graph/doc/isomorphism-impl-v3.w
2019-04-24 08:49:53 +02:00

988 lines
36 KiB
OpenEdge ABL

\documentclass[11pt,awpaper]{book}
\usepackage{math}
\usepackage{jweb}
\usepackage[nolineno]{lgrind}
\usepackage{awpaper}
\usepackage{graphicx}
\setlength{\evensidemargin}{-0.25in}% was -0.17in
\setlength{\oddsidemargin}{0in}%was -0.25in
\setlength{\textwidth}{5.625in}%was 5.75in
\setlength{\textheight}{7.75in}
\setlength{\topmargin}{-0.125in}%was -0.25
\addtolength{\topmargin}{-\headheight}
\addtolength{\topmargin}{-\headsep}
\newif\ifpdf
\ifx\pdfoutput\undefined
\pdffalse
\else
\pdfoutput=1
\pdftrue
\fi
\ifpdf
\usepackage[
pdftex,
colorlinks=true, %change to true for the electronic version
linkcolor=blue,filecolor=blue,pagecolor=blue,urlcolor=blue
]{hyperref}
\fi
\ifpdf
\newcommand{\stlconcept}[1]{\href{https://boost.org/sgi/stl/#1.html}{{\small \textsf{#1}}}}
\newcommand{\bglconcept}[1]{\href{http://www.boost.org/libs/graph/doc/#1.html}{{\small \textsf{#1}}}}
\newcommand{\pmconcept}[1]{\href{http://www.boost.org/libs/property_map/#1.html}{{\small \textsf{#1}}}}
\newcommand{\myhyperref}[2]{\hyperref[#1]{#2}}
\newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.pdf}}\caption{#2}\label{fig:#1}\end{figure}}
\else
\newcommand{\myhyperref}[2]{#2}
\newcommand{\bglconcept}[1]{{\small \textsf{#1}}}
\newcommand{\pmconcept}[1]{{\small \textsf{#1}}}
\newcommand{\stlconcept}[1]{{\small \textsf{#1}}}
\newcommand{\vizfig}[2]{\begin{figure}[htbp]\centerline{\includegraphics*{#1.eps}}\caption{#2}\label{fig:#1}\end{figure}}
\fi
\newcommand{\code}[1]{{\small{\em \textbf{#1}}}}
\newcommand{\isomorphic}{\cong}
\begin{document}
\title{An Implementation of Graph Isomorphism Testing}
\author{Jeremy G. Siek}
\maketitle
% Ideas: use BFS instead of DFS, don't have to sort edges?
% No, you would still have to sort the edges.
%
%Figure~\ref{fig:iso-eg2}.
% 0 0 0 1 1 2 5 6 6 7
% 1 2 3 4 2 4 6 3 7 5
%\vizfig{iso-eg2}{Vertices numbered by BFS discover time. The BFS tree
%edges are the solid lines. Nodes $0$ and $5$ are BFS tree root nodes.}
%
% You could do a modified Dijkstra, where the priority in the queue
% would be the BFS discover time of the target vertex.
% Use w(u,v) = |Adj[u] \intersect Adj[v]| as an edge invariant.
% Has anyone used edge invariants before?
\section{Introduction}
This paper documents the implementation of the \code{isomorphism()}
function of the Boost Graph Library. The implementation was by Jeremy
Siek with algorithmic improvements and test code from Douglas Gregor
and Brian Osman. The \code{isomorphism()} function answers the
question, ``are these two graphs equal?'' By \emph{equal} we mean
the two graphs have the same structure---the vertices and edges are
connected in the same way. The mathematical name for this kind of
equality is \emph{isomorphism}.
More precisely, an \emph{isomorphism} is a one-to-one mapping of the
vertices in one graph to the vertices of another graph such that
adjacency is preserved. Another words, given graphs $G_{1} =
(V_{1},E_{1})$ and $G_{2} = (V_{2},E_{2})$, an isomorphism is a
function $f$ such that for all pairs of vertices $a,b$ in $V_{1}$,
edge $(a,b)$ is in $E_{1}$ if and only if edge $(f(a),f(b))$ is in
$E_{2}$.
The graph $G_1$ is \emph{isomorphic} to $G_2$ if an isomorphism exists
between the two graphs, which we denote by $G_1 \isomorphic G_2$.
Both graphs must be the same size, so let $N = |V_1| = |V_2|$.
In the following discussion we will need to use several more notions
from graph theory. The graph $G_s=(V_s,E_s)$ is a \emph{subgraph} of
graph $G=(V,E)$ if $V_s \subseteq V$ and $E_s \subseteq E$. An
\emph{induced subgraph}, denoted by $G[V_s]$, of a graph $G=(V,E)$
consists of the vertices in $V_s$, which is a subset of $V$, and every
edge $(u,v)$ in $E$ such that both $u$ and $v$ are in $V_s$. We use
the notation $E[V_s]$ to mean the edges in $G[V_s]$.
\section{Backtracking Search}
\label{sec:backtracking}
The algorithm used by the \code{isomorphism()} function is, at first
approximation, an exhaustive search implemented via backtracking. The
backtracking algorithm is a recursive function. At each stage we will
try to extend the match that we have found so far. So suppose that we
have already determined that some subgraph of $G_1$ is isomorphic to a
subgraph of $G_2$. We then try to add a vertex to each subgraph such
that the new subgraphs are still isomorphic to one another. At some
point we may hit a dead end---there are no vertices that can be added
to extend the isomorphic subgraphs. We then backtrack to previous
smaller matching subgraphs, and try extending with a different vertex
choice. The process ends by either finding a complete mapping between
$G_1$ and $G_2$ and returning true, or by exhausting all possibilities
and returning false.
The problem with the exhaustive backtracking algorithm is that there
are $N!$ possible vertex mappings, and $N!$ gets very large as $N$
increases, so we need to prune the search space. We use the pruning
techniques described in
\cite{deo77:_new_algo_digraph_isomorph,fortin96:_isomorph,reingold77:_combin_algo},
some of which originated in
\cite{sussenguth65:_isomorphism,unger64:_isomorphism}. Also, the
specific backtracking method we use is the one from
\cite{deo77:_new_algo_digraph_isomorph}.
We consider the vertices of $G_1$ for addition to the matched subgraph
in a specific order, so assume that the vertices of $G_1$ are labeled
$1,\ldots,N$ according to that order. As we will see later, a good
ordering of the vertices is by DFS discover time. Let $G_1[k]$ denote
the subgraph of $G_1$ induced by the first $k$ vertices, with $G_1[0]$
being an empty graph. We also consider the edges of $G_1$ in a
specific order. We always examine edges in the current subgraph
$G_1[k]$ first, that is, edges $(u,v)$ where both $u \leq k$ and $v
\leq k$. This ordering of edges can be acheived by sorting each edge
$(u,v)$ by lexicographical comparison on the tuple $\langle \max(u,v),
u, v \rangle$. Figure~\ref{fig:iso-eg} shows an example of a graph
with the vertices labelled by DFS discover time. The edge ordering for
this graph is as follows:
\begin{tabular}{lccccccccc}
source: &0&1&0&1&3&0&5&6&6\\
target: &1&2&3&3&2&4&6&4&7
\end{tabular}
\vizfig{iso-eg}{Vertices numbered by DFS discover time. The DFS tree
edges are the solid lines. Nodes $0$ and $5$ are DFS tree root nodes.}
Each step of the backtracking search moves from left to right though
the ordered edges. At each step it examines an edge $(i,j)$ of $G_1$
and decides whether to continue to the left or to go back. There are
three cases to consider:
\begin{enumerate}
\item \label{case:1} $i > k$
\item \label{case:2} $i \leq k$ and $j > k$.
\item \label{case:3} $i \leq k$ and $j \leq k$.
\end{enumerate}
\paragraph{Case 1: $i > k$.}
$i$ is not in the matched subgraph $G_1[k]$. This situation only
happens at the very beginning of the search, or when $i$ is not
reachable from any of the vertices in $G_1[k]$. This means that we
are finished with $G_1[k]$. We increment $k$ and find a match for it
amongst any of the eligible vertices in $V_2 - S$. We then proceed to
Case 2. It is usually the case that $i$ is equal to the new $k$, but
when there is another DFS root $r$ with no in-edges or out-edges
and if $r < i$ then it will be the new $k$.
\paragraph{Case 2: $i \leq k$ and $j > k$.}
$i$ is in the matched subgraph $G_1[k]$, but $j$ is not. We are about
to increment $k$ to try and grow the matched subgraph to include
$j$. However, first we need to finish verifying that $G_1[k]
\isomorphic G_2[S]$. In previous steps we proved that $G_1[k-1]
\isomorphic G_2[S-\{f(k)\}]$, so now we just need to verify the
extension of the isomorphism to $k$. At this point we are guaranteed
to have seen all the edges to and from vertex $k$ (because the edges
are sorted), and in previous steps we have checked that for each edge
incident on $k$ in $E_1[k]$ there is a matching edge in
$E_2[S]$. However we still need to check the ``only if'' part of the
``if and only if''. So we check that for every edge $(u,v)$ incident
on $f(k)$ there is $(f^{-1}(u),f^{-1}(v)) \in E_1[k]$. A quick way to
verify this is to make sure that the number of edges incident on $k$
in $E_1[k]$ is the same as the number of edges incident on $f(k)$ in
$E_2[S]$. We create an edge counter that we increment every time we
see an edge incident on $k$ and decrement for each edge incident on
$f(k)$. If the counter gets back to zero we know the edges match up.
Once we have verified that $G_1[k] \isomorphic G_2[S]$ we add $f(k)$
to $S$, increment $k$, and then try assigning $j$ to
any of the eligible vertices in $V_2 - S$. More about what
``eligible'' means below.
\paragraph{Case 3: $i \leq k$ and $j \leq k$.}
Both $i$ and $j$ are in $G_1[k]$. We check to make sure that
$(f(i),f(j)) \in E_2[S]$ and then proceed to the next edge.
\subsection{Vertex Invariants}
\label{sec:vertex-invariants}
One way to reduce the search space is through the use of \emph{vertex
invariants}. The idea is to compute a number for each vertex $i(v)$
such that $i(v) = i(v')$ if there exists some isomorphism $f$ where
$f(v) = v'$. Then when we look for a match to some vertex $v$, only
those vertices that have the same vertex invariant number are
``eligible''. The number of vertices in a graph with the same vertex
invariant number $i$ is called the \emph{invariant multiplicity} for
$i$. In this implementation, by default we use the function $i(v) =
(|V|+1) \times \outdegree(v) + \indegree(v)$, though the user can also
supply there own invariant function. The ability of the invariant
function to prune the search space varies widely with the type of
graph.
The following is the definition of the functor that implements the
default vertex invariant. The functor models the
\stlconcept{AdaptableUnaryFunction} concept.
@d Degree vertex invariant functor
@{
template <typename InDegreeMap, typename Graph>
class degree_vertex_invariant
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
typedef typename graph_traits<Graph>::degree_size_type size_type;
public:
typedef vertex_t argument_type;
typedef size_type result_type;
degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g)
: m_in_degree_map(in_degree_map), m_g(g) { }
size_type operator()(vertex_t v) const {
return (num_vertices(m_g) + 1) * out_degree(v, m_g)
+ get(m_in_degree_map, v);
}
// The largest possible vertex invariant number
size_type max() const {
return num_vertices(m_g) * num_vertices(m_g) + num_vertices(m_g);
}
private:
InDegreeMap m_in_degree_map;
const Graph& m_g;
};
@}
\subsection{Vertex Order}
A good choice of the labeling for the vertices (which determines the
order in which the subgraph $G_1[k]$ is grown) can also reduce the
search space. In the following we discuss two labeling heuristics.
\subsubsection{Most Constrained First}
Consider the most constrained vertices first. That is, examine
lower-degree vertices before higher-degree vertices. This reduces the
search space because it chops off a trunk before the trunk has a
chance to blossom out. We can generalize this to use vertex
invariants. We examine vertices with low invariant multiplicity
before examining vertices with high invariant multiplicity.
\subsubsection{Adjacent First}
It only makes sense to examine an edge if one or more of its vertices
has been assigned a mapping. This means that we should visit vertices
adjacent to those in the current matched subgraph before proceeding.
\subsubsection{DFS Order, Starting with Lowest Multiplicity}
For this implementation, we combine the above two heuristics in the
following way. To implement the ``adjacent first'' heuristic we apply
DFS to the graph, and use the DFS discovery order as our vertex
order. To comply with the ``most constrained first'' heuristic we
order the roots of our DFS trees by invariant multiplicity.
\subsection{Implementation of the \code{match} function}
The \code{match} function implements the recursive backtracking,
handling the four cases described in \S\ref{sec:backtracking}.
@d Match function
@{
bool match(edge_iter iter, int dfs_num_k)
{
if (iter != ordered_edges.end()) {
vertex1_t i = source(*iter, G1), j = target(*iter, G2);
if (dfs_num[i] > dfs_num_k) {
@<Find a match for the DFS tree root $k+1$@>
}
else if (dfs_num[j] > dfs_num_k) {
@<Verify $G_1[k] \isomorphic G_2[S]$ and then find match for $j$@>
}
else {
@<Check to see if $(f(i),f(j)) \in E_2[S]$ and continue@>
}
} else
return true;
return false;
}
@}
\noindent Now to describe how each of the four cases is implemented.
\paragraph{Case 1: $i \not\in G_1[k]$.}
We increment $k$ and try to map it to any of the eligible vertices of
$V_2 - S$. After matching the new $k$ we proceed by invoking
\code{match}. We do not yet move on to the next edge, since we have
not yet found a match for edge, or for target $j$. We reset the edge
counter to zero.
@d Find a match for the DFS tree root $k+1$
@{
vertex1_t kp1 = dfs_vertices[dfs_num_k + 1];
BGL_FORALL_VERTICES_T(u, G2, Graph2) {
if (invariant1(kp1) == invariant2(u) && in_S[u] == false) {
f[kp1] = u;
in_S[u] = true;
num_edges_on_k = 0;
if (match(iter, dfs_num_k + 1));
return true;
in_S[u] = false;
}
}
@}
\paragraph{Case 2: $i \in G_1[k]$ and $j \not\in G_1[k]$.}
Before we extend the subgraph by incrementing $k$, we need to finish
verifying that $G_1[k]$ and $G_2[S]$ are isomorphic. We decrement the
edge counter for every edge incident to $f(k)$ in $G_2[S]$, which
should bring the counter back down to zero. If not we return false.
@d Verify $G_1[k] \isomorphic G_2[S]$ and then find match for $j$
@{
vertex1_t k = dfs_vertices[dfs_num_k];
@<Count out-edges of $f(k)$ in $G_2[S]$@>
@<Count in-edges of $f(k)$ in $G_2[S]$@>
if (num_edges_on_k != 0)
return false;
@<Find a match for $j$ and continue@>
@}
\noindent We decrement the edge counter for every vertex in
$Adj[f(k)]$ that is also in $S$. We call \code{count\_if} to do the
counting, using \code{boost::bind} to create the predicate functor.
@d Count out-edges of $f(k)$ in $G_2[S]$
@{
num_edges_on_k -=
count_if(adjacent_vertices(f[k], G2), make_indirect_pmap(in_S));
@}
\noindent Next we iterate through all the vertices in $S$ and for each
we decrement the counter for each edge whose target is $k$.
% We could specialize this for the case when G_2 is bidirectional.
@d Count in-edges of $f(k)$ in $G_2[S]$
@{
for (int jj = 0; jj < dfs_num_k; ++jj) {
vertex1_t j = dfs_vertices[jj];
num_edges_on_k -= count(adjacent_vertices(f[j], G2), f[k]);
}
@}
Now that we have finished verifying that $G_1[k] \isomorphic G_2[S]$,
we can now consider extending the isomorphism. We need to find a match
for $j$ in $V_2 - S$. Since $j$ is adjacent to $i$, we can further
narrow down the search by only considering vertices adjacent to
$f(i)$. Also, the vertex must have the same vertex invariant. Once we
have a matching vertex $v$ we extend the matching subgraphs by
incrementing $k$ and adding $v$ to $S$, we set $f(j) = v$, and we set
the edge counter to $1$ (since $(i,j)$ is the first edge incident on
our new $k$). We continue to the next edge by calling \code{match}. If
that fails we undo the assignment $f(j) = v$.
@d Find a match for $j$ and continue
@{
BGL_FORALL_ADJ_T(f[i], v, G2, Graph2)
if (invariant2(v) == invariant1(j) && in_S[v] == false) {
f[j] = v;
in_S[v] = true;
num_edges_on_k = 1;
int next_k = std::max(dfs_num_k, std::max(dfs_num[i], dfs_num[j]));
if (match(next(iter), next_k))
return true;
in_S[v] = false;
}
@}
\paragraph{Case 3: both $i$ and $j$ are in $G_1[k]$.}
Our goal is to check whether $(f(i),f(j)) \in E_2[S]$. If $f(j)$ is
in $Adj[f(i)]$ then we have a match for the edge $(i,j)$, and can
increment the counter for the number of edges incident on $k$ in
$E_1[k]$. We continue by calling \code{match} on the next edge.
@d Check to see if $(f(i),f(j)) \in E_2[S]$ and continue
@{
edge2_t e2;
bool fi_fj_exists = false;
typename graph_traits<Graph2>::out_edge_iterator io, io_end;
for (tie(io, io_end) = out_edges(f[i], G2); io != io_end; ++io)
if (target(*io, G2) == f[j]) {
fi_fj_exists = true;
e2 = *io;
}
if (fi_fj_exists && edge_compare(e2, *iter)) {
++num_edges_on_k;
if (match(next(iter), dfs_num_k))
return true;
}
@}
\section{Public Interface}
The following is the public interface for the \code{isomorphism}
function. The input to the function is the two graphs $G_1$ and $G_2$,
mappings from the vertices in the graphs to integers (in the range
$[0,|V|)$), and a vertex invariant function object. The output of the
function is an isomorphism $f$ if there is one. The \code{isomorphism}
function returns true if the graphs are isomorphic and false
otherwise. The invariant parameters are function objects that compute
the vertex invariants for vertices of the two graphs. The
\code{max\_invariant} parameter is to specify one past the largest
integer that a vertex invariant number could be (the invariants
numbers are assumed to span from zero to \code{max\_invariant-1}).
The requirements on the template parameters are described below in the
``Concept checking'' code part.
@d Isomorphism function interface
@{
template <typename Graph1, typename Graph2, typename IsoMapping,
typename Invariant1, typename Invariant2, typename EdgeCompare,
typename IndexMap1, typename IndexMap2>
bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f,
Invariant1 invariant1, Invariant2 invariant2,
std::size_t max_invariant, EdgeCompare edge_compare,
IndexMap1 index_map1, IndexMap2 index_map2)
@}
The function body consists of the concept checks followed by a quick
check for empty graphs or graphs of different size and then constructs
an algorithm object. We then call the \code{test\_isomorphism} member
function, which runs the algorithm. The reason that we implement the
algorithm using a class is that there are a fair number of internal
data structures required, and it is easier to make these data members
of a class and make each section of the algorithm a member
function. This relieves us from the burden of passing lots of
arguments to each function, while at the same time avoiding the evils
of global variables (non-reentrant, etc.).
@d Isomorphism function body
@{
{
@<Concept checking@>
@<Quick return based on size@>
detail::isomorphism_algo<Graph1, Graph2, IsoMapping, Invariant1,
Invariant2, EdgeCompare, IndexMap1, IndexMap2>
algo(G1, G2, f, invariant1, invariant2, max_invariant,
edge_compare,
index_map1, index_map2);
return algo.test_isomorphism();
}
@}
\noindent If there are no vertices in either graph, then they are
trivially isomorphic. If the graphs have different numbers of vertices
then they are not isomorphic. We could also check the number of edges
here, but that would introduce the \bglconcept{EdgeListGraph}
requirement, which we otherwise do not need.
@d Quick return based on size
@{
if (num_vertices(G1) != num_vertices(G2))
return false;
if (num_vertices(G1) == 0 && num_vertices(G2) == 0)
return true;
@}
We use the Boost Concept Checking Library to make sure that the
template arguments fulfill certain requirements. The graph types must
model the \bglconcept{VertexListGraph} and \bglconcept{AdjacencyGraph}
concepts. The vertex invariants must model the
\stlconcept{AdaptableUnaryFunction} concept, with a vertex as their
argument and an integer return type. The \code{IsoMapping} type
representing the isomorphism $f$ must be a
\pmconcept{ReadWritePropertyMap} that maps from vertices in $G_1$ to
vertices in $G_2$. The two other index maps are
\pmconcept{ReadablePropertyMap}s from vertices in $G_1$ and $G_2$ to
unsigned integers.
@d Concept checking
@{
// Graph requirements
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph1> ));
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph1> ));
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph2> ));
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph2> ));
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
typedef typename graph_traits<Graph1>::vertices_size_type size_type;
// Vertex invariant requirement
BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept<Invariant1,
size_type, vertex1_t> ));
BOOST_CONCEPT_ASSERT(( AdaptableUnaryFunctionConcept<Invariant2,
size_type, vertex2_t> ));
// Property map requirements
BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<IsoMapping, vertex1_t> ));
typedef typename property_traits<IsoMapping>::value_type IsoMappingValue;
BOOST_STATIC_ASSERT((is_same<IsoMappingValue, vertex2_t>::value));
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap1, vertex1_t> ));
typedef typename property_traits<IndexMap1>::value_type IndexMap1Value;
BOOST_STATIC_ASSERT((is_convertible<IndexMap1Value, size_type>::value));
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<IndexMap2, vertex2_t> ));
typedef typename property_traits<IndexMap2>::value_type IndexMap2Value;
BOOST_STATIC_ASSERT((is_convertible<IndexMap2Value, size_type>::value));
@}
\section{Data Structure Setup}
The following is the outline of the isomorphism algorithm class. The
class is templated on all of the same parameters as the
\code{isomorphism} function, and all of the parameter values are
stored in the class as data members, in addition to the internal data
structures.
@d Isomorphism algorithm class
@{
template <typename Graph1, typename Graph2, typename IsoMapping,
typename Invariant1, typename Invariant2, typename EdgeCompare,
typename IndexMap1, typename IndexMap2>
class isomorphism_algo
{
@<Typedefs for commonly used types@>
@<Data members for the parameters@>
@<Internal data structures@>
friend struct compare_multiplicity;
@<Invariant multiplicity comparison functor@>
@<DFS visitor to record vertex and edge order@>
@<Edge comparison predicate@>
public:
@<Isomorphism algorithm constructor@>
@<Test isomorphism member function@>
private:
@<Match function@>
};
@}
The interesting parts of this class are the \code{test\_isomorphism}
function and the \code{match} function. We focus on those in the
following sections, and leave the other parts of the class to the
Appendix.
The \code{test\_isomorphism} function does all of the setup required
of the algorithm. This consists of sorting the vertices according to
invariant multiplicity, and then by DFS order. The edges are then
sorted as previously described. The last step of this function is to
begin the backtracking search.
@d Test isomorphism member function
@{
bool test_isomorphism()
{
@<Quick return if the vertex invariants do not match up@>
@<Sort vertices according to invariant multiplicity@>
@<Order vertices and edges by DFS@>
@<Sort edges according to vertex DFS order@>
int dfs_num_k = -1;
return this->match(ordered_edges.begin(), dfs_num_k);
}
@}
As a first check to rule out graphs that have no possibility of
matching, one can create a list of computed vertex invariant numbers
for the vertices in each graph, sort the two lists, and then compare
them. If the two lists are different then the two graphs are not
isomorphic. If the two lists are the same then the two graphs may be
isomorphic.
@d Quick return if the vertex invariants do not match up
@{
{
std::vector<invar1_value> invar1_array;
BGL_FORALL_VERTICES_T(v, G1, Graph1)
invar1_array.push_back(invariant1(v));
sort(invar1_array);
std::vector<invar2_value> invar2_array;
BGL_FORALL_VERTICES_T(v, G2, Graph2)
invar2_array.push_back(invariant2(v));
sort(invar2_array);
if (! equal(invar1_array, invar2_array))
return false;
}
@}
Next we compute the invariant multiplicity, the number of vertices
with the same invariant number. The \code{invar\_mult} vector is
indexed by invariant number. We loop through all the vertices in the
graph to record the multiplicity. We then order the vertices by their
invariant multiplicity. This will allow us to search the more
constrained vertices first.
@d Sort vertices according to invariant multiplicity
@{
std::vector<vertex1_t> V_mult;
BGL_FORALL_VERTICES_T(v, G1, Graph1)
V_mult.push_back(v);
{
std::vector<size_type> multiplicity(max_invariant, 0);
BGL_FORALL_VERTICES_T(v, G1, Graph1)
++multiplicity[invariant1(v)];
sort(V_mult, compare_multiplicity(invariant1, &multiplicity[0]));
}
@}
\noindent The definition of the \code{compare\_multiplicity} predicate
is shown below. This predicate provides the glue that binds
\code{std::sort} to our current purpose.
@d Invariant multiplicity comparison functor
@{
struct compare_multiplicity
{
compare_multiplicity(Invariant1 invariant1, size_type* multiplicity)
: invariant1(invariant1), multiplicity(multiplicity) { }
bool operator()(const vertex1_t& x, const vertex1_t& y) const {
return multiplicity[invariant1(x)] < multiplicity[invariant1(y)];
}
Invariant1 invariant1;
size_type* multiplicity;
};
@}
\subsection{Ordering by DFS Discover Time}
Next we order the vertices and edges by DFS discover time. We would
normally call the BGL \code{depth\_first\_search} function to do this,
but we want the roots of the DFS tree's to be ordered by invariant
multiplicity. Therefore we implement the outer-loop of the DFS here
and then call \code{depth\_\-first\_\-visit} to handle the recursive
portion of the DFS. The \code{record\_dfs\_order} adapts the DFS to
record the ordering, storing the results in in the
\code{dfs\_vertices} and \code{ordered\_edges} arrays. We then create
the \code{dfs\_num} array which provides a mapping from vertex to DFS
number.
@d Order vertices and edges by DFS
@{
std::vector<default_color_type> color_vec(num_vertices(G1));
safe_iterator_property_map<std::vector<default_color_type>::iterator, IndexMap1>
color_map(color_vec.begin(), color_vec.size(), index_map1);
record_dfs_order dfs_visitor(dfs_vertices, ordered_edges);
typedef color_traits<default_color_type> Color;
for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u) {
if (color_map[*u] == Color::white()) {
dfs_visitor.start_vertex(*u, G1);
depth_first_visit(G1, *u, dfs_visitor, color_map);
}
}
// Create the dfs_num array and dfs_num_map
dfs_num_vec.resize(num_vertices(G1));
dfs_num = make_safe_iterator_property_map(dfs_num_vec.begin(),
dfs_num_vec.size(), index_map1);
size_type n = 0;
for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end(); ++v)
dfs_num[*v] = n++;
@}
\noindent The definition of the \code{record\_dfs\_order} visitor
class is as follows.
@d DFS visitor to record vertex and edge order
@{
struct record_dfs_order : default_dfs_visitor
{
record_dfs_order(std::vector<vertex1_t>& v, std::vector<edge1_t>& e)
: vertices(v), edges(e) { }
void discover_vertex(vertex1_t v, const Graph1&) const {
vertices.push_back(v);
}
void examine_edge(edge1_t e, const Graph1& G1) const {
edges.push_back(e);
}
std::vector<vertex1_t>& vertices;
std::vector<edge1_t>& edges;
};
@}
The final stage of the setup is to reorder the edges so that all edges
belonging to $G_1[k]$ appear before any edges not in $G_1[k]$, for
$k=1,...,n$.
@d Sort edges according to vertex DFS order
@{
sort(ordered_edges, edge_cmp(G1, dfs_num));
@}
\noindent The edge comparison function object is defined as follows.
@d Edge comparison predicate
@{
struct edge_cmp {
edge_cmp(const Graph1& G1, DFSNumMap dfs_num)
: G1(G1), dfs_num(dfs_num) { }
bool operator()(const edge1_t& e1, const edge1_t& e2) const {
using namespace std;
vertex1_t u1 = dfs_num[source(e1,G1)], v1 = dfs_num[target(e1,G1)];
vertex1_t u2 = dfs_num[source(e2,G1)], v2 = dfs_num[target(e2,G1)];
int m1 = max(u1, v1);
int m2 = max(u2, v2);
// lexicographical comparison
return make_pair(m1, make_pair(u1, v1))
< make_pair(m2, make_pair(u2, v2));
}
const Graph1& G1;
DFSNumMap dfs_num;
};
@}
\section{Appendix}
@d Typedefs for commonly used types
@{
typedef typename graph_traits<Graph1>::vertex_descriptor vertex1_t;
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
typedef typename graph_traits<Graph1>::edge_descriptor edge1_t;
typedef typename graph_traits<Graph2>::edge_descriptor edge2_t;
typedef typename graph_traits<Graph1>::vertices_size_type size_type;
typedef typename Invariant1::result_type invar1_value;
typedef typename Invariant2::result_type invar2_value;
@}
@d Data members for the parameters
@{
const Graph1& G1;
const Graph2& G2;
IsoMapping f;
Invariant1 invariant1;
Invariant2 invariant2;
std::size_t max_invariant;
EdgeCompare edge_compare;
IndexMap1 index_map1;
IndexMap2 index_map2;
@}
@d Internal data structures
@{
std::vector<vertex1_t> dfs_vertices;
typedef typename std::vector<vertex1_t>::iterator vertex_iter;
std::vector<int> dfs_num_vec;
typedef safe_iterator_property_map<typename std::vector<int>::iterator,
IndexMap1> DFSNumMap;
DFSNumMap dfs_num;
std::vector<edge1_t> ordered_edges;
typedef typename std::vector<edge1_t>::iterator edge_iter;
std::vector<char> in_S_vec;
typedef safe_iterator_property_map<typename std::vector<char>::iterator,
IndexMap2> InSMap;
InSMap in_S;
int num_edges_on_k;
@}
@d Isomorphism algorithm constructor
@{
isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f,
Invariant1 invariant1, Invariant2 invariant2,
std::size_t max_invariant,
EdgeCompare edge_compare,
IndexMap1 index_map1, IndexMap2 index_map2)
: G1(G1), G2(G2), f(f), invariant1(invariant1), invariant2(invariant2),
max_invariant(max_invariant), edge_compare(edge_compare),
index_map1(index_map1), index_map2(index_map2)
{
in_S_vec.resize(num_vertices(G1));
in_S = make_safe_iterator_property_map
(in_S_vec.begin(), in_S_vec.size(), index_map2);
}
@}
@o isomorphism.hpp
@{
// Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
#ifndef BOOST_GRAPH_ISOMORPHISM_HPP
#define BOOST_GRAPH_ISOMORPHISM_HPP
#include <utility>
#include <vector>
#include <iterator>
#include <algorithm>
#include <boost/graph/iteration_macros.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/utility.hpp>
#include <boost/detail/algorithm.hpp>
#include <boost/pending/indirect_cmp.hpp> // for make_indirect_pmap
namespace boost {
namespace detail {
@<Isomorphism algorithm class@>
template <typename Graph, typename InDegreeMap>
void compute_in_degree(const Graph& g, InDegreeMap in_degree_map)
{
BGL_FORALL_VERTICES_T(v, g, Graph)
put(in_degree_map, v, 0);
BGL_FORALL_VERTICES_T(u, g, Graph)
BGL_FORALL_ADJ_T(u, v, g, Graph)
put(in_degree_map, v, get(in_degree_map, v) + 1);
}
} // namespace detail
@<Degree vertex invariant functor@>
@<Isomorphism function interface@>
@<Isomorphism function body@>
namespace detail {
struct default_edge_compare {
template <typename Edge1, typename Edge2>
bool operator()(Edge1 e1, Edge2 e2) const { return true; }
};
template <typename Graph1, typename Graph2,
typename IsoMapping,
typename IndexMap1, typename IndexMap2,
typename P, typename T, typename R>
bool isomorphism_impl(const Graph1& G1, const Graph2& G2,
IsoMapping f, IndexMap1 index_map1, IndexMap2 index_map2,
const bgl_named_params<P,T,R>& params)
{
std::vector<std::size_t> in_degree1_vec(num_vertices(G1));
typedef safe_iterator_property_map<std::vector<std::size_t>::iterator,
IndexMap1> InDeg1;
InDeg1 in_degree1(in_degree1_vec.begin(), in_degree1_vec.size(), index_map1);
compute_in_degree(G1, in_degree1);
std::vector<std::size_t> in_degree2_vec(num_vertices(G2));
typedef safe_iterator_property_map<std::vector<std::size_t>::iterator,
IndexMap2> InDeg2;
InDeg2 in_degree2(in_degree2_vec.begin(), in_degree2_vec.size(), index_map2);
compute_in_degree(G2, in_degree2);
degree_vertex_invariant<InDeg1, Graph1> invariant1(in_degree1, G1);
degree_vertex_invariant<InDeg2, Graph2> invariant2(in_degree2, G2);
default_edge_compare edge_cmp;
return isomorphism(G1, G2, f,
choose_param(get_param(params, vertex_invariant1_t()), invariant1),
choose_param(get_param(params, vertex_invariant2_t()), invariant2),
choose_param(get_param(params, vertex_max_invariant_t()),
invariant2.max()),
choose_param(get_param(params, edge_compare_t()), edge_cmp),
index_map1, index_map2
);
}
} // namespace detail
// Named parameter interface
template <typename Graph1, typename Graph2, class P, class T, class R>
bool isomorphism(const Graph1& g1,
const Graph2& g2,
const bgl_named_params<P,T,R>& params)
{
typedef typename graph_traits<Graph2>::vertex_descriptor vertex2_t;
typename std::vector<vertex2_t>::size_type n = num_vertices(g1);
std::vector<vertex2_t> f(n);
return detail::isomorphism_impl
(g1, g2,
choose_param(get_param(params, vertex_isomorphism_t()),
make_safe_iterator_property_map(f.begin(), f.size(),
choose_const_pmap(get_param(params, vertex_index1),
g1, vertex_index), vertex2_t())),
choose_const_pmap(get_param(params, vertex_index1), g1, vertex_index),
choose_const_pmap(get_param(params, vertex_index2), g2, vertex_index),
params
);
}
// All defaults interface
template <typename Graph1, typename Graph2>
bool isomorphism(const Graph1& g1, const Graph2& g2)
{
return isomorphism(g1, g2,
bgl_named_params<int, buffer_param_t>(0));// bogus named param
}
// Verify that the given mapping iso_map from the vertices of g1 to the
// vertices of g2 describes an isomorphism.
// Note: this could be made much faster by specializing based on the graph
// concepts modeled, but since we're verifying an O(n^(lg n)) algorithm,
// O(n^4) won't hurt us.
template<typename Graph1, typename Graph2, typename IsoMap>
inline bool verify_isomorphism(const Graph1& g1, const Graph2& g2, IsoMap iso_map)
{
#if 0
// problematic for filtered_graph!
if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))
return false;
#endif
for (typename graph_traits<Graph1>::edge_iterator e1 = edges(g1).first;
e1 != edges(g1).second; ++e1) {
bool found_edge = false;
for (typename graph_traits<Graph2>::edge_iterator e2 = edges(g2).first;
e2 != edges(g2).second && !found_edge; ++e2) {
if (source(*e2, g2) == get(iso_map, source(*e1, g1)) &&
target(*e2, g2) == get(iso_map, target(*e1, g1))) {
found_edge = true;
}
}
if (!found_edge)
return false;
}
return true;
}
} // namespace boost
#include <boost/graph/iteration_macros_undef.hpp>
#endif // BOOST_GRAPH_ISOMORPHISM_HPP
@}
\bibliographystyle{abbrv}
\bibliography{ggcl}
\end{document}
% LocalWords: Isomorphism Siek isomorphism adjacency subgraph subgraphs OM DFS
% LocalWords: ISOMORPH Invariants invariants typename IsoMapping bool const
% LocalWords: VertexInvariant VertexIndexMap iterator typedef VertexG Idx num
% LocalWords: InvarValue struct invar vec iter tmp_matches mult inserter permute ui
% LocalWords: dfs cmp isomorph VertexIter edge_iter_t IndexMap desc RPH ATCH pre
% LocalWords: iterators VertexListGraph EdgeListGraph BidirectionalGraph tmp
% LocalWords: ReadWritePropertyMap VertexListGraphConcept EdgeListGraphConcept
% LocalWords: BidirectionalGraphConcept ReadWritePropertyMapConcept indices ei
% LocalWords: IsoMappingValue ReadablePropertyMapConcept namespace InvarFun
% LocalWords: MultMap vip inline bitset typedefs fj hpp ifndef adaptor params
% LocalWords: bgl param pmap endif