343 lines
11 KiB
HTML
343 lines
11 KiB
HTML
<HTML>
|
|
<!--
|
|
Copyright (c) Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine 2002
|
|
|
|
Distributed under the Boost Software License, Version 1.0.
|
|
(See accompanying file LICENSE_1_0.txt or copy at
|
|
http://www.boost.org/LICENSE_1_0.txt)
|
|
-->
|
|
<Head>
|
|
<Title>Boost Graph Library: Undirected Depth-First Search</Title>
|
|
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
|
|
ALINK="#ff0000">
|
|
<IMG SRC="../../../boost.png"
|
|
ALT="C++ Boost" width="277" height="86">
|
|
|
|
<BR Clear>
|
|
|
|
<H1><A NAME="sec:depth-first-search"></A>
|
|
<img src="figs/python.gif" alt="(Python)"/>
|
|
<TT>undirected_dfs</TT>
|
|
</H1>
|
|
|
|
<P>
|
|
<PRE>
|
|
<i>// named parameter version</i>
|
|
template <typename Graph, typename P, typename T, typename R>
|
|
void undirected_dfs(Graph& G, const bgl_named_params<P, T, R>& params);
|
|
|
|
<i>// non-named parameter version</i>
|
|
template <typename Graph, typename <a href="DFSVisitor.html">DFSVisitor</a>, typename VertexColorMap, typename EdgeColorMap>
|
|
void undirected_dfs(const Graph& g, DFSVisitor vis, VertexColorMap vertex_color, EdgeColorMap edge_color)
|
|
|
|
template <typename Graph, typename <a href="DFSVisitor.html">DFSVisitor</a>, typename VertexColorMap, typename EdgeColorMap>
|
|
void undirected_dfs(const Graph& g, DFSVisitor vis,
|
|
VertexColorMap vertex_color, EdgeColorMap edge_color,
|
|
typename graph_traits<Graph>::vertex_descriptor start)
|
|
|
|
</PRE>
|
|
|
|
<p>
|
|
The <tt>undirected_dfs()</tt> function performs a depth-first
|
|
traversal of the vertices in an undirected graph. When possible, a
|
|
depth-first traversal chooses a vertex adjacent to the current vertex
|
|
to visit next. If all adjacent vertices have already been discovered,
|
|
or there are no adjacent vertices, then the algorithm backtracks to
|
|
the last vertex that had undiscovered neighbors. Once all reachable
|
|
vertices have been visited, the algorithm selects from any remaining
|
|
undiscovered vertices and continues the traversal. The algorithm
|
|
finishes when all vertices have been visited. Depth-first search is
|
|
useful for categorizing edges in a graph, and for imposing an ordering
|
|
on the vertices. Section <a
|
|
href="./graph_theory_review.html#sec:dfs-algorithm">Depth-First
|
|
Search</a> describes the various properties of DFS and walks through
|
|
an example.
|
|
</p>
|
|
|
|
<p>
|
|
Similar to BFS, color markers are used to keep track of which vertices
|
|
have been discovered. White marks vertices that have yet to be
|
|
discovered, gray marks a vertex that is discovered but still has
|
|
vertices adjacent to it that are undiscovered. A black vertex is
|
|
discovered vertex that is not adjacent to any white vertices.
|
|
</p>
|
|
|
|
<p>
|
|
Edges are also colored during the search to disambiguate tree and back
|
|
edges.
|
|
</p>
|
|
|
|
<p>
|
|
The <tt>undirected_dfs()</tt> function invokes user-defined actions at
|
|
certain event-points within the algorithm. This provides a mechanism
|
|
for adapting the generic DFS algorithm to the many situations in which
|
|
it can be used. In the pseudo-code below, the event points for DFS
|
|
are indicated in by the triangles and labels on the right. The
|
|
user-defined actions must be provided in the form of a visitor object,
|
|
that is, an object whose type meets the requirements for a <a
|
|
href="./DFSVisitor.html">DFS Visitor</a>. In the pseudo-code we show
|
|
the algorithm computing predecessors <i>p</i>, discover time <i>d</i>
|
|
and finish time <i>t</i>. By default, the <tt>undirected_dfs()</tt>
|
|
function does not compute these properties, however there are
|
|
pre-defined visitors such as <a
|
|
href="./predecessor_recorder.html"><tt>predecessor_recorder</tt></a>
|
|
and <a href="./time_stamper.html"><tt>time_stamper</tt></a> that can
|
|
be used to do this.
|
|
</p>
|
|
|
|
<table>
|
|
<tr>
|
|
<td valign="top">
|
|
<pre>
|
|
DFS(<i>G</i>)
|
|
<b>for</b> each vertex <i>u in V</i>
|
|
<i>vcolor[u] :=</i> WHITE
|
|
<i>p[u] := u</i>
|
|
<b>end for</b>
|
|
<b>for</b> each edge <i>e in E</i>
|
|
<i>ecolor[u] :=</i> WHITE
|
|
<b>end for</b>
|
|
<i>time := 0</i>
|
|
<b>if</b> there is a starting vertex <i>s</i>
|
|
<b>call</b> DFS-VISIT(<i>G</i>, <i>s</i>)
|
|
<b>for</b> each vertex <i>u in V</i>
|
|
<b>if</b> <i>vcolor[u] =</i> WHITE
|
|
<b>call</b> DFS-VISIT(<i>G</i>, <i>u</i>)
|
|
<b>end for</b>
|
|
<b>return</b> (<i>p</i>,<i>d_time</i>,<i>f_time</i>) <br>
|
|
DFS-VISIT(<i>G</i>, <i>u</i>)
|
|
<i>vcolor[u] :=</i> GRAY
|
|
<i>d_time[u] := time := time + 1</i>
|
|
<b>for</b> each <i>e in Out[u]</i>
|
|
<b>var</b> <i>ec := ecolor[e]</i>
|
|
<i>ecolor[e] :=</i> BLACK
|
|
<b>if</b> (<i>vcolor[v] =</i> WHITE)
|
|
<i>p[v] := u</i>
|
|
<b>call</b> DFS-VISIT(<i>G</i>, <i>v</i>)
|
|
<b>else if</b> (<i>vcolor[v] =</i> GRAY and <i>ec =</i> WHITE)
|
|
<i>...</i>
|
|
<i>...</i>
|
|
<b>end for</b>
|
|
<i>vcolor[u] :=</i> BLACK
|
|
<i>f_time[u] := time := time + 1</i>
|
|
<pre>
|
|
</td>
|
|
<td valign="top">
|
|
<pre>
|
|
-
|
|
-
|
|
initialize vertex <i>u</i>
|
|
-
|
|
-
|
|
-
|
|
-
|
|
-
|
|
-
|
|
-
|
|
start vertex <i>s</i>
|
|
-
|
|
-
|
|
start vertex <i>u</i>
|
|
-
|
|
-
|
|
-
|
|
-
|
|
discover vertex <i>u</i>
|
|
-
|
|
examine edge <i>(u,v)</i>
|
|
-
|
|
-
|
|
<i>(u,v)</i> is a tree edge
|
|
-
|
|
-
|
|
<i>(u,v)</i> is a back edge
|
|
-
|
|
-
|
|
finish edge <i>(u,v)</i>
|
|
-
|
|
finish vertex <i>u</i>
|
|
-
|
|
</pre>
|
|
</td>
|
|
</tr>
|
|
</table>
|
|
|
|
|
|
|
|
<H3>Where Defined</H3>
|
|
|
|
<P>
|
|
<a href="../../../boost/graph/undirected_dfs.hpp"><TT>boost/graph/undirected_dfs.hpp</TT></a>
|
|
|
|
<h3>Parameters</h3>
|
|
|
|
IN: <tt>Graph& g</tt>
|
|
<blockquote>
|
|
An undirected graph. The graph type must
|
|
be a model of <a href="./IncidenceGraph.html">Incidence Graph</a>,
|
|
<a href="./VertexListGraph.html">Vertex List Graph</a>,
|
|
and <a href="./EdgeListGraph.html">Edge List Graph</a>.<br>
|
|
|
|
<b>Python</b>: The parameter is named <tt>graph</tt>.
|
|
</blockquote>
|
|
|
|
|
|
<h3>Named Parameters</h3>
|
|
|
|
IN: <tt>visitor(DFSVisitor vis)</tt>
|
|
<blockquote>
|
|
A visitor object that is invoked inside the algorithm at the
|
|
event-points specified by the <a href="./DFSVisitor.html">DFS
|
|
Visitor</a> concept. The visitor object is passed by value <a
|
|
href="#1">[1]</a>. <br> <b>Default:</b>
|
|
<tt>dfs_visitor<null_visitor></tt><br>
|
|
|
|
<b>Python</b>: The parameter should be an object that derives from
|
|
the <a href="DFSVisitor.html#python"><tt>DFSVisitor</tt></a> type of
|
|
the graph.
|
|
</blockquote>
|
|
|
|
UTIL/OUT: <tt>vertex_color_map(VertexColorMap vertex_color)</tt>
|
|
<blockquote>
|
|
This is used by the algorithm to keep track of its progress through
|
|
the graph. The type <tt>VertexColorMap</tt> must be a model of <a
|
|
href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
|
|
Property Map</a> and its key type must be the graph's vertex
|
|
descriptor type and the value type of the color map must model
|
|
<a href="./ColorValue.html">ColorValue</a>.<br>
|
|
<b>Default:</b> an <a
|
|
href="../../property_map/doc/iterator_property_map.html">
|
|
</tt>iterator_property_map</tt></a> created from a
|
|
<tt>std::vector</tt> of <tt>default_color_type</tt> of size
|
|
<tt>num_vertices(g)</tt> and using the <tt>i_map</tt> for the index
|
|
map.<br>
|
|
|
|
<b>Python</b>: The color map must be a <tt>vertex_color_map</tt> for
|
|
the graph.
|
|
</blockquote>
|
|
|
|
UTIL: <tt>edge_color_map(EdgeColorMap edge_color)</tt>
|
|
<blockquote>
|
|
This is used by the algorithm to keep track of which edges
|
|
have been visited. The type <tt>EdgeColorMap</tt> must be a model of <a
|
|
href="../../property_map/doc/ReadWritePropertyMap.html">Read/Write
|
|
Property Map</a> and its key type must be the graph's edge
|
|
descriptor type and the value type of the color map must model
|
|
<a href="./ColorValue.html">ColorValue</a>.<br>
|
|
<b>Default:</b> none.<br>
|
|
|
|
<b>Python</b>: The color map must be an <tt>edge_color_map</tt> for
|
|
the graph.
|
|
</blockquote>
|
|
|
|
IN: <tt>root_vertex(typename
|
|
graph_traits<VertexListGraph>::vertex_descriptor start)</tt>
|
|
<blockquote>
|
|
This specifies the vertex that the depth-first search should
|
|
originate from. The type is the type of a vertex descriptor for the
|
|
given graph.<br>
|
|
<b>Default:</b> <tt>*vertices(g).first</tt>
|
|
</blockquote>
|
|
|
|
IN: <tt>vertex_index_map(VertexIndexMap i_map)</tt>
|
|
<blockquote>
|
|
This maps each vertex to an integer in the range <tt>[0,
|
|
num_vertices(g))</tt>. This parameter is only necessary when the
|
|
default color property map is used. The type <tt>VertexIndexMap</tt>
|
|
must be a model of <a
|
|
href="../../property_map/doc/ReadablePropertyMap.html">Readable Property
|
|
Map</a>. The value type of the map must be an integer type. The
|
|
vertex descriptor type of the graph needs to be usable as the key
|
|
type of the map.<br>
|
|
|
|
<b>Default:</b> <tt>get(vertex_index, g)</tt>
|
|
Note: if you use this default, make sure your graph has
|
|
an internal <tt>vertex_index</tt> property. For example,
|
|
<tt>adjacency_list</tt> with <tt>VertexList=listS</tt> does
|
|
not have an internal <tt>vertex_index</tt> property.
|
|
<br>
|
|
|
|
<b>Python</b>: Unsupported parameter.
|
|
</blockquote>
|
|
|
|
<P>
|
|
|
|
<H3><A NAME="SECTION001340300000000000000">
|
|
Complexity</A>
|
|
</H3>
|
|
|
|
<P>
|
|
The time complexity is <i>O(E + V)</i>.
|
|
|
|
<P>
|
|
|
|
<h3>Visitor Event Points</h3>
|
|
|
|
<ul>
|
|
|
|
<li><b><tt>vis.initialize_vertex(s, g)</tt></b> is invoked on every
|
|
vertex of the graph before the start of the graph search.
|
|
|
|
<li><b><tt>vis.start_vertex(s, g)</tt></b> is invoked on the source
|
|
vertex once before the start of the search.
|
|
|
|
<li><b><tt>vis.discover_vertex(u, g)</tt></b> is invoked when a vertex
|
|
is encountered for the first time.
|
|
|
|
<li><b><tt>vis.examine_edge(e, g)</tt></b> is invoked on every out-edge
|
|
of each vertex after it is discovered.
|
|
|
|
<li><b><tt>vis.tree_edge(e, g)</tt></b> is invoked on each edge as it
|
|
becomes a member of the edges that form the search tree. If you
|
|
wish to record predecessors, do so at this event point.
|
|
|
|
<li><b><tt>vis.back_edge(e, g)</tt></b> is invoked on the back edges in
|
|
the graph.
|
|
|
|
<li><b><tt>vis.finish_edge(e, g)</tt></b> is invoked on the back edges in
|
|
the graph as well as on each tree edge after its target vertex is finished.
|
|
|
|
<li><b><tt>vis.finish_vertex(u, g)</tt></b> is invoked on a vertex after
|
|
all of its out edges have been added to the search tree and all of
|
|
the adjacent vertices have been discovered (but before their
|
|
out-edges have been examined).
|
|
|
|
</ul>
|
|
|
|
|
|
<H3>Example</H3>
|
|
|
|
<P>
|
|
An example is in <a href="../example/undirected_dfs.cpp">
|
|
<TT>examples/undirected_dfs.cpp</TT></a>.
|
|
|
|
<h3>See Also</h3>
|
|
|
|
<a href="./depth_first_search.html"><tt>depth_first_search</tt></a>
|
|
|
|
<h3>Notes</h3>
|
|
|
|
<p><a name="1">[1]</a>
|
|
Since the visitor parameter is passed by value, if your visitor
|
|
contains state then any changes to the state during the algorithm
|
|
will be made to a copy of the visitor object, not the visitor object
|
|
passed in. Therefore you may want the visitor to hold this state by
|
|
pointer or reference.
|
|
|
|
<br>
|
|
<HR>
|
|
<TABLE>
|
|
<TR valign=top>
|
|
<TD nowrap>Copyright © 2000-2001</TD><TD>
|
|
<A HREF="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</A>,
|
|
Indiana University (<A
|
|
HREF="mailto:jsiek@osl.iu.edu">jsiek@osl.iu.edu</A>)<br>
|
|
<A HREF="http://www.boost.org/people/liequan_lee.htm">Lie-Quan Lee</A>, Indiana University (<A HREF="mailto:llee@cs.indiana.edu">llee@cs.indiana.edu</A>)<br>
|
|
<A HREF="https://homes.cs.washington.edu/~al75">Andrew Lumsdaine</A>,
|
|
Indiana University (<A
|
|
HREF="mailto:lums@osl.iu.edu">lums@osl.iu.edu</A>)
|
|
</TD></TR></TABLE>
|
|
|
|
</BODY>
|
|
</HTML>
|