graph/example/edge-connectivity.cpp

185 lines
6.8 KiB
C++

//=======================================================================
// Copyright 2001 Jeremy G. Siek, Andrew Lumsdaine, Lie-Quan Lee,
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
/*
IMPORTANT!!!
~~~~~~~~~~~~
This example uses interfaces that have been deprecated and removed from Boost.Grpah.
Someone needs to update it, as it does NOT compile.
*/
#include <boost/config.hpp>
#include <algorithm>
#include <utility>
#include <boost/graph/edmonds_karp_max_flow.hpp>
#include <boost/graph/push_relabel_max_flow.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/graphviz.hpp>
namespace boost
{
template < typename Graph >
std::pair < typename graph_traits < Graph >::vertex_descriptor,
typename graph_traits < Graph >::degree_size_type >
min_degree_vertex(Graph & g)
{
typename graph_traits < Graph >::vertex_descriptor p;
typedef typename graph_traits < Graph >::degree_size_type size_type;
size_type delta = (std::numeric_limits < size_type >::max)();
typename graph_traits < Graph >::vertex_iterator i, iend;
for (boost::tie(i, iend) = vertices(g); i != iend; ++i)
if (degree(*i, g) < delta)
{
delta = degree(*i, g);
p = *i;
}
return std::make_pair(p, delta);
}
template < typename Graph, typename OutputIterator >
void neighbors(const Graph & g,
typename graph_traits < Graph >::vertex_descriptor u,
OutputIterator result)
{
typename graph_traits < Graph >::adjacency_iterator ai, aend;
for (boost::tie(ai, aend) = adjacent_vertices(u, g); ai != aend; ++ai)
*result++ = *ai;
}
template < typename Graph, typename VertexIterator,
typename OutputIterator > void neighbors(const Graph & g,
VertexIterator first,
VertexIterator last,
OutputIterator result)
{
for (; first != last; ++first)
neighbors(g, *first, result);
}
template < typename VertexListGraph, typename OutputIterator >
typename graph_traits < VertexListGraph >::degree_size_type
edge_connectivity(VertexListGraph & g, OutputIterator disconnecting_set)
{
typedef typename graph_traits <
VertexListGraph >::vertex_descriptor vertex_descriptor;
typedef typename graph_traits <
VertexListGraph >::degree_size_type degree_size_type;
typedef color_traits < default_color_type > Color;
typedef typename adjacency_list_traits < vecS, vecS,
directedS >::edge_descriptor edge_descriptor;
typedef adjacency_list < vecS, vecS, directedS, no_property,
property < edge_capacity_t, degree_size_type,
property < edge_residual_capacity_t, degree_size_type,
property < edge_reverse_t, edge_descriptor > > > > FlowGraph;
vertex_descriptor u, v, p, k;
edge_descriptor e1, e2;
bool inserted;
typename graph_traits < VertexListGraph >::vertex_iterator vi, vi_end;
degree_size_type delta, alpha_star, alpha_S_k;
std::set < vertex_descriptor > S, neighbor_S;
std::vector < vertex_descriptor > S_star, nonneighbor_S;
std::vector < default_color_type > color(num_vertices(g));
std::vector < edge_descriptor > pred(num_vertices(g));
FlowGraph flow_g(num_vertices(g));
typename property_map < FlowGraph, edge_capacity_t >::type
cap = get(edge_capacity, flow_g);
typename property_map < FlowGraph, edge_residual_capacity_t >::type
res_cap = get(edge_residual_capacity, flow_g);
typename property_map < FlowGraph, edge_reverse_t >::type
rev_edge = get(edge_reverse, flow_g);
typename graph_traits < VertexListGraph >::edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
u = source(*ei, g), v = target(*ei, g);
boost::tie(e1, inserted) = add_edge(u, v, flow_g);
cap[e1] = 1;
boost::tie(e2, inserted) = add_edge(v, u, flow_g);
cap[e2] = 1;
rev_edge[e1] = e2;
rev_edge[e2] = e1;
}
boost::tie(p, delta) = min_degree_vertex(g);
S_star.push_back(p);
alpha_star = delta;
S.insert(p);
neighbor_S.insert(p);
neighbors(g, S.begin(), S.end(),
std::inserter(neighbor_S, neighbor_S.begin()));
std::set_difference(vertices(g).first, vertices(g).second,
neighbor_S.begin(), neighbor_S.end(),
std::back_inserter(nonneighbor_S));
while (!nonneighbor_S.empty()) {
k = nonneighbor_S.front();
alpha_S_k = edmonds_karp_max_flow
(flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);
if (alpha_S_k < alpha_star) {
alpha_star = alpha_S_k;
S_star.clear();
for (boost::tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)
if (color[*vi] != Color::white())
S_star.push_back(*vi);
}
S.insert(k);
neighbor_S.insert(k);
neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));
nonneighbor_S.clear();
std::set_difference(vertices(g).first, vertices(g).second,
neighbor_S.begin(), neighbor_S.end(),
std::back_inserter(nonneighbor_S));
}
std::vector < bool > in_S_star(num_vertices(g), false);
typename std::vector < vertex_descriptor >::iterator si;
for (si = S_star.begin(); si != S_star.end(); ++si)
in_S_star[*si] = true;
degree_size_type c = 0;
for (si = S_star.begin(); si != S_star.end(); ++si) {
typename graph_traits < VertexListGraph >::out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)
if (!in_S_star[target(*ei, g)]) {
*disconnecting_set++ = *ei;
++c;
}
}
return c;
}
}
int
main()
{
using namespace boost;
GraphvizGraph g;
read_graphviz("figs/edge-connectivity.dot", g);
typedef graph_traits < GraphvizGraph >::edge_descriptor edge_descriptor;
typedef graph_traits < GraphvizGraph >::degree_size_type degree_size_type;
std::vector < edge_descriptor > disconnecting_set;
degree_size_type c =
edge_connectivity(g, std::back_inserter(disconnecting_set));
std::cout << "The edge connectivity is " << c << "." << std::endl;
property_map < GraphvizGraph, vertex_attribute_t >::type
attr_map = get(vertex_attribute, g);
std::cout << "The disconnecting set is {";
for (std::vector < edge_descriptor >::iterator i =
disconnecting_set.begin(); i != disconnecting_set.end(); ++i)
std::
cout << "(" << attr_map[source(*i, g)]["label"] << "," <<
attr_map[target(*i, g)]["label"] << ") ";
std::cout << "}." << std::endl;
return EXIT_SUCCESS;
}