988 lines
36 KiB
OpenEdge ABL
988 lines
36 KiB
OpenEdge ABL
\documentclass[11pt,awpaper]{book}
|
|
|
|
\usepackage{math}
|
|
\usepackage{jweb}
|
|
\usepackage[nolineno]{lgrind}
|
|
\usepackage{awpaper}
|
|
\usepackage{graphicx}
|
|
|
|
\setlength{\evensidemargin}{-0.25in}% was -0.17in
|
|
\setlength{\oddsidemargin}{0in}%was -0.25in
|
|
\setlength{\textwidth}{5.625in}%was 5.75in
|
|
\setlength{\textheight}{7.75in}
|
|
\setlength{\topmargin}{-0.125in}%was -0.25
|
|
\addtolength{\topmargin}{-\headheight}
|
|
\addtolength{\topmargin}{-\headsep}
|
|
|
|
\newif\ifpdf
|
|
\ifx\pdfoutput\undefined
|
|
\pdffalse
|
|
\else
|
|
\pdfoutput=1
|
|
\pdftrue
|
|
\fi
|
|
|
|
\ifpdf
|
|
\usepackage[
|
|
pdftex,
|
|
colorlinks=true, %change to true for the electronic version
|
|
linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue
|
|
]{hyperref}
|
|
\fi
|
|
|
|
\ifpdf
|
|
\newcommand{\stlconcept}[1]{\href{https://boost.org/sgi/stl/#1.html}{{\small \textsf{#1}}}}
|
|
\newcommand{\bglconcept}[1]{\href{http://www.boost.org/libs/graph/doc/#1.html}{{\small \textsf{#1}}}}
|
|
\newcommand{\pmconcept}[1]{\href{http://www.boost.org/libs/property_map/#1.html}{{\small \textsf{#1}}}}
|
|
\newcommand{\myhyperref}[2]{\hyperref[#1]{#2}}
|
|
\newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.pdf}}\caption{#2}\label{fig:#1}\end{figure}}
|
|
\else
|
|
\newcommand{\myhyperref}[2]{#2}
|
|
\newcommand{\bglconcept}[1]{{\small \textsf{#1}}}
|
|
\newcommand{\pmconcept}[1]{{\small \textsf{#1}}}
|
|
\newcommand{\stlconcept}[1]{{\small \textsf{#1}}}
|
|
\newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.eps}}\caption{#2}\label{fig:#1}\end{figure}}
|
|
\fi
|
|
|
|
\newcommand{\code}[1]{{\small{\em \textbf{#1}}}}
|
|
|
|
|
|
\newcommand{\isomorphic}{\cong}
|
|
|
|
\begin{document}
|
|
|
|
\title{An Implementation of Graph Isomorphism Testing}
|
|
\author{Jeremy G. Siek}
|
|
|
|
\maketitle
|
|
|
|
% Ideas: use BFS instead of DFS, don't have to sort edges?
|
|
% No, you would still have to sort the edges.
|
|
%
|
|
%Figure~\ref{fig:iso-eg2}.
|
|
% 0 0 0 1 1 2 5 6 6 7
|
|
% 1 2 3 4 2 4 6 3 7 5
|
|
%\vizfig{iso-eg2}{Vertices numbered by BFS discover time. The BFS tree
|
|
%edges are the solid lines. Nodes $0$ and $5$ are BFS tree root nodes.}
|
|
%
|
|
% You could do a modified Dijkstra, where the priority in the queue
|
|
% would be the BFS discover time of the target vertex.
|
|
|
|
% Use w(u,v) = |Adj[u] \intersect Adj[v]| as an edge invariant.
|
|
% Has anyone used edge invariants before?
|
|
|
|
|
|
\section{Introduction}
|
|
|
|
This paper documents the implementation of the \code{isomorphism()}
|
|
function of the Boost Graph Library. The implementation was by Jeremy
|
|
Siek with algorithmic improvements and test code from Douglas Gregor
|
|
and Brian Osman. The \code{isomorphism()} function answers the
|
|
question, ``are these two graphs equal?'' By \emph{equal} we mean
|
|
the two graphs have the same structure---the vertices and edges are
|
|
connected in the same way. The mathematical name for this kind of
|
|
equality is \emph{isomorphism}.
|
|
|
|
More precisely, an \emph{isomorphism} is a one-to-one mapping of the
|
|
vertices in one graph to the vertices of another graph such that
|
|
adjacency is preserved. Another words, given graphs $G_{1} =
|
|
(V_{1},E_{1})$ and $G_{2} = (V_{2},E_{2})$, an isomorphism is a
|
|
function $f$ such that for all pairs of vertices $a,b$ in $V_{1}$,
|
|
edge $(a,b)$ is in $E_{1}$ if and only if edge $(f(a),f(b))$ is in
|
|
$E_{2}$.
|
|
|
|
The graph $G_1$ is \emph{isomorphic} to $G_2$ if an isomorphism exists
|
|
between the two graphs, which we denote by $G_1 \isomorphic G_2$.
|
|
Both graphs must be the same size, so let $N = |V_1| = |V_2|$.
|
|
|
|
In the following discussion we will need to use several more notions
|
|
from graph theory. The graph $G_s=(V_s,E_s)$ is a \emph{subgraph} of
|
|
graph $G=(V,E)$ if $V_s \subseteq V$ and $E_s \subseteq E$. An
|
|
\emph{induced subgraph}, denoted by $G[V_s]$, of a graph $G=(V,E)$
|
|
consists of the vertices in $V_s$, which is a subset of $V$, and every
|
|
edge $(u,v)$ in $E$ such that both $u$ and $v$ are in $V_s$. We use
|
|
the notation $E[V_s]$ to mean the edges in $G[V_s]$.
|
|
|
|
\section{Backtracking Search}
|
|
\label{sec:backtracking}
|
|
|
|
The algorithm used by the \code{isomorphism()} function is, at first
|
|
approximation, an exhaustive search implemented via backtracking. The
|
|
backtracking algorithm is a recursive function. At each stage we will
|
|
try to extend the match that we have found so far. So suppose that we
|
|
have already determined that some subgraph of $G_1$ is isomorphic to a
|
|
subgraph of $G_2$. We then try to add a vertex to each subgraph such
|
|
that the new subgraphs are still isomorphic to one another. At some
|
|
point we may hit a dead end---there are no vertices that can be added
|
|
to extend the isomorphic subgraphs. We then backtrack to previous
|
|
smaller matching subgraphs, and try extending with a different vertex
|
|
choice. The process ends by either finding a complete mapping between
|
|
$G_1$ and $G_2$ and returning true, or by exhausting all possibilities
|
|
and returning false.
|
|
|
|
The problem with the exhaustive backtracking algorithm is that there
|
|
are $N!$ possible vertex mappings, and $N!$ gets very large as $N$
|
|
increases, so we need to prune the search space. We use the pruning
|
|
techniques described in
|
|
\cite{deo77:_new_algo_digraph_isomorph,fortin96:_isomorph,reingold77:_combin_algo},
|
|
some of which originated in
|
|
\cite{sussenguth65:_isomorphism,unger64:_isomorphism}. Also, the
|
|
specific backtracking method we use is the one from
|
|
\cite{deo77:_new_algo_digraph_isomorph}.
|
|
|
|
We consider the vertices of $G_1$ for addition to the matched subgraph
|
|
in a specific order, so assume that the vertices of $G_1$ are labeled
|
|
$1,\ldots,N$ according to that order. As we will see later, a good
|
|
ordering of the vertices is by DFS discover time. Let $G_1[k]$ denote
|
|
the subgraph of $G_1$ induced by the first $k$ vertices, with $G_1[0]$
|
|
being an empty graph. We also consider the edges of $G_1$ in a
|
|
specific order. We always examine edges in the current subgraph
|
|
$G_1[k]$ first, that is, edges $(u,v)$ where both $u \leq k$ and $v
|
|
\leq k$. This ordering of edges can be acheived by sorting each edge
|
|
$(u,v)$ by lexicographical comparison on the tuple $\langle \max(u,v),
|
|
u, v \rangle$. Figure~\ref{fig:iso-eg} shows an example of a graph
|
|
with the vertices labelled by DFS discover time. The edge ordering for
|
|
this graph is as follows:
|
|
|
|
\begin{tabular}{lccccccccc}
|
|
source: &0&1&0&1&3&0&5&6&6\\
|
|
target: &1&2&3&3&2&4&6&4&7
|
|
\end{tabular}
|
|
|
|
\vizfig{iso-eg}{Vertices numbered by DFS discover time. The DFS tree
|
|
edges are the solid lines. Nodes $0$ and $5$ are DFS tree root nodes.}
|
|
|
|
Each step of the backtracking search moves from left to right though
|
|
the ordered edges. At each step it examines an edge $(i,j)$ of $G_1$
|
|
and decides whether to continue to the left or to go back. There are
|
|
three cases to consider:
|
|
|
|
\begin{enumerate}
|
|
\item \label{case:1} $i > k$
|
|
\item \label{case:2} $i \leq k$ and $j > k$.
|
|
\item \label{case:3} $i \leq k$ and $j \leq k$.
|
|
\end{enumerate}
|
|
|
|
\paragraph{Case 1: $i > k$.}
|
|
$i$ is not in the matched subgraph $G_1[k]$. This situation only
|
|
happens at the very beginning of the search, or when $i$ is not
|
|
reachable from any of the vertices in $G_1[k]$. This means that we
|
|
are finished with $G_1[k]$. We increment $k$ and find a match for it
|
|
amongst any of the eligible vertices in $V_2 - S$. We then proceed to
|
|
Case 2. It is usually the case that $i$ is equal to the new $k$, but
|
|
when there is another DFS root $r$ with no in-edges or out-edges
|
|
and if $r < i$ then it will be the new $k$.
|
|
|
|
\paragraph{Case 2: $i \leq k$ and $j > k$.}
|
|
$i$ is in the matched subgraph $G_1[k]$, but $j$ is not. We are about
|
|
to increment $k$ to try and grow the matched subgraph to include
|
|
$j$. However, first we need to finish verifying that $G_1[k]
|
|
\isomorphic G_2[S]$. In previous steps we proved that $G_1[k-1]
|
|
\isomorphic G_2[S-\{f(k)\}]$, so now we just need to verify the
|
|
extension of the isomorphism to $k$. At this point we are guaranteed
|
|
to have seen all the edges to and from vertex $k$ (because the edges
|
|
are sorted), and in previous steps we have checked that for each edge
|
|
incident on $k$ in $E_1[k]$ there is a matching edge in
|
|
$E_2[S]$. However we still need to check the ``only if'' part of the
|
|
``if and only if''. So we check that for every edge $(u,v)$ incident
|
|
on $f(k)$ there is $(f^{-1}(u),f^{-1}(v)) \in E_1[k]$. A quick way to
|
|
verify this is to make sure that the number of edges incident on $k$
|
|
in $E_1[k]$ is the same as the number of edges incident on $f(k)$ in
|
|
$E_2[S]$. We create an edge counter that we increment every time we
|
|
see an edge incident on $k$ and decrement for each edge incident on
|
|
$f(k)$. If the counter gets back to zero we know the edges match up.
|
|
|
|
Once we have verified that $G_1[k] \isomorphic G_2[S]$ we add $f(k)$
|
|
to $S$, increment $k$, and then try assigning $j$ to
|
|
any of the eligible vertices in $V_2 - S$. More about what
|
|
``eligible'' means below.
|
|
|
|
\paragraph{Case 3: $i \leq k$ and $j \leq k$.}
|
|
Both $i$ and $j$ are in $G_1[k]$. We check to make sure that
|
|
$(f(i),f(j)) \in E_2[S]$ and then proceed to the next edge.
|
|
|
|
|
|
\subsection{Vertex Invariants}
|
|
\label{sec:vertex-invariants}
|
|
|
|
One way to reduce the search space is through the use of \emph{vertex
|
|
invariants}. The idea is to compute a number for each vertex $i(v)$
|
|
such that $i(v) = i(v')$ if there exists some isomorphism $f$ where
|
|
$f(v) = v'$. Then when we look for a match to some vertex $v$, only
|
|
those vertices that have the same vertex invariant number are
|
|
``eligible''. The number of vertices in a graph with the same vertex
|
|
invariant number $i$ is called the \emph{invariant multiplicity} for
|
|
$i$. In this implementation, by default we use the function $i(v) =
|
|
(|V|+1) \times \outdegree(v) + \indegree(v)$, though the user can also
|
|
supply there own invariant function. The ability of the invariant
|
|
function to prune the search space varies widely with the type of
|
|
graph.
|
|
|
|
The following is the definition of the functor that implements the
|
|
default vertex invariant. The functor models the
|
|
\stlconcept{AdaptableUnaryFunction} concept.
|
|
|
|
@d Degree vertex invariant functor
|
|
@{
|
|
template <typename InDegreeMap, typename Graph>
|
|
class degree_vertex_invariant
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
|
|
typedef typename graph_traits<Graph>::degree_size_type size_type;
|
|
public:
|
|
typedef vertex_t argument_type;
|
|
typedef size_type result_type;
|
|
|
|
degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g)
|
|
: m_in_degree_map(in_degree_map), m_g(g) { }
|
|
|
|
size_type operator()(vertex_t v) const {
|
|
return (num_vertices(m_g) + 1) * out_degree(v, m_g)
|
|
+ get(m_in_degree_map, v);
|
|
}
|
|
// The largest possible vertex invariant number
|
|
size_type max() const {
|
|
return num_vertices(m_g) * num_vertices(m_g) + num_vertices(m_g);
|
|
}
|
|
private:
|
|
InDegreeMap m_in_degree_map;
|
|
const Graph& m_g;
|
|
};
|
|
@}
|
|
|
|
|
|
\subsection{Vertex Order}
|
|
|
|
A good choice of the labeling for the vertices (which determines the
|
|
order in which the subgraph $G_1[k]$ is grown) can also reduce the
|
|
search space. In the following we discuss two labeling heuristics.
|
|
|
|
\subsubsection{Most Constrained First}
|
|
|
|
Consider the most constrained vertices first. That is, examine
|
|
lower-degree vertices before higher-degree vertices. This reduces the
|
|
search space because it chops off a trunk before the trunk has a
|
|
chance to blossom out. We can generalize this to use vertex
|
|
invariants. We examine vertices with low invariant multiplicity
|
|
before examining vertices with high invariant multiplicity.
|
|
|
|
\subsubsection{Adjacent First}
|
|
|
|
It only makes sense to examine an edge if one or more of its vertices
|
|
has been assigned a mapping. This means that we should visit vertices
|
|
adjacent to those in the current matched subgraph before proceeding.
|
|
|
|
\subsubsection{DFS Order, Starting with Lowest Multiplicity}
|
|
|
|
For this implementation, we combine the above two heuristics in the
|
|
following way. To implement the ``adjacent first'' heuristic we apply
|
|
DFS to the graph, and use the DFS discovery order as our vertex
|
|
order. To comply with the ``most constrained first'' heuristic we
|
|
order the roots of our DFS trees by invariant multiplicity.
|
|
|
|
|
|
\subsection{Implementation of the \code{match} function}
|
|
|
|
|
|
The \code{match} function implements the recursive backtracking,
|
|
handling the four cases described in \S\ref{sec:backtracking}.
|
|
|
|
@d Match function
|
|
@{
|
|
bool match(edge_iter iter, int dfs_num_k)
|
|
{
|
|
if (iter != ordered_edges.end()) {
|
|
vertex1_t i = source(*iter, G1), j = target(*iter, G2);
|
|
if (dfs_num[i] > dfs_num_k) {
|
|
@<Find a match for the DFS tree root $k+1$@>
|
|
}
|
|
else if (dfs_num[j] > dfs_num_k) {
|
|
@<Verify $G_1[k] \isomorphic G_2[S]$ and then find match for $j$@>
|
|
}
|
|
else {
|
|
@<Check to see if $(f(i),f(j)) \in E_2[S]$ and continue@>
|
|
}
|
|
} else
|
|
return true;
|
|
return false;
|
|
}
|
|
@}
|
|
|
|
\noindent Now to describe how each of the four cases is implemented.
|
|
|
|
\paragraph{Case 1: $i \not\in G_1[k]$.}
|
|
We increment $k$ and try to map it to any of the eligible vertices of
|
|
$V_2 - S$. After matching the new $k$ we proceed by invoking
|
|
\code{match}. We do not yet move on to the next edge, since we have
|
|
not yet found a match for edge, or for target $j$. We reset the edge
|
|
counter to zero.
|
|
|
|
@d Find a match for the DFS tree root $k+1$
|
|
@{
|
|
vertex1_t kp1 = dfs_vertices[dfs_num_k + 1];
|
|
BGL_FORALL_VERTICES_T(u, G2, Graph2) {
|
|
if (invariant1(kp1) == invariant2(u) && in_S[u] == false) {
|
|
f[kp1] = u;
|
|
in_S[u] = true;
|
|
num_edges_on_k = 0;
|
|
if (match(iter, dfs_num_k + 1));
|
|
return true;
|
|
in_S[u] = false;
|
|
}
|
|
}
|
|
@}
|
|
|
|
|
|
\paragraph{Case 2: $i \in G_1[k]$ and $j \not\in G_1[k]$.}
|
|
Before we extend the subgraph by incrementing $k$, we need to finish
|
|
verifying that $G_1[k]$ and $G_2[S]$ are isomorphic. We decrement the
|
|
edge counter for every edge incident to $f(k)$ in $G_2[S]$, which
|
|
should bring the counter back down to zero. If not we return false.
|
|
|
|
@d Verify $G_1[k] \isomorphic G_2[S]$ and then find match for $j$
|
|
@{
|
|
vertex1_t k = dfs_vertices[dfs_num_k];
|
|
@<Count out-edges of $f(k)$ in $G_2[S]$@>
|
|
@<Count in-edges of $f(k)$ in $G_2[S]$@>
|
|
if (num_edges_on_k != 0)
|
|
return false;
|
|
@<Find a match for $j$ and continue@>
|
|
@}
|
|
|
|
\noindent We decrement the edge counter for every vertex in
|
|
$Adj[f(k)]$ that is also in $S$. We call \code{count\_if} to do the
|
|
counting, using \code{boost::bind} to create the predicate functor.
|
|
|
|
@d Count out-edges of $f(k)$ in $G_2[S]$
|
|
@{
|
|
num_edges_on_k -=
|
|
count_if(adjacent_vertices(f[k], G2), make_indirect_pmap(in_S));
|
|
@}
|
|
|
|
\noindent Next we iterate through all the vertices in $S$ and for each
|
|
we decrement the counter for each edge whose target is $k$.
|
|
|
|
% We could specialize this for the case when G_2 is bidirectional.
|
|
|
|
@d Count in-edges of $f(k)$ in $G_2[S]$
|
|
@{
|
|
for (int jj = 0; jj < dfs_num_k; ++jj) {
|
|
vertex1_t j = dfs_vertices[jj];
|
|
num_edges_on_k -= count(adjacent_vertices(f[j], G2), f[k]);
|
|
}
|
|
@}
|
|
|
|
Now that we have finished verifying that $G_1[k] \isomorphic G_2[S]$,
|
|
we can now consider extending the isomorphism. We need to find a match
|
|
for $j$ in $V_2 - S$. Since $j$ is adjacent to $i$, we can further
|
|
narrow down the search by only considering vertices adjacent to
|
|
$f(i)$. Also, the vertex must have the same vertex invariant. Once we
|
|
have a matching vertex $v$ we extend the matching subgraphs by
|
|
incrementing $k$ and adding $v$ to $S$, we set $f(j) = v$, and we set
|
|
the edge counter to $1$ (since $(i,j)$ is the first edge incident on
|
|
our new $k$). We continue to the next edge by calling \code{match}. If
|
|
that fails we undo the assignment $f(j) = v$.
|
|
|
|
@d Find a match for $j$ and continue
|
|
@{
|
|
BGL_FORALL_ADJ_T(f[i], v, G2, Graph2)
|
|
if (invariant2(v) == invariant1(j) && in_S[v] == false) {
|
|
f[j] = v;
|
|
in_S[v] = true;
|
|
num_edges_on_k = 1;
|
|
int next_k = std::max(dfs_num_k, std::max(dfs_num[i], dfs_num[j]));
|
|
if (match(next(iter), next_k))
|
|
return true;
|
|
in_S[v] = false;
|
|
}
|
|
@}
|
|
|
|
\paragraph{Case 3: both $i$ and $j$ are in $G_1[k]$.}
|
|
Our goal is to check whether $(f(i),f(j)) \in E_2[S]$. If $f(j)$ is
|
|
in $Adj[f(i)]$ then we have a match for the edge $(i,j)$, and can
|
|
increment the counter for the number of edges incident on $k$ in
|
|
$E_1[k]$. We continue by calling \code{match} on the next edge.
|
|
|
|
@d Check to see if $(f(i),f(j)) \in E_2[S]$ and continue
|
|
@{
|
|
edge2_t e2;
|
|
bool fi_fj_exists = false;
|
|
typename graph_traits<Graph2>::out_edge_iterator io, io_end;
|
|
for (tie(io, io_end) = out_edges(f[i], G2); io != io_end; ++io)
|
|
if (target(*io, G2) == f[j]) {
|
|
fi_fj_exists = true;
|
|
e2 = *io;
|
|
}
|
|
|
|
if (fi_fj_exists && edge_compare(e2, *iter)) {
|
|
++num_edges_on_k;
|
|
if (match(next(iter), dfs_num_k))
|
|
return true;
|
|
}
|
|
@}
|
|
|
|
\section{Public Interface}
|
|
|
|
The following is the public interface for the \code{isomorphism}
|
|
function. The input to the function is the two graphs $G_1$ and $G_2$,
|
|
mappings from the vertices in the graphs to integers (in the range
|
|
$[0,|V|)$), and a vertex invariant function object. The output of the
|
|
function is an isomorphism $f$ if there is one. The \code{isomorphism}
|
|
function returns true if the graphs are isomorphic and false
|
|
otherwise. The invariant parameters are function objects that compute
|
|
the vertex invariants for vertices of the two graphs. The
|
|
\code{max\_invariant} parameter is to specify one past the largest
|
|
integer that a vertex invariant number could be (the invariants
|
|
numbers are assumed to span from zero to \code{max\_invariant-1}).
|
|
The requirements on the template parameters are described below in the
|
|
``Concept checking'' code part.
|
|
|
|
|
|
@d Isomorphism function interface
|
|
@{
|
|
template <typename Graph1, typename Graph2, typename IsoMapping,
|
|
typename Invariant1, typename Invariant2, typename EdgeCompare,
|
|
typename IndexMap1, typename IndexMap2>
|
|
bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f,
|
|
Invariant1 invariant1, Invariant2 invariant2,
|
|
std::size_t max_invariant, EdgeCompare edge_compare,
|
|
IndexMap1 index_map1, IndexMap2 index_map2)
|
|
@}
|
|
|
|
|
|
The function body consists of the concept checks followed by a quick
|
|
check for empty graphs or graphs of different size and then constructs
|
|
an algorithm object. We then call the \code{test\_isomorphism} member
|
|
function, which runs the algorithm. The reason that we implement the
|
|
algorithm using a class is that there are a fair number of internal
|
|
data structures required, and it is easier to make these data members
|
|
of a class and make each section of the algorithm a member
|
|
function. This relieves us from the burden of passing lots of
|
|
arguments to each function, while at the same time avoiding the evils
|
|
of global variables (non-reentrant, etc.).
|
|
|
|
|
|
@d Isomorphism function body
|
|
@{
|
|
{
|
|
@<Concept checking@>
|
|
@<Quick return based on size@>
|
|
detail::isomorphism_algo<Graph1, Graph2, IsoMapping, Invariant1,
|
|
Invariant2, EdgeCompare, IndexMap1, IndexMap2>
|
|
algo(G1, G2, f, invariant1, invariant2, max_invariant,
|
|
edge_compare,
|
|
index_map1, index_map2);
|
|
return algo.test_isomorphism();
|
|
}
|
|
@}
|
|
|
|
|
|
\noindent If there are no vertices in either graph, then they are
|
|
trivially isomorphic. If the graphs have different numbers of vertices
|
|
then they are not isomorphic. We could also check the number of edges
|
|
here, but that would introduce the \bglconcept{EdgeListGraph}
|
|
requirement, which we otherwise do not need.
|
|
|
|
@d Quick return based on size
|
|
@{
|
|
if (num_vertices(G1) != num_vertices(G2))
|
|
return false;
|
|
if (num_vertices(G1) == 0 && num_vertices(G2) == 0)
|
|
return true;
|
|
@}
|
|
|
|
We use the Boost Concept Checking Library to make sure that the
|
|
template arguments fulfill certain requirements. The graph types must
|
|
model the \bglconcept{VertexListGraph} and \bglconcept{AdjacencyGraph}
|
|
concepts. The vertex invariants must model the
|
|
\stlconcept{AdaptableUnaryFunction} concept, with a vertex as their
|
|
argument and an integer return type. The \code{IsoMapping} type
|
|
representing the isomorphism $f$ must be a
|
|
\pmconcept{ReadWritePropertyMap} that maps from vertices in $G_1$ to
|
|
vertices in $G_2$. The two other index maps are
|
|
\pmconcept{ReadablePropertyMap}s from vertices in $G_1$ and $G_2$ to
|
|
unsigned integers.
|
|
|
|
|
|
@d Concept checking
|
|
@{
|
|
// Graph requirements
|
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph1> ));
|
|
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph1> ));
|
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph2> ));
|
|
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph2> ));
|
|
|
|
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
|
|
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
|
|
typedef typename graph_traits<Graph1>::vertices_size_type size_type;
|
|
|
|
// Vertex invariant requirement
|
|
BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept<Invariant1,
|
|
size_type, vertex1_t> ));
|
|
BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept<Invariant2,
|
|
size_type, vertex2_t> ));
|
|
|
|
// Property map requirements
|
|
BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<IsoMapping, vertex1_t> ));
|
|
typedef typename property_traits<IsoMapping>::value_type IsoMappingValue;
|
|
BOOST_STATIC_ASSERT((is_same<IsoMappingValue, vertex2_t>::value));
|
|
|
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap1, vertex1_t> ));
|
|
typedef typename property_traits<IndexMap1>::value_type IndexMap1Value;
|
|
BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value));
|
|
|
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap2, vertex2_t> ));
|
|
typedef typename property_traits<IndexMap2>::value_type IndexMap2Value;
|
|
BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value));
|
|
@}
|
|
|
|
|
|
\section{Data Structure Setup}
|
|
|
|
The following is the outline of the isomorphism algorithm class. The
|
|
class is templated on all of the same parameters as the
|
|
\code{isomorphism} function, and all of the parameter values are
|
|
stored in the class as data members, in addition to the internal data
|
|
structures.
|
|
|
|
@d Isomorphism algorithm class
|
|
@{
|
|
template <typename Graph1, typename Graph2, typename IsoMapping,
|
|
typename Invariant1, typename Invariant2, typename EdgeCompare,
|
|
typename IndexMap1, typename IndexMap2>
|
|
class isomorphism_algo
|
|
{
|
|
@<Typedefs for commonly used types@>
|
|
@<Data members for the parameters@>
|
|
@<Internal data structures@>
|
|
friend struct compare_multiplicity;
|
|
@<Invariant multiplicity comparison functor@>
|
|
@<DFS visitor to record vertex and edge order@>
|
|
@<Edge comparison predicate@>
|
|
public:
|
|
@<Isomorphism algorithm constructor@>
|
|
@<Test isomorphism member function@>
|
|
private:
|
|
@<Match function@>
|
|
};
|
|
@}
|
|
|
|
The interesting parts of this class are the \code{test\_isomorphism}
|
|
function and the \code{match} function. We focus on those in the
|
|
following sections, and leave the other parts of the class to the
|
|
Appendix.
|
|
|
|
The \code{test\_isomorphism} function does all of the setup required
|
|
of the algorithm. This consists of sorting the vertices according to
|
|
invariant multiplicity, and then by DFS order. The edges are then
|
|
sorted as previously described. The last step of this function is to
|
|
begin the backtracking search.
|
|
|
|
@d Test isomorphism member function
|
|
@{
|
|
bool test_isomorphism()
|
|
{
|
|
@<Quick return if the vertex invariants do not match up@>
|
|
@<Sort vertices according to invariant multiplicity@>
|
|
@<Order vertices and edges by DFS@>
|
|
@<Sort edges according to vertex DFS order@>
|
|
|
|
int dfs_num_k = -1;
|
|
return this->match(ordered_edges.begin(), dfs_num_k);
|
|
}
|
|
@}
|
|
|
|
As a first check to rule out graphs that have no possibility of
|
|
matching, one can create a list of computed vertex invariant numbers
|
|
for the vertices in each graph, sort the two lists, and then compare
|
|
them. If the two lists are different then the two graphs are not
|
|
isomorphic. If the two lists are the same then the two graphs may be
|
|
isomorphic.
|
|
|
|
@d Quick return if the vertex invariants do not match up
|
|
@{
|
|
{
|
|
std::vector<invar1_value> invar1_array;
|
|
BGL_FORALL_VERTICES_T(v, G1, Graph1)
|
|
invar1_array.push_back(invariant1(v));
|
|
sort(invar1_array);
|
|
|
|
std::vector<invar2_value> invar2_array;
|
|
BGL_FORALL_VERTICES_T(v, G2, Graph2)
|
|
invar2_array.push_back(invariant2(v));
|
|
sort(invar2_array);
|
|
if (! equal(invar1_array, invar2_array))
|
|
return false;
|
|
}
|
|
@}
|
|
|
|
Next we compute the invariant multiplicity, the number of vertices
|
|
with the same invariant number. The \code{invar\_mult} vector is
|
|
indexed by invariant number. We loop through all the vertices in the
|
|
graph to record the multiplicity. We then order the vertices by their
|
|
invariant multiplicity. This will allow us to search the more
|
|
constrained vertices first.
|
|
|
|
@d Sort vertices according to invariant multiplicity
|
|
@{
|
|
std::vector<vertex1_t> V_mult;
|
|
BGL_FORALL_VERTICES_T(v, G1, Graph1)
|
|
V_mult.push_back(v);
|
|
{
|
|
std::vector<size_type> multiplicity(max_invariant, 0);
|
|
BGL_FORALL_VERTICES_T(v, G1, Graph1)
|
|
++multiplicity[invariant1(v)];
|
|
sort(V_mult, compare_multiplicity(invariant1, &multiplicity[0]));
|
|
}
|
|
@}
|
|
|
|
\noindent The definition of the \code{compare\_multiplicity} predicate
|
|
is shown below. This predicate provides the glue that binds
|
|
\code{std::sort} to our current purpose.
|
|
|
|
@d Invariant multiplicity comparison functor
|
|
@{
|
|
struct compare_multiplicity
|
|
{
|
|
compare_multiplicity(Invariant1 invariant1, size_type* multiplicity)
|
|
: invariant1(invariant1), multiplicity(multiplicity) { }
|
|
bool operator()(const vertex1_t& x, const vertex1_t& y) const {
|
|
return multiplicity[invariant1(x)] < multiplicity[invariant1(y)];
|
|
}
|
|
Invariant1 invariant1;
|
|
size_type* multiplicity;
|
|
};
|
|
@}
|
|
|
|
\subsection{Ordering by DFS Discover Time}
|
|
|
|
Next we order the vertices and edges by DFS discover time. We would
|
|
normally call the BGL \code{depth\_first\_search} function to do this,
|
|
but we want the roots of the DFS tree's to be ordered by invariant
|
|
multiplicity. Therefore we implement the outer-loop of the DFS here
|
|
and then call \code{depth\_\-first\_\-visit} to handle the recursive
|
|
portion of the DFS. The \code{record\_dfs\_order} adapts the DFS to
|
|
record the ordering, storing the results in in the
|
|
\code{dfs\_vertices} and \code{ordered\_edges} arrays. We then create
|
|
the \code{dfs\_num} array which provides a mapping from vertex to DFS
|
|
number.
|
|
|
|
@d Order vertices and edges by DFS
|
|
@{
|
|
std::vector<default_color_type> color_vec(num_vertices(G1));
|
|
safe_iterator_property_map<std::vector<default_color_type>::iterator, IndexMap1>
|
|
color_map(color_vec.begin(), color_vec.size(), index_map1);
|
|
record_dfs_order dfs_visitor(dfs_vertices, ordered_edges);
|
|
typedef color_traits<default_color_type> Color;
|
|
for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) {
|
|
if (color_map[*u] == Color::white()) {
|
|
dfs_visitor.start_vertex(*u, G1);
|
|
depth_first_visit(G1, *u, dfs_visitor, color_map);
|
|
}
|
|
}
|
|
// Create the dfs_num array and dfs_num_map
|
|
dfs_num_vec.resize(num_vertices(G1));
|
|
dfs_num = make_safe_iterator_property_map(dfs_num_vec.begin(),
|
|
dfs_num_vec.size(), index_map1);
|
|
size_type n = 0;
|
|
for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v)
|
|
dfs_num[*v] = n++;
|
|
@}
|
|
|
|
\noindent The definition of the \code{record\_dfs\_order} visitor
|
|
class is as follows.
|
|
|
|
@d DFS visitor to record vertex and edge order
|
|
@{
|
|
struct record_dfs_order : default_dfs_visitor
|
|
{
|
|
record_dfs_order(std::vector<vertex1_t>& v, std::vector<edge1_t>& e)
|
|
: vertices(v), edges(e) { }
|
|
|
|
void discover_vertex(vertex1_t v, const Graph1&) const {
|
|
vertices.push_back(v);
|
|
}
|
|
void examine_edge(edge1_t e, const Graph1& G1) const {
|
|
edges.push_back(e);
|
|
}
|
|
std::vector<vertex1_t>& vertices;
|
|
std::vector<edge1_t>& edges;
|
|
};
|
|
@}
|
|
|
|
The final stage of the setup is to reorder the edges so that all edges
|
|
belonging to $G_1[k]$ appear before any edges not in $G_1[k]$, for
|
|
$k=1,...,n$.
|
|
|
|
@d Sort edges according to vertex DFS order
|
|
@{
|
|
sort(ordered_edges, edge_cmp(G1, dfs_num));
|
|
@}
|
|
|
|
\noindent The edge comparison function object is defined as follows.
|
|
|
|
@d Edge comparison predicate
|
|
@{
|
|
struct edge_cmp {
|
|
edge_cmp(const Graph1& G1, DFSNumMap dfs_num)
|
|
: G1(G1), dfs_num(dfs_num) { }
|
|
bool operator()(const edge1_t& e1, const edge1_t& e2) const {
|
|
using namespace std;
|
|
vertex1_t u1 = dfs_num[source(e1,G1)], v1 = dfs_num[target(e1,G1)];
|
|
vertex1_t u2 = dfs_num[source(e2,G1)], v2 = dfs_num[target(e2,G1)];
|
|
int m1 = max(u1, v1);
|
|
int m2 = max(u2, v2);
|
|
// lexicographical comparison
|
|
return make_pair(m1, make_pair(u1, v1))
|
|
< make_pair(m2, make_pair(u2, v2));
|
|
}
|
|
const Graph1& G1;
|
|
DFSNumMap dfs_num;
|
|
};
|
|
@}
|
|
|
|
|
|
\section{Appendix}
|
|
|
|
|
|
@d Typedefs for commonly used types
|
|
@{
|
|
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
|
|
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
|
|
typedef typename graph_traits<Graph1>::edge_descriptor edge1_t;
|
|
typedef typename graph_traits<Graph2>::edge_descriptor edge2_t;
|
|
typedef typename graph_traits<Graph1>::vertices_size_type size_type;
|
|
typedef typename Invariant1::result_type invar1_value;
|
|
typedef typename Invariant2::result_type invar2_value;
|
|
@}
|
|
|
|
@d Data members for the parameters
|
|
@{
|
|
const Graph1& G1;
|
|
const Graph2& G2;
|
|
IsoMapping f;
|
|
Invariant1 invariant1;
|
|
Invariant2 invariant2;
|
|
std::size_t max_invariant;
|
|
EdgeCompare edge_compare;
|
|
IndexMap1 index_map1;
|
|
IndexMap2 index_map2;
|
|
@}
|
|
|
|
@d Internal data structures
|
|
@{
|
|
std::vector<vertex1_t> dfs_vertices;
|
|
typedef typename std::vector<vertex1_t>::iterator vertex_iter;
|
|
std::vector<int> dfs_num_vec;
|
|
typedef safe_iterator_property_map<typename std::vector<int>::iterator,
|
|
IndexMap1> DFSNumMap;
|
|
DFSNumMap dfs_num;
|
|
std::vector<edge1_t> ordered_edges;
|
|
typedef typename std::vector<edge1_t>::iterator edge_iter;
|
|
|
|
std::vector<char> in_S_vec;
|
|
typedef safe_iterator_property_map<typename std::vector<char>::iterator,
|
|
IndexMap2> InSMap;
|
|
InSMap in_S;
|
|
|
|
int num_edges_on_k;
|
|
@}
|
|
|
|
@d Isomorphism algorithm constructor
|
|
@{
|
|
isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f,
|
|
Invariant1 invariant1, Invariant2 invariant2,
|
|
std::size_t max_invariant,
|
|
EdgeCompare edge_compare,
|
|
IndexMap1 index_map1, IndexMap2 index_map2)
|
|
: G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2),
|
|
max_invariant(max_invariant), edge_compare(edge_compare),
|
|
index_map1(index_map1), index_map2(index_map2)
|
|
{
|
|
in_S_vec.resize(num_vertices(G1));
|
|
in_S = make_safe_iterator_property_map
|
|
(in_S_vec.begin(), in_S_vec.size(), index_map2);
|
|
}
|
|
@}
|
|
|
|
|
|
@o isomorphism.hpp
|
|
@{
|
|
// Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman
|
|
//
|
|
// Permission to copy, use, sell and distribute this software is granted
|
|
// provided this copyright notice appears in all copies.
|
|
// Permission to modify the code and to distribute modified code is granted
|
|
// provided this copyright notice appears in all copies, and a notice
|
|
// that the code was modified is included with the copyright notice.
|
|
//
|
|
// This software is provided "as is" without express or implied warranty,
|
|
// and with no claim as to its suitability for any purpose.
|
|
#ifndef BOOST_GRAPH_ISOMORPHISM_HPP
|
|
#define BOOST_GRAPH_ISOMORPHISM_HPP
|
|
|
|
#include <utility>
|
|
#include <vector>
|
|
#include <iterator>
|
|
#include <algorithm>
|
|
#include <boost/graph/iteration_macros.hpp>
|
|
#include <boost/graph/depth_first_search.hpp>
|
|
#include <boost/utility.hpp>
|
|
#include <boost/detail/algorithm.hpp>
|
|
#include <boost/pending/indirect_cmp.hpp> // for make_indirect_pmap
|
|
|
|
namespace boost {
|
|
|
|
namespace detail {
|
|
|
|
@<Isomorphism algorithm class@>
|
|
|
|
template <typename Graph, typename InDegreeMap>
|
|
void compute_in_degree(const Graph& g, InDegreeMap in_degree_map)
|
|
{
|
|
BGL_FORALL_VERTICES_T(v, g, Graph)
|
|
put(in_degree_map, v, 0);
|
|
|
|
BGL_FORALL_VERTICES_T(u, g, Graph)
|
|
BGL_FORALL_ADJ_T(u, v, g, Graph)
|
|
put(in_degree_map, v, get(in_degree_map, v) + 1);
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
|
|
@<Degree vertex invariant functor@>
|
|
|
|
@<Isomorphism function interface@>
|
|
@<Isomorphism function body@>
|
|
|
|
namespace detail {
|
|
|
|
struct default_edge_compare {
|
|
template <typename Edge1, typename Edge2>
|
|
bool operator()(Edge1 e1, Edge2 e2) const { return true; }
|
|
};
|
|
|
|
template <typename Graph1, typename Graph2,
|
|
typename IsoMapping,
|
|
typename IndexMap1, typename IndexMap2,
|
|
typename P, typename T, typename R>
|
|
bool isomorphism_impl(const Graph1& G1, const Graph2& G2,
|
|
IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2,
|
|
const bgl_named_params<P,T,R>& params)
|
|
{
|
|
std::vector<std::size_t> in_degree1_vec(num_vertices(G1));
|
|
typedef safe_iterator_property_map<std::vector<std::size_t>::iterator,
|
|
IndexMap1> InDeg1;
|
|
InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1);
|
|
compute_in_degree(G1, in_degree1);
|
|
|
|
std::vector<std::size_t> in_degree2_vec(num_vertices(G2));
|
|
typedef safe_iterator_property_map<std::vector<std::size_t>::iterator,
|
|
IndexMap2> InDeg2;
|
|
InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2);
|
|
compute_in_degree(G2, in_degree2);
|
|
|
|
degree_vertex_invariant<InDeg1, Graph1> invariant1(in_degree1, G1);
|
|
degree_vertex_invariant<InDeg2, Graph2> invariant2(in_degree2, G2);
|
|
default_edge_compare edge_cmp;
|
|
|
|
return isomorphism(G1, G2, f,
|
|
choose_param(get_param(params, vertex_invariant1_t()), invariant1),
|
|
choose_param(get_param(params, vertex_invariant2_t()), invariant2),
|
|
choose_param(get_param(params, vertex_max_invariant_t()),
|
|
invariant2.max()),
|
|
choose_param(get_param(params, edge_compare_t()), edge_cmp),
|
|
index_map1, index_map2
|
|
);
|
|
}
|
|
|
|
} // namespace detail
|
|
|
|
|
|
// Named parameter interface
|
|
template <typename Graph1, typename Graph2, class P, class T, class R>
|
|
bool isomorphism(const Graph1& g1,
|
|
const Graph2& g2,
|
|
const bgl_named_params<P,T,R>& params)
|
|
{
|
|
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
|
|
typename std::vector<vertex2_t>::size_type n = num_vertices(g1);
|
|
std::vector<vertex2_t> f(n);
|
|
return detail::isomorphism_impl
|
|
(g1, g2,
|
|
choose_param(get_param(params, vertex_isomorphism_t()),
|
|
make_safe_iterator_property_map(f.begin(), f.size(),
|
|
choose_const_pmap(get_param(params, vertex_index1),
|
|
g1, vertex_index), vertex2_t())),
|
|
choose_const_pmap(get_param(params, vertex_index1), g1, vertex_index),
|
|
choose_const_pmap(get_param(params, vertex_index2), g2, vertex_index),
|
|
params
|
|
);
|
|
}
|
|
|
|
// All defaults interface
|
|
template <typename Graph1, typename Graph2>
|
|
bool isomorphism(const Graph1& g1, const Graph2& g2)
|
|
{
|
|
return isomorphism(g1, g2,
|
|
bgl_named_params<int, buffer_param_t>(0));// bogus named param
|
|
}
|
|
|
|
|
|
// Verify that the given mapping iso_map from the vertices of g1 to the
|
|
// vertices of g2 describes an isomorphism.
|
|
// Note: this could be made much faster by specializing based on the graph
|
|
// concepts modeled, but since we're verifying an O(n^(lg n)) algorithm,
|
|
// O(n^4) won't hurt us.
|
|
template<typename Graph1, typename Graph2, typename IsoMap>
|
|
inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map)
|
|
{
|
|
#if 0
|
|
// problematic for filtered_graph!
|
|
if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))
|
|
return false;
|
|
#endif
|
|
|
|
for (typename graph_traits<Graph1>::edge_iterator e1 = edges(g1).first;
|
|
e1 != edges(g1).second; ++e1) {
|
|
bool found_edge = false;
|
|
for (typename graph_traits<Graph2>::edge_iterator e2 = edges(g2).first;
|
|
e2 != edges(g2).second && !found_edge; ++e2) {
|
|
if (source(*e2, g2) == get(iso_map, source(*e1, g1)) &&
|
|
target(*e2, g2) == get(iso_map, target(*e1, g1))) {
|
|
found_edge = true;
|
|
}
|
|
}
|
|
|
|
if (!found_edge)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace boost
|
|
|
|
#include <boost/graph/iteration_macros_undef.hpp>
|
|
|
|
#endif // BOOST_GRAPH_ISOMORPHISM_HPP
|
|
@}
|
|
|
|
\bibliographystyle{abbrv}
|
|
\bibliography{ggcl}
|
|
|
|
\end{document}
|
|
% LocalWords: Isomorphism Siek isomorphism adjacency subgraph subgraphs OM DFS
|
|
% LocalWords: ISOMORPH Invariants invariants typename IsoMapping bool const
|
|
% LocalWords: VertexInvariant VertexIndexMap iterator typedef VertexG Idx num
|
|
% LocalWords: InvarValue struct invar vec iter tmp_matches mult inserter permute ui
|
|
% LocalWords: dfs cmp isomorph VertexIter edge_iter_t IndexMap desc RPH ATCH pre
|
|
|
|
% LocalWords: iterators VertexListGraph EdgeListGraph BidirectionalGraph tmp
|
|
% LocalWords: ReadWritePropertyMap VertexListGraphConcept EdgeListGraphConcept
|
|
% LocalWords: BidirectionalGraphConcept ReadWritePropertyMapConcept indices ei
|
|
% LocalWords: IsoMappingValue ReadablePropertyMapConcept namespace InvarFun
|
|
% LocalWords: MultMap vip inline bitset typedefs fj hpp ifndef adaptor params
|
|
% LocalWords: bgl param pmap endif
|