}
|
|
|
|
The following is the public interface for the \code{isomorphism}
|
|
function. The input to the function is the two graphs $G_1$ and $G_2$,
|
|
mappings from the vertices in the graphs to integers (in the range
|
|
$[0,|V|)$), and a vertex invariant function object. The output of the
|
|
function is an isomorphism $f$ if there is one. The \code{isomorphism}
|
|
function returns true if the graphs are isomorphic and false
|
|
otherwise. The invariant parameters are function objects that compute
|
|
the vertex invariants for vertices of the two graphs. The
|
|
\code{max\_invariant} parameter is to specify one past the largest
|
|
integer that a vertex invariant number could be (the invariants
|
|
numbers are assumed to span from zero to the number). The
|
|
requirements on type template parameters are described below in the
|
|
``Concept checking'' part.
|
|
|
|
|
|
@d Isomorphism function interface
|
|
@{
|
|
template <typename Graph1, typename Graph2, typename IsoMapping,
|
|
typename Invariant1, typename Invariant2,
|
|
typename IndexMap1, typename IndexMap2>
|
|
bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f,
|
|
Invariant1 invariant1, Invariant2 invariant2,
|
|
std::size_t max_invariant,
|
|
IndexMap1 index_map1, IndexMap2 index_map2)
|
|
@}
|
|
|
|
|
|
The function body consists of the concept checks followed by a quick
|
|
check for empty graphs or graphs of different size and then construct
|
|
an algorithm object. We then call the \code{test\_isomorphism} member
|
|
function, which runs the algorithm. The reason that we implement the
|
|
algorithm using a class is that there are a fair number of internal
|
|
data structures required, and it is easier to make these data members
|
|
of a class and make each section of the algorithm a member
|
|
function. This relieves us from the burden of passing lots of
|
|
arguments to each function, while at the same time avoiding the evils
|
|
of global variables (non-reentrant, etc.).
|
|
|
|
|
|
@d Isomorphism function body
|
|
@{
|
|
{
|
|
@<Concept checking@>
|
|
@<Quick return based on size@>
|
|
detail::isomorphism_algo<Graph1, Graph2, IsoMapping, Invariant1, Invariant2,
|
|
IndexMap1, IndexMap2>
|
|
algo(G1, G2, f, invariant1, invariant2, max_invariant,
|
|
index_map1, index_map2);
|
|
return algo.test_isomorphism();
|
|
}
|
|
@}
|
|
|
|
|
|
\noindent If there are no vertices in either graph, then they are
|
|
trivially isomorphic. If the graphs have different numbers of vertices
|
|
then they are not isomorphic.
|
|
|
|
@d Quick return based on size
|
|
@{
|
|
if (num_vertices(G1) != num_vertices(G2))
|
|
return false;
|
|
if (num_vertices(G1) == 0 && num_vertices(G2) == 0)
|
|
return true;
|
|
@}
|
|
|
|
We use the Boost Concept Checking Library to make sure that the type
|
|
arguments to the function fulfill there requirements. The graph types
|
|
must model the \bglconcept{VertexListGraph} and
|
|
\bglconcept{AdjacencyGraph} concepts. The vertex invariants must model
|
|
the \stlconcept{AdaptableUnaryFunction} concept, with a vertex as
|
|
their argument and an integer return type. The \code{IsoMapping} type
|
|
that represents the isomorphism $f$ must be a
|
|
\pmconcept{ReadWritePropertyMap} that maps from vertices in $G_1$ to
|
|
vertices in $G_2$. The two other index maps are
|
|
\pmconcept{ReadablePropertyMap}s from vertices in $G_1$ and $G_2$ to
|
|
unsigned integers.
|
|
|
|
|
|
@d Concept checking
|
|
@{
|
|
// Graph requirements
|
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph1> ));
|
|
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph1> ));
|
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph2> ));
|
|
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph2> ));
|
|
|
|
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
|
|
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
|
|
typedef typename graph_traits<Graph1>::vertices_size_type size_type;
|
|
|
|
// Vertex invariant requirement
|
|
BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept<Invariant1,
|
|
size_type, vertex1_t> ));
|
|
BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept<Invariant2,
|
|
size_type, vertex2_t> ));
|
|
|
|
// Property map requirements
|
|
BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<IsoMapping, vertex1_t> ));
|
|
typedef typename property_traits<IsoMapping>::value_type IsoMappingValue;
|
|
BOOST_STATIC_ASSERT((is_same<IsoMappingValue, vertex2_t>::value));
|
|
|
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap1, vertex1_t> ));
|
|
typedef typename property_traits<IndexMap1>::value_type IndexMap1Value;
|
|
BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value));
|
|
|
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap2, vertex2_t> ));
|
|
typedef typename property_traits<IndexMap2>::value_type IndexMap2Value;
|
|
BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value));
|
|
@}
|
|
|
|
The following is the outline of the isomorphism algorithm class. The
|
|
class is templated on all of the same parameters of the
|
|
\code{isomorphism} function, and all of the parameter values are
|
|
stored in the class as data members, in addition to the internal data
|
|
structures.
|
|
|
|
@d Isomorphism algorithm class
|
|
@{
|
|
template <typename Graph1, typename Graph2, typename IsoMapping,
|
|
typename Invariant1, typename Invariant2,
|
|
typename IndexMap1, typename IndexMap2>
|
|
class isomorphism_algo
|
|
{
|
|
@<Typedefs for commonly used types@>
|
|
@<Data members for the parameters@>
|
|
@<Ordered edge class@>
|
|
@<Internal data structures@>
|
|
friend struct compare_multiplicity;
|
|
@<Invariant multiplicity comparison functor@>
|
|
@<DFS visitor to record vertex and edge order@>
|
|
public:
|
|
@<Isomorphism algorithm constructor@>
|
|
@<Test isomorphism member function@>
|
|
private:
|
|
@<Match function@>
|
|
};
|
|
@}
|
|
|
|
The interesting parts of this class are the \code{test\_isomorphism}
|
|
function, and the \code{match} function. We focus on those in in the
|
|
following sections, and mention the other parts of the class when
|
|
needed (and a few are left to the appendix).
|
|
|
|
The \code{test\_isomorphism} function does all of the setup required
|
|
of the algorithm. This consists of sorting the vertices according to
|
|
invariant multiplicity, and then by DFS order. The edges are then
|
|
sorted by the DFS order of vertices incident on the edges. More
|
|
details about this to come. The last step of this function is to
|
|
invoke the recursive \code{match} function which performs the
|
|
backtracking search.
|
|
|
|
|
|
@d Test isomorphism member function
|
|
@{
|
|
bool test_isomorphism()
|
|
{
|
|
@<Quick return if the vertex invariants do not match up@>
|
|
@<Sort vertices according to invariant multiplicity@>
|
|
@<Order vertices and edges by DFS@>
|
|
@<Sort edges according to vertex DFS order@>
|
|
|
|
return this->match(ordered_edges.begin());
|
|
}
|
|
@}
|
|
|
|
As discussed in \S\ref{sec:vertex-invariants}, we can quickly rule out
|
|
the possibility of any isomorphism between two graphs by checking to
|
|
see if the vertex invariants can match up. We sort both vectors of vertex
|
|
invariants, and then check to see if they are equal.
|
|
|
|
@d Quick return if the vertex invariants do not match up
|
|
@{
|
|
{
|
|
std::vector<invar1_value> invar1_array;
|
|
BGL_FORALL_VERTICES_T(v, G1, Graph1)
|
|
invar1_array.push_back(invariant1(v));
|
|
std::sort(invar1_array.begin(), invar1_array.end());
|
|
|
|
std::vector<invar2_value> invar2_array;
|
|
BGL_FORALL_VERTICES_T(v, G2, Graph2)
|
|
invar2_array.push_back(invariant2(v));
|
|
std::sort(invar2_array.begin(), invar2_array.end());
|
|
|
|
if (!std::equal(invar1_array.begin(), invar1_array.end(), invar2_array.begin()))
|
|
return false;
|
|
}
|
|
@}
|
|
|
|
Next we compute the invariant multiplicity, the number of vertices
|
|
with the same invariant number. The \code{invar\_mult} vector is
|
|
indexed by invariant number. We loop through all the vertices in the
|
|
graph to record the multiplicity. We then order the vertices by their
|
|
invariant multiplicity. This will allow us to search the more
|
|
constrained vertices first.
|
|
|
|
@d Sort vertices according to invariant multiplicity
|
|
@{
|
|
std::vector<vertex1_t> V_mult;
|
|
BGL_FORALL_VERTICES_T(v, G1, Graph1)
|
|
V_mult.push_back(v);
|
|
{
|
|
std::vector<size_type> multiplicity(max_invariant, 0);
|
|
BGL_FORALL_VERTICES_T(v, G1, Graph1)
|
|
++multiplicity[invariant1(v)];
|
|
|
|
std::sort(V_mult.begin(), V_mult.end(), compare_multiplicity(*this, &multiplicity[0]));
|
|
}
|
|
@}
|
|
|
|
\noindent The definition of the \code{compare\_multiplicity} predicate
|
|
is shown below. This predicate provides the glue that binds
|
|
\code{std::sort} to our current purpose.
|
|
|
|
@d Invariant multiplicity comparison functor
|
|
@{
|
|
struct compare_multiplicity
|
|
{
|
|
compare_multiplicity(isomorphism_algo& algo, size_type* multiplicity)
|
|
: algo(algo), multiplicity(multiplicity) { }
|
|
bool operator()(const vertex1_t& x, const vertex1_t& y) const {
|
|
return multiplicity[algo.invariant1(x)] < multiplicity[algo.invariant1(y)];
|
|
}
|
|
isomorphism_algo& algo;
|
|
size_type* multiplicity;
|
|
};
|
|
@}
|
|
|
|
\subsection{Backtracking Search and Matching}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Ordering by DFS Discover Time}
|
|
|
|
To implement the ``visit adjacent vertices first'' heuristic, we order
|
|
the vertices according to DFS discover time. This will give us the
|
|
order that the subgraph $G_1[k]$ will be expanded. As described in
|
|
\S\ref{sec:backtracking}, when trying to match $k$ with some vertex
|
|
$v$ in $V_2 - S$, we need to examine the edges in $E_1[k] -
|
|
E_1[k-1]$. It would be nice if we had the edges of $G_1$ arranged so
|
|
that when we are interested in vertex $k$, the edges in $E_1[k] -
|
|
E_1[k-1]$ are easy to find. This can be achieved by creating an array
|
|
of edges sorted by the DFS number of the larger of the source and
|
|
target vertex. The following array of ordered edges corresponds
|
|
to the graph in Figure~\ref{fig:edge-order}.
|
|
|
|
\begin{tabular}{cccccccccc}
|
|
&0&1&2&3&4&5&6&7&8\\ \hline
|
|
source&0&1&1&3&3&4&4&5&6\\
|
|
target&1&2&3&1&2&3&5&6&4
|
|
\end{tabular}
|
|
|
|
The backtracking algorithm will scan through the edge array from left
|
|
to right to extend isomorphic subgraphs, and move back to the right
|
|
when a match fails. We will want to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
For example, suppose we have already matched the vertices
|
|
\{0,1,2\}, and
|
|
|
|
|
|
|
|
\vizfig{edge-order}{Vertices with DFS numbering. The DFS trees are the solid edges.}
|
|
|
|
@c edge-order.dot
|
|
@{
|
|
digraph G {
|
|
size="3,2"
|
|
ratio=fill
|
|
node[shape=circle]
|
|
0 -> 1[style=bold]
|
|
1 -> 2[style=bold]
|
|
1 -> 3[style=bold]
|
|
3 -> 1[style=dashed]
|
|
3 -> 2[style=dashed]
|
|
4 -> 3[style=dashed]
|
|
4 -> 5[style=bold]
|
|
5 -> 6[style=bold]
|
|
6 -> 4[style=dashed]
|
|
}
|
|
@}
|
|
|
|
|
|
|
|
|
|
We implement the outer-loop of the DFS here, instead of calling the
|
|
\code{depth\_first\_search} function, because we want the roots of the
|
|
DFS tree's to be ordered by invariant multiplicity. We call
|
|
\code{depth\_\-first\_\-visit} to implement the recursive portion of
|
|
the DFS. The \code{record\_dfs\_order} adapts the DFS to record the
|
|
order in which DFS discovers the vertices, storing the results in in
|
|
the \code{dfs\_vertices} and \code{ordered\_edges} arrays. We then
|
|
create the \code{dfs\_number} array which provides a mapping from
|
|
vertex to DFS number, and renumber the edges with the DFS numbers.
|
|
|
|
@d Order vertices and edges by DFS
|
|
@{
|
|
std::vector<default_color_type> color_vec(num_vertices(G1));
|
|
safe_iterator_property_map<std::vector<default_color_type>::iterator, IndexMap1>
|
|
color_map(color_vec.begin(), color_vec.size(), index_map1);
|
|
record_dfs_order dfs_visitor(dfs_vertices, ordered_edges);
|
|
typedef color_traits<default_color_type> Color;
|
|
for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) {
|
|
if (color_map[*u] == Color::white()) {
|
|
dfs_visitor.start_vertex(*u, G1);
|
|
depth_first_visit(G1, *u, dfs_visitor, color_map);
|
|
}
|
|
}
|
|
// Create the dfs_number array and dfs_number_map
|
|
dfs_number_vec.resize(num_vertices(G1));
|
|
dfs_number = make_safe_iterator_property_map(dfs_number_vec.begin(),
|
|
dfs_number_vec.size(), index_map1);
|
|
size_type n = 0;
|
|
for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v)
|
|
dfs_number[*v] = n++;
|
|
|
|
// Renumber ordered_edges array according to DFS number
|
|
for (edge_iter e = ordered_edges.begin(); e != ordered_edges.end(); ++e) {
|
|
if (e->source >= 0)
|
|
e->source = dfs_number_vec[e->source];
|
|
e->target = dfs_number_vec[e->target];
|
|
}
|
|
@}
|
|
|
|
\noindent The definition of the \code{record\_dfs\_order} visitor
|
|
class is as follows. EXPLAIN ficticious edges
|
|
|
|
@d DFS visitor to record vertex and edge order
|
|
@{
|
|
struct record_dfs_order : default_dfs_visitor
|
|
{
|
|
record_dfs_order(std::vector<vertex1_t>& v, std::vector<ordered_edge>& e)
|
|
: vertices(v), edges(e) { }
|
|
|
|
void start_vertex(vertex1_t v, const Graph1&) const {
|
|
edges.push_back(ordered_edge(-1, v));
|
|
}
|
|
void discover_vertex(vertex1_t v, const Graph1&) const {
|
|
vertices.push_back(v);
|
|
}
|
|
void examine_edge(edge1_t e, const Graph1& G1) const {
|
|
edges.push_back(ordered_edge(source(e, G1), target(e, G1)));
|
|
}
|
|
std::vector<vertex1_t>& vertices;
|
|
std::vector<ordered_edge>& edges;
|
|
};
|
|
@}
|
|
|
|
|
|
Reorder the edges so that all edges belonging to $G_1[k]$
|
|
appear before any edges not in $G_1[k]$, for $k=1,...,n$.
|
|
|
|
The order field needs a better name. How about k?
|
|
|
|
@d Sort edges according to vertex DFS order
|
|
@{
|
|
std::stable_sort(ordered_edges.begin(), ordered_edges.end());
|
|
// Fill in i->k_num field
|
|
if (!ordered_edges.empty()) {
|
|
ordered_edges[0].k_num = 0;
|
|
for (edge_iter i = next(ordered_edges.begin()); i != ordered_edges.end(); ++i)
|
|
i->k_num = std::max(prior(i)->source, prior(i)->target);
|
|
}
|
|
@}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@d Typedefs for commonly used types
|
|
@{
|
|
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
|
|
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
|
|
typedef typename graph_traits<Graph1>::edge_descriptor edge1_t;
|
|
typedef typename graph_traits<Graph1>::vertices_size_type size_type;
|
|
typedef typename Invariant1::result_type invar1_value;
|
|
typedef typename Invariant2::result_type invar2_value;
|
|
@}
|
|
|
|
@d Data members for the parameters
|
|
@{
|
|
const Graph1& G1;
|
|
const Graph2& G2;
|
|
IsoMapping f;
|
|
Invariant1 invariant1;
|
|
Invariant2 invariant2;
|
|
std::size_t max_invariant;
|
|
IndexMap1 index_map1;
|
|
IndexMap2 index_map2;
|
|
@}
|
|
|
|
@d Internal data structures
|
|
@{
|
|
std::vector<vertex1_t> dfs_vertices;
|
|
typedef std::vector<vertex1_t>::iterator vertex_iter;
|
|
std::vector<size_type> dfs_number_vec;
|
|
safe_iterator_property_map<typename std::vector<size_type>::iterator, IndexMap1>
|
|
dfs_number;
|
|
std::vector<ordered_edge> ordered_edges;
|
|
typedef std::vector<ordered_edge>::iterator edge_iter;
|
|
|
|
std::vector<vertex1_t> f_inv_vec;
|
|
safe_iterator_property_map<typename std::vector<vertex1_t>::iterator,
|
|
IndexMap2> f_inv;
|
|
|
|
std::vector<char> f_assigned_vec;
|
|
safe_iterator_property_map<typename std::vector<char>::iterator,
|
|
IndexMap1> f_assigned;
|
|
|
|
std::vector<char> f_inv_assigned_vec;
|
|
safe_iterator_property_map<typename std::vector<char>::iterator,
|
|
IndexMap2> f_inv_assigned;
|
|
|
|
int num_edges_incident_on_k;
|
|
@}
|
|
|
|
@d Isomorphism algorithm constructor
|
|
@{
|
|
isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f,
|
|
Invariant1 invariant1, Invariant2 invariant2, std::size_t max_invariant,
|
|
IndexMap1 index_map1, IndexMap2 index_map2)
|
|
: G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2),
|
|
max_invariant(max_invariant),
|
|
index_map1(index_map1), index_map2(index_map2)
|
|
{
|
|
f_assigned_vec.resize(num_vertices(G1));
|
|
f_assigned = make_safe_iterator_property_map
|
|
(f_assigned_vec.begin(), f_assigned_vec.size(), index_map1);
|
|
f_inv_vec.resize(num_vertices(G1));
|
|
f_inv = make_safe_iterator_property_map
|
|
(f_inv_vec.begin(), f_inv_vec.size(), index_map2);
|
|
|
|
f_inv_assigned_vec.resize(num_vertices(G1));
|
|
f_inv_assigned = make_safe_iterator_property_map
|
|
(f_inv_assigned_vec.begin(), f_inv_assigned_vec.size(), index_map2);
|
|
}
|
|
@}
|
|
|
|
|
|
|
|
|
|
@d Degree vertex invariant functor
|
|
@{
|
|
template <typename InDegreeMap, typename Graph>
|
|
class degree_vertex_invariant
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
|
|
typedef typename graph_traits<Graph>::degree_size_type size_type;
|
|
public:
|
|
typedef vertex_t argument_type;
|
|
typedef size_type result_type;
|
|
|
|
degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g)
|
|
: m_in_degree_map(in_degree_map), m_g(g) { }
|
|
|
|
size_type operator()(vertex_t v) const {
|
|
return (num_vertices(m_g) + 1) * out_degree(v, m_g)
|
|
+ get(m_in_degree_map, v);
|
|
}
|
|
// The largest possible vertex invariant number
|
|
size_type max() const {
|
|
return num_vertices(m_g) * num_vertices(m_g) + num_vertices(m_g);
|
|
}
|
|
private:
|
|
InDegreeMap m_in_degree_map;
|
|
const Graph& m_g;
|
|
};
|
|
@}
|
|
|
|
|
|
|
|
ficticiuos edges for the DFS tree roots
|
|
Use \code{ordered\_edge} instead of \code{edge1\_t} so that we can create ficticious
|
|
edges for the DFS tree roots.
|
|
|
|
@d Ordered edge class
|
|
@{
|
|
struct ordered_edge {
|
|
ordered_edge(int s, int t) : source(s), target(t) { }
|
|
|
|
bool operator<(const ordered_edge& e) const {
|
|
using namespace std;
|
|
int m1 = max(source, target);
|
|
int m2 = max(e.source, e.target);
|
|
// lexicographical comparison of (m1,source,target) and (m2,e.source,e.target)
|
|
return make_pair(m1, make_pair(source, target)) < make_pair(m2, make_pair(e.source, e.target));
|
|
}
|
|
int source;
|
|
int target;
|
|
int k_num;
|
|
};
|
|
@}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Recursive Match Function}
|
|
|
|
|
|
|
|
|
|
|
|
@d $v$ is a DFS tree root
|
|
@{
|
|
// Try all possible mappings
|
|
BGL_FORALL_VERTICES_T(y, G2, Graph2) {
|
|
if (invariant1(v) == invariant2(y) && f_inv_assigned[y] == false) {
|
|
f[v] = y; f_assigned[v] = true;
|
|
f_inv[y] = v; f_inv_assigned[y] = true;
|
|
num_edges_incident_on_k = 0;
|
|
if (match(next(iter)))
|
|
return true;
|
|
f_assigned[v] = false;
|
|
f_inv_assigned[y] = false;
|
|
}
|
|
}
|
|
@}
|
|
|
|
Growing the subgraph.
|
|
|
|
@d $v$ is an unmatched vertex, $(u,v)$ is a tree edge
|
|
@{
|
|
@<Count out-edges of $f(k)$ in $G_2[S]$@>
|
|
@<Count in-edges of $f(k)$ in $G_2[S]$@>
|
|
if (num_edges_incident_on_k != 0)
|
|
return false;
|
|
@<Assign $v$ to some vertex in $V_2 - S$@>
|
|
@}
|
|
@d Count out-edges of $f(k)$ in $G_2[S]$
|
|
@{
|
|
BGL_FORALL_ADJACENT_T(f[k], w, G2, Graph2)
|
|
if (f_inv_assigned[w] == true)
|
|
--num_edges_incident_on_k;
|
|
@}
|
|
|
|
@d Count in-edges of $f(k)$ in $G_2[S]$
|
|
@{
|
|
for (std::size_t jj = 0; jj < k_num; ++jj) {
|
|
vertex1_t j = dfs_vertices[jj];
|
|
BGL_FORALL_ADJACENT_T(f[j], w, G2, Graph2)
|
|
if (w == f[k])
|
|
--num_edges_incident_on_k;
|
|
}
|
|
@}
|
|
|
|
@d Assign $v$ to some vertex in $V_2 - S$
|
|
@{
|
|
BGL_FORALL_ADJACENT_T(f[u], y, G2, Graph2)
|
|
if (invariant1(v) == invariant2(y) && f_inv_assigned[y] == false) {
|
|
f[v] = y; f_assigned[v] = true;
|
|
f_inv[y] = v; f_inv_assigned[y] = true;
|
|
num_edges_incident_on_k = 1;
|
|
if (match(next(iter)))
|
|
return true;
|
|
f_assigned[v] = false;
|
|
f_inv_assigned[y] = false;
|
|
}
|
|
@}
|
|
|
|
|
|
|
|
@d Check to see if there is an edge in $G_2$ to match $(u,v)$
|
|
@{
|
|
bool verify = false;
|
|
assert(f_assigned[u] == true);
|
|
BGL_FORALL_ADJACENT_T(f[u], y, G2, Graph2) {
|
|
if (y == f[v]) {
|
|
verify = true;
|
|
break;
|
|
}
|
|
}
|
|
if (verify == true) {
|
|
++num_edges_incident_on_k;
|
|
if (match(next(iter)))
|
|
return true;
|
|
}
|
|
@}
|
|
|
|
|
|
|
|
@o isomorphism-v2.hpp
|
|
@{
|
|
// Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman
|
|
//
|
|
// Permission to copy, use, sell and distribute this software is granted
|
|
// provided this copyright notice appears in all copies.
|
|
// Permission to modify the code and to distribute modified code is granted
|
|
// provided this copyright notice appears in all copies, and a notice
|
|
// that the code was modified is included with the copyright notice.
|
|
//
|
|
// This software is provided "as is" without express or implied warranty,
|
|
// and with no claim as to its suitability for any purpose.
|
|
#ifndef BOOST_GRAPH_ISOMORPHISM_HPP
|
|
#define BOOST_GRAPH_ISOMORPHISM_HPP
|
|
|
|
#include <utility>
|
|
#include <vector>
|
|
#include <iterator>
|
|
#include <algorithm>
|
|
#include <boost/graph/iteration_macros.hpp>
|
|
#include <boost/graph/depth_first_search.hpp>
|
|
#include <boost/utility.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
|
|
namespace boost {
|
|
|
|
namespace detail {
|
|
|
|
@<Isomorphism algorithm class@>
|
|
|
|
template <typename Graph, typename InDegreeMap>
|
|
void compute_in_degree(const Graph& g, InDegreeMap in_degree_map)
|
|
{
|
|
BGL_FORALL_VERTICES_T(v, g, Graph)
|
|
put(in_degree_map, v, 0);
|
|
|
|
BGL_FORALL_VERTICES_T(u, g, Graph)
|
|
BGL_FORALL_ADJACENT_T(u, v, g, Graph)
|
|
put(in_degree_map, v, get(in_degree_map, v) + 1);
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
|
|
@<Degree vertex invariant functor@>
|
|
|
|
@<Isomorphism function interface@>
|
|
@<Isomorphism function body@>
|
|
|
|
namespace detail {
|
|
|
|
template <typename Graph1, typename Graph2,
|
|
typename IsoMapping,
|
|
typename IndexMap1, typename IndexMap2,
|
|
typename P, typename T, typename R>
|
|
bool isomorphism_impl(const Graph1& G1, const Graph2& G2,
|
|
IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2,
|
|
const bgl_named_params<P,T,R>& params)
|
|
{
|
|
std::vector<std::size_t> in_degree1_vec(num_vertices(G1));
|
|
typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, IndexMap1> InDeg1;
|
|
InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1);
|
|
compute_in_degree(G1, in_degree1);
|
|
|
|
std::vector<std::size_t> in_degree2_vec(num_vertices(G2));
|
|
typedef safe_iterator_property_map<std::vector<std::size_t>::iterator, IndexMap2> InDeg2;
|
|
InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2);
|
|
compute_in_degree(G2, in_degree2);
|
|
|
|
degree_vertex_invariant<InDeg1, Graph1> invariant1(in_degree1, G1);
|
|
degree_vertex_invariant<InDeg2, Graph2> invariant2(in_degree2, G2);
|
|
|
|
return isomorphism(G1, G2, f,
|
|
choose_param(get_param(params, vertex_invariant1_t()), invariant1),
|
|
choose_param(get_param(params, vertex_invariant2_t()), invariant2),
|
|
choose_param(get_param(params, vertex_max_invariant_t()), invariant2.max()),
|
|
index_map1, index_map2
|
|
);
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
|
|
// Named parameter interface
|
|
template <typename Graph1, typename Graph2, class P, class T, class R>
|
|
bool isomorphism(const Graph1& g1,
|
|
const Graph2& g2,
|
|
const bgl_named_params<P,T,R>& params)
|
|
{
|
|
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
|
|
typename std::vector<vertex2_t>::size_type n = num_vertices(g1);
|
|
std::vector<vertex2_t> f(n);
|
|
return detail::isomorphism_impl
|
|
(g1, g2,
|
|
choose_param(get_param(params, vertex_isomorphism_t()),
|
|
make_safe_iterator_property_map(f.begin(), f.size(),
|
|
choose_const_pmap(get_param(params, vertex_index1),
|
|
g1, vertex_index), vertex2_t())),
|
|
choose_const_pmap(get_param(params, vertex_index1), g1, vertex_index),
|
|
choose_const_pmap(get_param(params, vertex_index2), g2, vertex_index),
|
|
params
|
|
);
|
|
}
|
|
|
|
// All defaults interface
|
|
template <typename Graph1, typename Graph2>
|
|
bool isomorphism(const Graph1& g1, const Graph2& g2)
|
|
{
|
|
return isomorphism(g1, g2,
|
|
bgl_named_params<int, buffer_param_t>(0));// bogus named param
|
|
}
|
|
|
|
|
|
// Verify that the given mapping iso_map from the vertices of g1 to the
|
|
// vertices of g2 describes an isomorphism.
|
|
// Note: this could be made much faster by specializing based on the graph
|
|
// concepts modeled, but since we're verifying an O(n^(lg n)) algorithm,
|
|
// O(n^4) won't hurt us.
|
|
template<typename Graph1, typename Graph2, typename IsoMap>
|
|
inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map)
|
|
{
|
|
if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))
|
|
return false;
|
|
|
|
for (typename graph_traits<Graph1>::edge_iterator e1 = edges(g1).first;
|
|
e1 != edges(g1).second; ++e1) {
|
|
bool found_edge = false;
|
|
for (typename graph_traits<Graph2>::edge_iterator e2 = edges(g2).first;
|
|
e2 != edges(g2).second && !found_edge; ++e2) {
|
|
if (source(*e2, g2) == get(iso_map, source(*e1, g1)) &&
|
|
target(*e2, g2) == get(iso_map, target(*e1, g1))) {
|
|
found_edge = true;
|
|
}
|
|
}
|
|
|
|
if (!found_edge)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace boost
|
|
|
|
#include <boost/graph/iteration_macros_undef.hpp>
|
|
|
|
#endif // BOOST_GRAPH_ISOMORPHISM_HPP
|
|
@}
|
|
|
|
\bibliographystyle{abbrv}
|
|
\bibliography{ggcl}
|
|
|
|
\end{document}
|
|
% LocalWords: Isomorphism Siek isomorphism adjacency subgraph subgraphs OM DFS
|
|
% LocalWords: ISOMORPH Invariants invariants typename IsoMapping bool const
|
|
% LocalWords: VertexInvariant VertexIndexMap iterator typedef VertexG Idx num
|
|
% LocalWords: InvarValue struct invar vec iter tmp_matches mult inserter permute ui
|
|
% LocalWords: dfs cmp isomorph VertexIter edge_iter_t IndexMap desc RPH ATCH pre
|
|
|
|
% LocalWords: iterators VertexListGraph EdgeListGraph BidirectionalGraph tmp
|
|
% LocalWords: ReadWritePropertyMap VertexListGraphConcept EdgeListGraphConcept
|
|
% LocalWords: BidirectionalGraphConcept ReadWritePropertyMapConcept indices ei
|
|
% LocalWords: IsoMappingValue ReadablePropertyMapConcept namespace InvarFun
|
|
% LocalWords: MultMap vip inline bitset typedefs fj hpp ifndef adaptor params
|
|
% LocalWords: bgl param pmap endif
|