cd1fee5f7d
[SVN r76050]
755 lines
26 KiB
OpenEdge ABL
755 lines
26 KiB
OpenEdge ABL
\documentclass[11pt]{report}
|
|
|
|
\input{defs}
|
|
|
|
|
|
\setlength\overfullrule{5pt}
|
|
\tolerance=10000
|
|
\sloppy
|
|
\hfuzz=10pt
|
|
|
|
\makeindex
|
|
|
|
\begin{document}
|
|
|
|
\title{A Generic Programming Implementation of Transitive Closure}
|
|
\author{Jeremy G. Siek}
|
|
|
|
\maketitle
|
|
|
|
\section{Introduction}
|
|
|
|
This paper documents the implementation of the
|
|
\code{transitive\_closure()} function of the Boost Graph Library. The
|
|
function was implemented by Vladimir Prus and some editing was done by
|
|
Jeremy Siek.
|
|
|
|
The algorithm used to implement the \code{transitive\_closure()}
|
|
function is based on the detection of strong components
|
|
\cite{nuutila95, purdom70}. The following discussion describes the
|
|
main ideas of the algorithm and some relevant background theory.
|
|
|
|
The \keyword{transitive closure} of a graph $G = (V,E)$ is a graph $G^+
|
|
= (V,E^+)$ such that $E^+$ contains an edge $(u,v)$ if and only if $G$
|
|
contains a path (of at least one edge) from $u$ to $v$. A
|
|
\keyword{successor set} of a vertex $v$, denoted by $Succ(v)$, is the
|
|
set of vertices that are reachable from vertex $v$. The set of
|
|
vertices adjacent to $v$ in the transitive closure $G^+$ is the same as
|
|
the successor set of $v$ in the original graph $G$. Computing the
|
|
transitive closure is equivalent to computing the successor set for
|
|
every vertex in $G$.
|
|
|
|
All vertices in the same strong component have the same successor set
|
|
(because every vertex is reachable from all the other vertices in the
|
|
component). Therefore, it is redundant to compute the successor set
|
|
for every vertex in a strong component; it suffices to compute it for
|
|
just one vertex per component.
|
|
|
|
A \keyword{condensation graph} is a a graph $G'=(V',E')$ based on the
|
|
graph $G=(V,E)$ where each vertex in $V'$ corresponds to a strongly
|
|
connected component in $G$ and the edge $(s,t)$ is in $E'$ if and only
|
|
if there exists an edge in $E$ connecting any of the vertices in the
|
|
component of $s$ to any of the vertices in the component of $t$.
|
|
|
|
\section{The Implementation}
|
|
|
|
The following is the interface and outline of the function:
|
|
|
|
@d Transitive Closure Function
|
|
@{
|
|
template <typename Graph, typename GraphTC,
|
|
typename G_to_TC_VertexMap,
|
|
typename VertexIndexMap>
|
|
void transitive_closure(const Graph& g, GraphTC& tc,
|
|
G_to_TC_VertexMap g_to_tc_map,
|
|
VertexIndexMap index_map)
|
|
{
|
|
if (num_vertices(g) == 0) return;
|
|
@<Some type definitions@>
|
|
@<Concept checking@>
|
|
@<Compute strongly connected components of the graph@>
|
|
@<Construct the condensation graph (version 2)@>
|
|
@<Compute transitive closure on the condensation graph@>
|
|
@<Build transitive closure of the original graph@>
|
|
}
|
|
@}
|
|
|
|
The parameter \code{g} is the input graph and the parameter \code{tc}
|
|
is the output graph that will contain the transitive closure of
|
|
\code{g}. The \code{g\_to\_tc\_map} maps vertices in the input graph
|
|
to the new vertices in the output transitive closure. The
|
|
\code{index\_map} maps vertices in the input graph to the integers
|
|
zero to \code{num\_vertices(g) - 1}.
|
|
|
|
There are two alternate interfaces for the transitive closure
|
|
function. The following is the version where defaults are used for
|
|
both the \code{g\_to\_tc\_map} and the \code{index\_map}.
|
|
|
|
@d The All Defaults Interface
|
|
@{
|
|
template <typename Graph, typename GraphTC>
|
|
void transitive_closure(const Graph& g, GraphTC& tc)
|
|
{
|
|
if (num_vertices(g) == 0) return;
|
|
typedef typename property_map<Graph, vertex_index_t>::const_type
|
|
VertexIndexMap;
|
|
VertexIndexMap index_map = get(vertex_index, g);
|
|
|
|
typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex;
|
|
std::vector<tc_vertex> to_tc_vec(num_vertices(g));
|
|
iterator_property_map<tc_vertex*, VertexIndexMap>
|
|
g_to_tc_map(&to_tc_vec[0], index_map);
|
|
|
|
transitive_closure(g, tc, g_to_tc_map, index_map);
|
|
}
|
|
@}
|
|
|
|
\noindent The following alternate interface uses the named parameter
|
|
trick for specifying the parameters. The named parameter functions to
|
|
use in creating the \code{params} argument are
|
|
\code{vertex\_index(VertexIndexMap index\_map)} and
|
|
\code{orig\_to\_copy(G\_to\_TC\_VertexMap g\_to\_tc\_map)}.
|
|
|
|
@d The Named Parameter Interface
|
|
@{
|
|
template <typename Graph, typename GraphTC,
|
|
typename P, typename T, typename R>
|
|
void transitive_closure(const Graph& g, GraphTC& tc,
|
|
const bgl_named_params<P, T, R>& params)
|
|
{
|
|
if (num_vertices(g) == 0) return;
|
|
detail::transitive_closure_dispatch(g, tc,
|
|
get_param(params, orig_to_copy),
|
|
choose_const_pmap(get_param(params, vertex_index), g, vertex_index)
|
|
);
|
|
}
|
|
@}
|
|
|
|
\noindent This dispatch function is used to handle the logic for
|
|
deciding between a user-provided graph to transitive closure vertex
|
|
mapping or to use the default, a vector, to map between the two.
|
|
|
|
@d Construct Default G to TC Vertex Mapping
|
|
@{
|
|
namespace detail {
|
|
template <typename Graph, typename GraphTC,
|
|
typename G_to_TC_VertexMap,
|
|
typename VertexIndexMap>
|
|
void transitive_closure_dispatch
|
|
(const Graph& g, GraphTC& tc,
|
|
G_to_TC_VertexMap g_to_tc_map,
|
|
VertexIndexMap index_map)
|
|
{
|
|
typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex;
|
|
typename std::vector<tc_vertex>::size_type
|
|
n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1;
|
|
std::vector<tc_vertex> to_tc_vec(n);
|
|
|
|
transitive_closure
|
|
(g, tc,
|
|
choose_param(g_to_tc_map, make_iterator_property_map
|
|
(to_tc_vec.begin(), index_map, to_tc_vec[0])),
|
|
index_map);
|
|
}
|
|
} // namespace detail
|
|
@}
|
|
|
|
The following statements check to make sure that the template
|
|
parameters \emph{model} the concepts that are required for this
|
|
algorithm.
|
|
|
|
@d Concept checking
|
|
@{
|
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
|
|
BOOST_CONCEPT_ASSERT(( AdjacencyGraphConcept<Graph> ));
|
|
BOOST_CONCEPT_ASSERT(( VertexMutableGraphConcept<GraphTC> ));
|
|
BOOST_CONCEPT_ASSERT(( EdgeMutableGraphConcept<GraphTC> ));
|
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<VertexIndexMap, vertex> ));
|
|
@}
|
|
|
|
\noindent To simplify the code in the rest of the function we make the
|
|
following typedefs.
|
|
|
|
@d Some type definitions
|
|
@{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex;
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge;
|
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
|
typedef typename property_traits<VertexIndexMap>::value_type size_type;
|
|
typedef typename graph_traits<Graph>::adjacency_iterator adjacency_iterator;
|
|
@}
|
|
|
|
The first step of the algorithm is to compute which vertices are in
|
|
each strongly connected component (SCC) of the graph. This is done
|
|
with the \code{strong\_components()} function. The result of this
|
|
function is stored in the \code{component\_number} array which maps
|
|
each vertex to the number of the SCC to which it belongs (the
|
|
components are numbered zero through \code{num\_scc}). We will use
|
|
the SCC numbers for vertices in the condensation graph (CG), so we use
|
|
the same integer type \code{cg\_vertex} for both.
|
|
|
|
@d Compute strongly connected components of the graph
|
|
@{
|
|
typedef size_type cg_vertex;
|
|
std::vector<cg_vertex> component_number_vec(num_vertices(g));
|
|
iterator_property_map<cg_vertex*, VertexIndexMap>
|
|
component_number(&component_number_vec[0], index_map);
|
|
|
|
int num_scc = strong_components(g, component_number,
|
|
vertex_index_map(index_map));
|
|
|
|
std::vector< std::vector<vertex> > components;
|
|
build_component_lists(g, num_scc, component_number, components);
|
|
@}
|
|
|
|
\noindent Later we will need efficient access to all vertices in the
|
|
same SCC so we create a \code{std::vector} of vertices for each SCC
|
|
and fill it in with the \code{build\_components\_lists()} function
|
|
from \code{strong\_components.hpp}.
|
|
|
|
The next step is to construct the condensation graph. There will be
|
|
one vertex in the CG for every strongly connected component in the
|
|
original graph. We will add an edge to the CG whenever there is one or
|
|
more edges in the original graph that has its source in one SCC and
|
|
its target in another SCC. The data structure we will use for the CG
|
|
is an adjacency-list with a \code{std::set} for each out-edge list. We
|
|
use \code{std::set} because it will automatically discard parallel
|
|
edges. This makes the code simpler since we can just call
|
|
\code{insert()} every time there is an edge connecting two SCCs in the
|
|
original graph.
|
|
|
|
@d Construct the condensation graph (version 1)
|
|
@{
|
|
typedef std::vector< std::set<cg_vertex> > CG_t;
|
|
CG_t CG(num_scc);
|
|
for (cg_vertex s = 0; s < components.size(); ++s) {
|
|
for (size_type i = 0; i < components[s].size(); ++i) {
|
|
vertex u = components[s][i];
|
|
adjacency_iterator vi, vi_end;
|
|
for (tie(vi, vi_end) = adjacent_vertices(u, g); vi != vi_end; ++vi) {
|
|
cg_vertex t = component_number[*vi];
|
|
if (s != t) // Avoid loops in the condensation graph
|
|
CG[s].insert(t); // add edge (s,t) to the condensation graph
|
|
}
|
|
}
|
|
}
|
|
@}
|
|
|
|
Inserting into a \code{std::set} and iterator traversal for
|
|
\code{std::set} is a bit slow. We can get better performance if we use
|
|
\code{std::vector} and then explicitly remove duplicated vertices from
|
|
the out-edge lists. Here is the construction of the condensation graph
|
|
rewritten to use \code{std::vector}.
|
|
|
|
@d Construct the condensation graph (version 2)
|
|
@{
|
|
typedef std::vector< std::vector<cg_vertex> > CG_t;
|
|
CG_t CG(num_scc);
|
|
for (cg_vertex s = 0; s < components.size(); ++s) {
|
|
std::vector<cg_vertex> adj;
|
|
for (size_type i = 0; i < components[s].size(); ++i) {
|
|
vertex u = components[s][i];
|
|
adjacency_iterator v, v_end;
|
|
for (tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) {
|
|
cg_vertex t = component_number[*v];
|
|
if (s != t) // Avoid loops in the condensation graph
|
|
adj.push_back(t);
|
|
}
|
|
}
|
|
std::sort(adj.begin(), adj.end());
|
|
std::vector<cg_vertex>::iterator di = std::unique(adj.begin(), adj.end());
|
|
if (di != adj.end())
|
|
adj.erase(di, adj.end());
|
|
CG[s] = adj;
|
|
}
|
|
@}
|
|
|
|
Next we compute the transitive closure of the condensation graph. The
|
|
basic outline of the algorithm is below. The vertices are considered
|
|
in reverse topological order to ensure that the when computing the
|
|
successor set for a vertex $u$, the successor set for each vertex in
|
|
$Adj[u]$ has already been computed. The successor set for a vertex $u$
|
|
can then be constructed by taking the union of the successor sets for
|
|
all of its adjacent vertices together with the adjacent vertices
|
|
themselves.
|
|
|
|
\begin{tabbing}
|
|
\textbf{for} \= ea\=ch \= vertex $u$ in $G'$ in reverse topological order \\
|
|
\>\textbf{for} each vertex $v$ in $Adj[u]$ \\
|
|
\>\>if ($v \notin Succ(u)$) \\
|
|
\>\>\>$Succ(u)$ := $Succ(u) \cup \{ v \} \cup Succ(v)$
|
|
\end{tabbing}
|
|
|
|
An optimized implementation of the set union operation improves the
|
|
performance of the algorithm. Therefore this implementation uses
|
|
\keyword{chain decomposition}\cite{goral79,simon86}. The vertices of
|
|
$G$ are partitioned into chains $Z_1, ..., Z_k$, where each chain
|
|
$Z_i$ is a path in $G$ and the vertices in a chain have increasing
|
|
topological number. A successor set $S$ is then represented by a
|
|
collection of intersections with the chains, i.e., $S =
|
|
\bigcup_{i=1 \ldots k} (Z_i \cap S)$. Each intersection can be represented
|
|
by the first vertex in the path $Z_i$ that is also in $S$, since the
|
|
rest of the path is guaranteed to also be in $S$. The collection of
|
|
intersections is therefore represented by a vector of length $k$ where
|
|
the $i$th element of the vector stores the first vertex in the
|
|
intersection of $S$ with $Z_i$.
|
|
|
|
Computing the union of two successor sets, $S_3 = S_1 \cup S_2$, can
|
|
then be computed in $O(k)$ time with the below operation. We will
|
|
represent the successor sets by vectors of integers where the integers
|
|
are the topological numbers for the vertices in the set.
|
|
|
|
@d Union of successor sets
|
|
@{
|
|
namespace detail {
|
|
inline void
|
|
union_successor_sets(const std::vector<std::size_t>& s1,
|
|
const std::vector<std::size_t>& s2,
|
|
std::vector<std::size_t>& s3)
|
|
{
|
|
for (std::size_t k = 0; k < s1.size(); ++k)
|
|
s3[k] = std::min(s1[k], s2[k]);
|
|
}
|
|
} // namespace detail
|
|
@}
|
|
|
|
So to compute the transitive closure we must first sort the graph by
|
|
topological number and then decompose the graph into chains. Once
|
|
that is accomplished we can enter the main loop and begin computing
|
|
the successor sets.
|
|
|
|
@d Compute transitive closure on the condensation graph
|
|
@{
|
|
@<Compute topological number for each vertex@>
|
|
@<Sort the out-edge lists by topological number@>
|
|
@<Decompose the condensation graph into chains@>
|
|
@<Compute successor sets@>
|
|
@<Build the transitive closure of the condensation graph@>
|
|
@}
|
|
|
|
The \code{topological\_sort()} function is called to obtain a list of
|
|
vertices in topological order and then we use this ordering to assign
|
|
topological numbers to the vertices.
|
|
|
|
@d Compute topological number for each vertex
|
|
@{
|
|
std::vector<cg_vertex> topo_order;
|
|
std::vector<cg_vertex> topo_number(num_vertices(CG));
|
|
topological_sort(CG, std::back_inserter(topo_order),
|
|
vertex_index_map(identity_property_map()));
|
|
std::reverse(topo_order.begin(), topo_order.end());
|
|
size_type n = 0;
|
|
for (std::vector<cg_vertex>::iterator i = topo_order.begin();
|
|
i != topo_order.end(); ++i)
|
|
topo_number[*i] = n++;
|
|
@}
|
|
|
|
Next we sort the out-edge lists of the condensation graph by
|
|
topological number. This is needed for computing the chain
|
|
decomposition, for each the vertices in a chain must be in topological
|
|
order and we will be adding vertices to the chains from the out-edge
|
|
lists. The \code{subscript()} function creates a function object that
|
|
returns the topological number of its input argument.
|
|
|
|
@d Sort the out-edge lists by topological number
|
|
@{
|
|
for (size_type i = 0; i < num_vertices(CG); ++i)
|
|
std::sort(CG[i].begin(), CG[i].end(),
|
|
compose_f_gx_hy(std::less<cg_vertex>(),
|
|
detail::subscript(topo_number),
|
|
detail::subscript(topo_number)));
|
|
@}
|
|
|
|
Here is the code that defines the \code{subscript\_t} function object
|
|
and its associated helper object generation function.
|
|
|
|
@d Subscript function object
|
|
@{
|
|
namespace detail {
|
|
template <typename Container, typename ST = std::size_t,
|
|
typename VT = typename Container::value_type>
|
|
struct subscript_t : public std::unary_function<ST, VT> {
|
|
subscript_t(Container& c) : container(&c) { }
|
|
VT& operator()(const ST& i) const { return (*container)[i]; }
|
|
protected:
|
|
Container *container;
|
|
};
|
|
template <typename Container>
|
|
subscript_t<Container> subscript(Container& c)
|
|
{ return subscript_t<Container>(c); }
|
|
} // namespace detail
|
|
@}
|
|
|
|
|
|
Now we are ready to decompose the condensation graph into chains. The
|
|
idea is that we want to form lists of vertices that are in a path and
|
|
that the vertices in the list should be ordered by topological number.
|
|
These lists will be stored in the \code{chains} vector below. To
|
|
create the chains we consider each vertex in the graph in topological
|
|
order. If the vertex is not already in a chain then it will be the
|
|
start of a new chain. We then follow a path from this vertex to extend
|
|
the chain.
|
|
|
|
@d Decompose the condensation graph into chains
|
|
@{
|
|
std::vector< std::vector<cg_vertex> > chains;
|
|
{
|
|
std::vector<cg_vertex> in_a_chain(num_vertices(CG));
|
|
for (std::vector<cg_vertex>::iterator i = topo_order.begin();
|
|
i != topo_order.end(); ++i) {
|
|
cg_vertex v = *i;
|
|
if (!in_a_chain[v]) {
|
|
chains.resize(chains.size() + 1);
|
|
std::vector<cg_vertex>& chain = chains.back();
|
|
for (;;) {
|
|
@<Extend the chain until the path dead-ends@>
|
|
}
|
|
}
|
|
}
|
|
}
|
|
@<Record the chain number and chain position for each vertex@>
|
|
@}
|
|
|
|
\noindent To extend the chain we pick an adjacent vertex that is not
|
|
already in a chain. Also, the adjacent vertex chosen will be the one
|
|
with lowest topological number since the out-edges of \code{CG} are in
|
|
topological order.
|
|
|
|
@d Extend the chain until the path dead-ends
|
|
@{
|
|
chain.push_back(v);
|
|
in_a_chain[v] = true;
|
|
graph_traits<CG_t>::adjacency_iterator adj_first, adj_last;
|
|
tie(adj_first, adj_last) = adjacent_vertices(v, CG);
|
|
graph_traits<CG_t>::adjacency_iterator next
|
|
= std::find_if(adj_first, adj_last, not1(detail::subscript(in_a_chain)));
|
|
if (next != adj_last)
|
|
v = *next;
|
|
else
|
|
break; // end of chain, dead-end
|
|
@}
|
|
|
|
In the next steps of the algorithm we will need to efficiently find
|
|
the chain for a vertex and the position in the chain for a vertex, so
|
|
here we compute this information and store it in two vectors:
|
|
\code{chain\_number} and \code{pos\_in\_chain}.
|
|
|
|
@d Record the chain number and chain position for each vertex
|
|
@{
|
|
std::vector<size_type> chain_number(num_vertices(CG));
|
|
std::vector<size_type> pos_in_chain(num_vertices(CG));
|
|
for (size_type i = 0; i < chains.size(); ++i)
|
|
for (size_type j = 0; j < chains[i].size(); ++j) {
|
|
cg_vertex v = chains[i][j];
|
|
chain_number[v] = i;
|
|
pos_in_chain[v] = j;
|
|
}
|
|
@}
|
|
|
|
Now that we have completed the chain decomposition we are ready to
|
|
write the main loop for computing the transitive closure of the
|
|
condensation graph. The output of this will be a successor set for
|
|
each vertex. Remember that the successor set is stored as a collection
|
|
of intersections with the chains. Each successor set is represented by
|
|
a vector where the $i$th element is the representative vertex for the
|
|
intersection of the set with the $i$th chain. We compute the successor
|
|
sets for every vertex in decreasing topological order. The successor
|
|
set for each vertex is the union of the successor sets of the adjacent
|
|
vertex plus the adjacent vertices themselves.
|
|
|
|
@d Compute successor sets
|
|
@{
|
|
cg_vertex inf = std::numeric_limits<cg_vertex>::max();
|
|
std::vector< std::vector<cg_vertex> > successors(num_vertices(CG),
|
|
std::vector<cg_vertex>(chains.size(), inf));
|
|
for (std::vector<cg_vertex>::reverse_iterator i = topo_order.rbegin();
|
|
i != topo_order.rend(); ++i) {
|
|
cg_vertex u = *i;
|
|
graph_traits<CG_t>::adjacency_iterator adj, adj_last;
|
|
for (tie(adj, adj_last) = adjacent_vertices(u, CG);
|
|
adj != adj_last; ++adj) {
|
|
cg_vertex v = *adj;
|
|
if (topo_number[v] < successors[u][chain_number[v]]) {
|
|
// Succ(u) = Succ(u) U Succ(v)
|
|
detail::union_successor_sets(successors[u], successors[v],
|
|
successors[u]);
|
|
// Succ(u) = Succ(u) U {v}
|
|
successors[u][chain_number[v]] = topo_number[v];
|
|
}
|
|
}
|
|
}
|
|
@}
|
|
|
|
We now rebuild the condensation graph, adding in edges to connect each
|
|
vertex to every vertex in its successor set, thereby obtaining the
|
|
transitive closure. The successor set vectors contain topological
|
|
numbers, so we map back to vertices using the \code{topo\_order}
|
|
vector.
|
|
|
|
@d Build the transitive closure of the condensation graph
|
|
@{
|
|
for (size_type i = 0; i < CG.size(); ++i)
|
|
CG[i].clear();
|
|
for (size_type i = 0; i < CG.size(); ++i)
|
|
for (size_type j = 0; j < chains.size(); ++j) {
|
|
size_type topo_num = successors[i][j];
|
|
if (topo_num < inf) {
|
|
cg_vertex v = topo_order[topo_num];
|
|
for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k)
|
|
CG[i].push_back(chains[j][k]);
|
|
}
|
|
}
|
|
@}
|
|
|
|
The last stage is to create the transitive closure graph $G^+$ based on
|
|
the transitive closure of the condensation graph $G'^+$. We do this in
|
|
two steps. First we add edges between all the vertices in one SCC to
|
|
all the vertices in another SCC when the two SCCs are adjacent in the
|
|
condensation graph. Second we add edges to connect each vertex in a
|
|
SCC to every other vertex in the SCC.
|
|
|
|
@d Build transitive closure of the original graph
|
|
@{
|
|
// Add vertices to the transitive closure graph
|
|
typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex;
|
|
{
|
|
vertex_iterator i, i_end;
|
|
for (tie(i, i_end) = vertices(g); i != i_end; ++i)
|
|
g_to_tc_map[*i] = add_vertex(tc);
|
|
}
|
|
// Add edges between all the vertices in two adjacent SCCs
|
|
graph_traits<CG_t>::vertex_iterator si, si_end;
|
|
for (tie(si, si_end) = vertices(CG); si != si_end; ++si) {
|
|
cg_vertex s = *si;
|
|
graph_traits<CG_t>::adjacency_iterator i, i_end;
|
|
for (tie(i, i_end) = adjacent_vertices(s, CG); i != i_end; ++i) {
|
|
cg_vertex t = *i;
|
|
for (size_type k = 0; k < components[s].size(); ++k)
|
|
for (size_type l = 0; l < components[t].size(); ++l)
|
|
add_edge(g_to_tc_map[components[s][k]],
|
|
g_to_tc_map[components[t][l]], tc);
|
|
}
|
|
}
|
|
// Add edges connecting all vertices in a SCC
|
|
for (size_type i = 0; i < components.size(); ++i)
|
|
if (components[i].size() > 1)
|
|
for (size_type k = 0; k < components[i].size(); ++k)
|
|
for (size_type l = 0; l < components[i].size(); ++l) {
|
|
vertex u = components[i][k], v = components[i][l];
|
|
add_edge(g_to_tc_map[u], g_to_tc_map[v], tc);
|
|
}
|
|
|
|
// Find loopbacks in the original graph.
|
|
// Need to add it to transitive closure.
|
|
{
|
|
vertex_iterator i, i_end;
|
|
for (tie(i, i_end) = vertices(g); i != i_end; ++i)
|
|
{
|
|
adjacency_iterator ab, ae;
|
|
for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab)
|
|
{
|
|
if (*ab == *i)
|
|
if (components[component_number[*i]].size() == 1)
|
|
add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc);
|
|
}
|
|
}
|
|
}
|
|
@}
|
|
|
|
\section{Appendix}
|
|
|
|
@d Warshall Transitive Closure
|
|
@{
|
|
template <typename G>
|
|
void warshall_transitive_closure(G& g)
|
|
{
|
|
typedef typename graph_traits<G>::vertex_descriptor vertex;
|
|
typedef typename graph_traits<G>::vertex_iterator vertex_iterator;
|
|
|
|
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<G> ));
|
|
BOOST_CONCEPT_ASSERT(( EdgeMutableGraphConcept<G> ));
|
|
|
|
// Matrix form:
|
|
// for k
|
|
// for i
|
|
// if A[i,k]
|
|
// for j
|
|
// A[i,j] = A[i,j] | A[k,j]
|
|
vertex_iterator ki, ke, ii, ie, ji, je;
|
|
for (tie(ki, ke) = vertices(g); ki != ke; ++ki)
|
|
for (tie(ii, ie) = vertices(g); ii != ie; ++ii)
|
|
if (edge(*ii, *ki, g).second)
|
|
for (tie(ji, je) = vertices(g); ji != je; ++ji)
|
|
if (!edge(*ii, *ji, g).second &&
|
|
edge(*ki, *ji, g).second)
|
|
{
|
|
add_edge(*ii, *ji, g);
|
|
}
|
|
}
|
|
@}
|
|
|
|
@d Warren Transitive Closure
|
|
@{
|
|
template <typename G>
|
|
void warren_transitive_closure(G& g)
|
|
{
|
|
using namespace boost;
|
|
typedef typename graph_traits<G>::vertex_descriptor vertex;
|
|
typedef typename graph_traits<G>::vertex_iterator vertex_iterator;
|
|
|
|
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept<G> ));
|
|
BOOST_CONCEPT_ASSERT(( EdgeMutableGraphConcept<G> ));
|
|
|
|
// Make sure second loop will work
|
|
if (num_vertices(g) == 0)
|
|
return;
|
|
|
|
// for i = 2 to n
|
|
// for k = 1 to i - 1
|
|
// if A[i,k]
|
|
// for j = 1 to n
|
|
// A[i,j] = A[i,j] | A[k,j]
|
|
|
|
vertex_iterator ic, ie, jc, je, kc, ke;
|
|
for (tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic)
|
|
for (tie(kc, ke) = vertices(g); *kc != *ic; ++kc)
|
|
if (edge(*ic, *kc, g).second)
|
|
for (tie(jc, je) = vertices(g); jc != je; ++jc)
|
|
if (!edge(*ic, *jc, g).second &&
|
|
edge(*kc, *jc, g).second)
|
|
{
|
|
add_edge(*ic, *jc, g);
|
|
}
|
|
|
|
// for i = 1 to n - 1
|
|
// for k = i + 1 to n
|
|
// if A[i,k]
|
|
// for j = 1 to n
|
|
// A[i,j] = A[i,j] | A[k,j]
|
|
|
|
for (tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic)
|
|
for (kc = ic, ke = ie, ++kc; kc != ke; ++kc)
|
|
if (edge(*ic, *kc, g).second)
|
|
for (tie(jc, je) = vertices(g); jc != je; ++jc)
|
|
if (!edge(*ic, *jc, g).second &&
|
|
edge(*kc, *jc, g).second)
|
|
{
|
|
add_edge(*ic, *jc, g);
|
|
}
|
|
}
|
|
@}
|
|
|
|
|
|
The following indent command was run on the output files before
|
|
they were checked into the Boost CVS repository.
|
|
|
|
@e indentation
|
|
@{
|
|
indent -nut -npcs -i2 -br -cdw -ce transitive_closure.hpp
|
|
@}
|
|
|
|
@o transitive_closure.hpp
|
|
@{
|
|
// Copyright (C) 2001 Vladimir Prus <ghost@@cs.msu.su>
|
|
// Copyright (C) 2001 Jeremy Siek <jsiek@@cs.indiana.edu>
|
|
// Permission to copy, use, modify, sell and distribute this software is
|
|
// granted, provided this copyright notice appears in all copies and
|
|
// modified version are clearly marked as such. This software is provided
|
|
// "as is" without express or implied warranty, and with no claim as to its
|
|
// suitability for any purpose.
|
|
|
|
// NOTE: this final is generated by libs/graph/doc/transitive_closure.w
|
|
|
|
#ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
|
|
#define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
|
|
|
|
#include <vector>
|
|
#include <functional>
|
|
#include <boost/compose.hpp>
|
|
#include <boost/graph/vector_as_graph.hpp>
|
|
#include <boost/graph/strong_components.hpp>
|
|
#include <boost/graph/topological_sort.hpp>
|
|
#include <boost/graph/graph_concepts.hpp>
|
|
#include <boost/graph/named_function_params.hpp>
|
|
#include <boost/concept/assert.hpp>
|
|
|
|
namespace boost {
|
|
|
|
@<Union of successor sets@>
|
|
@<Subscript function object@>
|
|
@<Transitive Closure Function@>
|
|
@<The All Defaults Interface@>
|
|
@<Construct Default G to TC Vertex Mapping@>
|
|
@<The Named Parameter Interface@>
|
|
|
|
@<Warshall Transitive Closure@>
|
|
|
|
@<Warren Transitive Closure@>
|
|
|
|
} // namespace boost
|
|
|
|
#endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
|
|
@}
|
|
|
|
@o transitive_closure.cpp
|
|
@{
|
|
// Copyright (c) Jeremy Siek 2001
|
|
//
|
|
// Permission to use, copy, modify, distribute and sell this software
|
|
// and its documentation for any purpose is hereby granted without fee,
|
|
// provided that the above copyright notice appears in all copies and
|
|
// that both that copyright notice and this permission notice appear
|
|
// in supporting documentation. Silicon Graphics makes no
|
|
// representations about the suitability of this software for any
|
|
// purpose. It is provided "as is" without express or implied warranty.
|
|
|
|
// NOTE: this final is generated by libs/graph/doc/transitive_closure.w
|
|
|
|
#include <boost/graph/transitive_closure.hpp>
|
|
#include <boost/graph/graphviz.hpp>
|
|
|
|
int main(int, char*[])
|
|
{
|
|
using namespace boost;
|
|
typedef property<vertex_name_t, char> Name;
|
|
typedef property<vertex_index_t, std::size_t,
|
|
Name> Index;
|
|
typedef adjacency_list<listS, listS, directedS, Index> graph_t;
|
|
typedef graph_traits<graph_t>::vertex_descriptor vertex_t;
|
|
graph_t G;
|
|
std::vector<vertex_t> verts(4);
|
|
for (int i = 0; i < 4; ++i)
|
|
verts[i] = add_vertex(Index(i, Name('a' + i)), G);
|
|
add_edge(verts[1], verts[2], G);
|
|
add_edge(verts[1], verts[3], G);
|
|
add_edge(verts[2], verts[1], G);
|
|
add_edge(verts[3], verts[2], G);
|
|
add_edge(verts[3], verts[0], G);
|
|
|
|
std::cout << "Graph G:" << std::endl;
|
|
print_graph(G, get(vertex_name, G));
|
|
|
|
adjacency_list<> TC;
|
|
transitive_closure(G, TC);
|
|
|
|
std::cout << std::endl << "Graph G+:" << std::endl;
|
|
char name[] = "abcd";
|
|
print_graph(TC, name);
|
|
std::cout << std::endl;
|
|
|
|
std::ofstream out("tc-out.dot");
|
|
write_graphviz(out, TC, make_label_writer(name));
|
|
|
|
return 0;
|
|
}
|
|
@}
|
|
|
|
\bibliographystyle{abbrv}
|
|
\bibliography{jtran,ggcl,optimization,generic-programming,cad}
|
|
|
|
\end{document}
|
|
% LocalWords: Siek Prus Succ typename GraphTC VertexIndexMap const tc typedefs
|
|
% LocalWords: typedef iterator adjacency SCC num scc CG cg resize SCCs di ch
|
|
% LocalWords: traversal ith namespace topo inserter gx hy struct pos inf max
|
|
% LocalWords: rbegin vec si hpp ifndef endif jtran ggcl
|