graph/include/boost/graph/minimum_degree_ordering.hpp
2018-12-16 01:19:35 -05:00

665 lines
23 KiB
C++

//-*-c++-*-
//=======================================================================
// Copyright 1997-2001 University of Notre Dame.
// Authors: Lie-Quan Lee, Jeremy Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef MINIMUM_DEGREE_ORDERING_HPP
#define MINIMUM_DEGREE_ORDERING_HPP
#include <vector>
#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <boost/pending/bucket_sorter.hpp>
#include <boost/detail/numeric_traits.hpp> // for integer_traits
#include <boost/graph/graph_traits.hpp>
#include <boost/property_map/property_map.hpp>
namespace boost {
namespace detail {
//
// Given a set of n integers (where the integer values range from
// zero to n-1), we want to keep track of a collection of stacks
// of integers. It so happens that an integer will appear in at
// most one stack at a time, so the stacks form disjoint sets.
// Because of these restrictions, we can use one big array to
// store all the stacks, intertwined with one another.
// No allocation/deallocation happens in the push()/pop() methods
// so this is faster than using std::stack's.
//
template <class SignedInteger>
class Stacks {
typedef SignedInteger value_type;
typedef typename std::vector<value_type>::size_type size_type;
public:
Stacks(size_type n) : data(n) {}
//: stack
class stack {
typedef typename std::vector<value_type>::iterator Iterator;
public:
stack(Iterator _data, const value_type& head)
: data(_data), current(head) {}
// did not use default argument here to avoid internal compiler error
// in g++.
stack(Iterator _data)
: data(_data), current(-(std::numeric_limits<value_type>::max)()) {}
void pop() {
BOOST_ASSERT(! empty());
current = data[current];
}
void push(value_type v) {
data[v] = current;
current = v;
}
bool empty() {
return current == -(std::numeric_limits<value_type>::max)();
}
value_type& top() { return current; }
private:
Iterator data;
value_type current;
};
// To return a stack object
stack make_stack()
{ return stack(data.begin()); }
protected:
std::vector<value_type> data;
};
// marker class, a generalization of coloring.
//
// This class is to provide a generalization of coloring which has
// complexity of amortized constant time to set all vertices' color
// back to be untagged. It implemented by increasing a tag.
//
// The colors are:
// not tagged
// tagged
// multiple_tagged
// done
//
template <class SignedInteger, class Vertex, class VertexIndexMap>
class Marker {
typedef SignedInteger value_type;
typedef typename std::vector<value_type>::size_type size_type;
static value_type done()
{ return (std::numeric_limits<value_type>::max)()/2; }
public:
Marker(size_type _num, VertexIndexMap index_map)
: tag(1 - (std::numeric_limits<value_type>::max)()),
data(_num, - (std::numeric_limits<value_type>::max)()),
id(index_map) {}
void mark_done(Vertex node) { data[get(id, node)] = done(); }
bool is_done(Vertex node) { return data[get(id, node)] == done(); }
void mark_tagged(Vertex node) { data[get(id, node)] = tag; }
void mark_multiple_tagged(Vertex node) { data[get(id, node)] = multiple_tag; }
bool is_tagged(Vertex node) const { return data[get(id, node)] >= tag; }
bool is_not_tagged(Vertex node) const { return data[get(id, node)] < tag; }
bool is_multiple_tagged(Vertex node) const
{ return data[get(id, node)] >= multiple_tag; }
void increment_tag() {
const size_type num = data.size();
++tag;
if ( tag >= done() ) {
tag = 1 - (std::numeric_limits<value_type>::max)();
for (size_type i = 0; i < num; ++i)
if ( data[i] < done() )
data[i] = - (std::numeric_limits<value_type>::max)();
}
}
void set_multiple_tag(value_type mdeg0)
{
const size_type num = data.size();
multiple_tag = tag + mdeg0;
if ( multiple_tag >= done() ) {
tag = 1-(std::numeric_limits<value_type>::max)();
for (size_type i=0; i<num; i++)
if ( data[i] < done() )
data[i] = -(std::numeric_limits<value_type>::max)();
multiple_tag = tag + mdeg0;
}
}
void set_tag_as_multiple_tag() { tag = multiple_tag; }
protected:
value_type tag;
value_type multiple_tag;
std::vector<value_type> data;
VertexIndexMap id;
};
template< class Iterator, class SignedInteger,
class Vertex, class VertexIndexMap, int offset = 1 >
class Numbering {
typedef SignedInteger number_type;
number_type num; //start from 1 instead of zero
Iterator data;
number_type max_num;
VertexIndexMap id;
public:
Numbering(Iterator _data, number_type _max_num, VertexIndexMap id)
: num(1), data(_data), max_num(_max_num), id(id) {}
void operator()(Vertex node) { data[get(id, node)] = -num; }
bool all_done(number_type i = 0) const { return num + i > max_num; }
void increment(number_type i = 1) { num += i; }
bool is_numbered(Vertex node) const {
return data[get(id, node)] < 0;
}
void indistinguishable(Vertex i, Vertex j) {
data[get(id, i)] = - (get(id, j) + offset);
}
};
template <class SignedInteger, class Vertex, class VertexIndexMap>
class degreelists_marker {
public:
typedef SignedInteger value_type;
typedef typename std::vector<value_type>::size_type size_type;
degreelists_marker(size_type n, VertexIndexMap id)
: marks(n, 0), id(id) {}
void mark_need_update(Vertex i) { marks[get(id, i)] = 1; }
bool need_update(Vertex i) { return marks[get(id, i)] == 1; }
bool outmatched_or_done (Vertex i) { return marks[get(id, i)] == -1; }
void mark(Vertex i) { marks[get(id, i)] = -1; }
void unmark(Vertex i) { marks[get(id, i)] = 0; }
private:
std::vector<value_type> marks;
VertexIndexMap id;
};
// Helper function object for edge removal
template <class Graph, class MarkerP, class NumberD, class Stack,
class VertexIndexMap>
class predicateRemoveEdge1 {
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
typedef typename graph_traits<Graph>::edge_descriptor edge_t;
public:
predicateRemoveEdge1(Graph& _g, MarkerP& _marker,
NumberD _numbering, Stack& n_e, VertexIndexMap id)
: g(&_g), marker(&_marker), numbering(_numbering),
neighbor_elements(&n_e), id(id) {}
bool operator()(edge_t e) {
vertex_t dist = target(e, *g);
if ( marker->is_tagged(dist) )
return true;
marker->mark_tagged(dist);
if (numbering.is_numbered(dist)) {
neighbor_elements->push(get(id, dist));
return true;
}
return false;
}
private:
Graph* g;
MarkerP* marker;
NumberD numbering;
Stack* neighbor_elements;
VertexIndexMap id;
};
// Helper function object for edge removal
template <class Graph, class MarkerP>
class predicate_remove_tagged_edges
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
typedef typename graph_traits<Graph>::edge_descriptor edge_t;
public:
predicate_remove_tagged_edges(Graph& _g, MarkerP& _marker)
: g(&_g), marker(&_marker) {}
bool operator()(edge_t e) {
vertex_t dist = target(e, *g);
if ( marker->is_tagged(dist) )
return true;
return false;
}
private:
Graph* g;
MarkerP* marker;
};
template<class Graph, class DegreeMap,
class InversePermutationMap,
class PermutationMap,
class SuperNodeMap,
class VertexIndexMap>
class mmd_impl
{
// Typedefs
typedef graph_traits<Graph> Traits;
typedef typename Traits::vertices_size_type size_type;
typedef typename detail::integer_traits<size_type>::difference_type
diff_t;
typedef typename Traits::vertex_descriptor vertex_t;
typedef typename Traits::adjacency_iterator adj_iter;
typedef iterator_property_map<vertex_t*,
identity_property_map, vertex_t, vertex_t&> IndexVertexMap;
typedef detail::Stacks<diff_t> Workspace;
typedef bucket_sorter<size_type, vertex_t, DegreeMap, VertexIndexMap>
DegreeLists;
typedef Numbering<InversePermutationMap, diff_t, vertex_t,VertexIndexMap>
NumberingD;
typedef degreelists_marker<diff_t, vertex_t, VertexIndexMap>
DegreeListsMarker;
typedef Marker<diff_t, vertex_t, VertexIndexMap> MarkerP;
// Data Members
bool has_no_edges;
// input parameters
Graph& G;
int delta;
DegreeMap degree;
InversePermutationMap inverse_perm;
PermutationMap perm;
SuperNodeMap supernode_size;
VertexIndexMap vertex_index_map;
// internal data-structures
std::vector<vertex_t> index_vertex_vec;
size_type n;
IndexVertexMap index_vertex_map;
DegreeLists degreelists;
NumberingD numbering;
DegreeListsMarker degree_lists_marker;
MarkerP marker;
Workspace work_space;
public:
mmd_impl(Graph& g, size_type n_, int delta, DegreeMap degree,
InversePermutationMap inverse_perm,
PermutationMap perm,
SuperNodeMap supernode_size,
VertexIndexMap id)
: has_no_edges(true), G(g), delta(delta), degree(degree),
inverse_perm(inverse_perm),
perm(perm),
supernode_size(supernode_size),
vertex_index_map(id),
index_vertex_vec(n_),
n(n_),
degreelists(n_ + 1, n_, degree, id),
numbering(inverse_perm, n_, vertex_index_map),
degree_lists_marker(n_, vertex_index_map),
marker(n_, vertex_index_map),
work_space(n_)
{
typename graph_traits<Graph>::vertex_iterator v, vend;
size_type vid = 0;
for (boost::tie(v, vend) = vertices(G); v != vend; ++v, ++vid)
index_vertex_vec[vid] = *v;
index_vertex_map = IndexVertexMap(&index_vertex_vec[0]);
// Initialize degreelists. Degreelists organizes the nodes
// according to their degree.
for (boost::tie(v, vend) = vertices(G); v != vend; ++v) {
typename Traits::degree_size_type d = out_degree(*v, G);
put(degree, *v, d);
if (0 < d) has_no_edges = false;
degreelists.push(*v);
}
}
void do_mmd()
{
// Eliminate the isolated nodes -- these are simply the nodes
// with no neighbors, which are accessible as a list (really, a
// stack) at location 0. Since these don't affect any other
// nodes, we can eliminate them without doing degree updates.
typename DegreeLists::stack list_isolated = degreelists[0];
while (!list_isolated.empty()) {
vertex_t node = list_isolated.top();
marker.mark_done(node);
numbering(node);
numbering.increment();
list_isolated.pop();
}
if (has_no_edges)
{
return;
}
size_type min_degree = 1;
typename DegreeLists::stack list_min_degree = degreelists[min_degree];
while (list_min_degree.empty()) {
++min_degree;
list_min_degree = degreelists[min_degree];
}
// check if the whole eliminating process is done
while (!numbering.all_done()) {
size_type min_degree_limit = min_degree + delta; // WARNING
typename Workspace::stack llist = work_space.make_stack();
// multiple elimination
while (delta >= 0) {
// Find the next non-empty degree
for (list_min_degree = degreelists[min_degree];
list_min_degree.empty() && min_degree <= min_degree_limit;
++min_degree, list_min_degree = degreelists[min_degree])
;
if (min_degree > min_degree_limit)
break;
const vertex_t node = list_min_degree.top();
const size_type node_id = get(vertex_index_map, node);
list_min_degree.pop();
numbering(node);
// check if node is the last one
if (numbering.all_done(supernode_size[node])) {
numbering.increment(supernode_size[node]);
break;
}
marker.increment_tag();
marker.mark_tagged(node);
this->eliminate(node);
numbering.increment(supernode_size[node]);
llist.push(node_id);
} // multiple elimination
if (numbering.all_done())
break;
this->update( llist, min_degree);
}
} // do_mmd()
void eliminate(vertex_t node)
{
typename Workspace::stack element_neighbor = work_space.make_stack();
// Create two function objects for edge removal
typedef typename Workspace::stack WorkStack;
predicateRemoveEdge1<Graph, MarkerP, NumberingD,
WorkStack, VertexIndexMap>
p(G, marker, numbering, element_neighbor, vertex_index_map);
predicate_remove_tagged_edges<Graph, MarkerP> p2(G, marker);
// Reconstruct the adjacent node list, push element neighbor in a List.
remove_out_edge_if(node, p, G);
//during removal element neighbors are collected.
while (!element_neighbor.empty()) {
// element absorb
size_type e_id = element_neighbor.top();
vertex_t element = get(index_vertex_map, e_id);
adj_iter i, i_end;
for (boost::tie(i, i_end) = adjacent_vertices(element, G); i != i_end; ++i){
vertex_t i_node = *i;
if (!marker.is_tagged(i_node) && !numbering.is_numbered(i_node)) {
marker.mark_tagged(i_node);
add_edge(node, i_node, G);
}
}
element_neighbor.pop();
}
adj_iter v, ve;
for (boost::tie(v, ve) = adjacent_vertices(node, G); v != ve; ++v) {
vertex_t v_node = *v;
if (!degree_lists_marker.need_update(v_node)
&& !degree_lists_marker.outmatched_or_done(v_node)) {
degreelists.remove(v_node);
}
//update out edges of v_node
remove_out_edge_if(v_node, p2, G);
if ( out_degree(v_node, G) == 0 ) { // indistinguishable nodes
supernode_size[node] += supernode_size[v_node];
supernode_size[v_node] = 0;
numbering.indistinguishable(v_node, node);
marker.mark_done(v_node);
degree_lists_marker.mark(v_node);
} else { // not indistinguishable nodes
add_edge(v_node, node, G);
degree_lists_marker.mark_need_update(v_node);
}
}
} // eliminate()
template <class Stack>
void update(Stack llist, size_type& min_degree)
{
size_type min_degree0 = min_degree + delta + 1;
while (! llist.empty()) {
size_type deg, deg0 = 0;
marker.set_multiple_tag(min_degree0);
typename Workspace::stack q2list = work_space.make_stack();
typename Workspace::stack qxlist = work_space.make_stack();
vertex_t current = get(index_vertex_map, llist.top());
adj_iter i, ie;
for (boost::tie(i,ie) = adjacent_vertices(current, G); i != ie; ++i) {
vertex_t i_node = *i;
const size_type i_id = get(vertex_index_map, i_node);
if (supernode_size[i_node] != 0) {
deg0 += supernode_size[i_node];
marker.mark_multiple_tagged(i_node);
if (degree_lists_marker.need_update(i_node)) {
if (out_degree(i_node, G) == 2)
q2list.push(i_id);
else
qxlist.push(i_id);
}
}
}
while (!q2list.empty()) {
const size_type u_id = q2list.top();
vertex_t u_node = get(index_vertex_map, u_id);
// if u_id is outmatched by others, no need to update degree
if (degree_lists_marker.outmatched_or_done(u_node)) {
q2list.pop();
continue;
}
marker.increment_tag();
deg = deg0;
adj_iter nu = adjacent_vertices(u_node, G).first;
vertex_t neighbor = *nu;
if (neighbor == u_node) {
++nu;
neighbor = *nu;
}
if (numbering.is_numbered(neighbor)) {
adj_iter i, ie;
for (boost::tie(i,ie) = adjacent_vertices(neighbor, G);
i != ie; ++i) {
const vertex_t i_node = *i;
if (i_node == u_node || supernode_size[i_node] == 0)
continue;
if (marker.is_tagged(i_node)) {
if (degree_lists_marker.need_update(i_node)) {
if ( out_degree(i_node, G) == 2 ) { // is indistinguishable
supernode_size[u_node] += supernode_size[i_node];
supernode_size[i_node] = 0;
numbering.indistinguishable(i_node, u_node);
marker.mark_done(i_node);
degree_lists_marker.mark(i_node);
} else // is outmatched
degree_lists_marker.mark(i_node);
}
} else {
marker.mark_tagged(i_node);
deg += supernode_size[i_node];
}
}
} else
deg += supernode_size[neighbor];
deg -= supernode_size[u_node];
degree[u_node] = deg; //update degree
degreelists[deg].push(u_node);
//u_id has been pushed back into degreelists
degree_lists_marker.unmark(u_node);
if (min_degree > deg)
min_degree = deg;
q2list.pop();
} // while (!q2list.empty())
while (!qxlist.empty()) {
const size_type u_id = qxlist.top();
const vertex_t u_node = get(index_vertex_map, u_id);
// if u_id is outmatched by others, no need to update degree
if (degree_lists_marker.outmatched_or_done(u_node)) {
qxlist.pop();
continue;
}
marker.increment_tag();
deg = deg0;
adj_iter i, ie;
for (boost::tie(i, ie) = adjacent_vertices(u_node, G); i != ie; ++i) {
vertex_t i_node = *i;
if (marker.is_tagged(i_node))
continue;
marker.mark_tagged(i_node);
if (numbering.is_numbered(i_node)) {
adj_iter j, je;
for (boost::tie(j, je) = adjacent_vertices(i_node, G); j != je; ++j) {
const vertex_t j_node = *j;
if (marker.is_not_tagged(j_node)) {
marker.mark_tagged(j_node);
deg += supernode_size[j_node];
}
}
} else
deg += supernode_size[i_node];
} // for adjacent vertices of u_node
deg -= supernode_size[u_node];
degree[u_node] = deg;
degreelists[deg].push(u_node);
// u_id has been pushed back into degreelists
degree_lists_marker.unmark(u_node);
if (min_degree > deg)
min_degree = deg;
qxlist.pop();
} // while (!qxlist.empty()) {
marker.set_tag_as_multiple_tag();
llist.pop();
} // while (! llist.empty())
} // update()
void build_permutation(InversePermutationMap next,
PermutationMap prev)
{
// collect the permutation info
size_type i;
for (i = 0; i < n; ++i) {
diff_t size = supernode_size[get(index_vertex_map, i)];
if ( size <= 0 ) {
prev[i] = next[i];
supernode_size[get(index_vertex_map, i)]
= next[i] + 1; // record the supernode info
} else
prev[i] = - next[i];
}
for (i = 1; i < n + 1; ++i) {
if ( prev[i-1] > 0 )
continue;
diff_t parent = i;
while ( prev[parent - 1] < 0 ) {
parent = - prev[parent - 1];
}
diff_t root = parent;
diff_t num = prev[root - 1] + 1;
next[i-1] = - num;
prev[root-1] = num;
parent = i;
diff_t next_node = - prev[parent - 1];
while (next_node > 0) {
prev[parent-1] = - root;
parent = next_node;
next_node = - prev[parent - 1];
}
}
for (i = 0; i < n; i++) {
diff_t num = - next[i] - 1;
next[i] = num;
prev[num] = i;
}
} // build_permutation()
};
} //namespace detail
// MMD algorithm
//
//The implementation presently includes the enhancements for mass
//elimination, incomplete degree update, multiple elimination, and
//external degree.
//
//Important Note: This implementation requires the BGL graph to be
//directed. Therefore, nonzero entry (i, j) in a symmetrical matrix
//A coresponds to two directed edges (i->j and j->i).
//
//see Alan George and Joseph W. H. Liu, The Evolution of the Minimum
//Degree Ordering Algorithm, SIAM Review, 31, 1989, Page 1-19
template<class Graph, class DegreeMap,
class InversePermutationMap,
class PermutationMap,
class SuperNodeMap, class VertexIndexMap>
void minimum_degree_ordering
(Graph& G,
DegreeMap degree,
InversePermutationMap inverse_perm,
PermutationMap perm,
SuperNodeMap supernode_size,
int delta,
VertexIndexMap vertex_index_map)
{
detail::mmd_impl<Graph,DegreeMap,InversePermutationMap,
PermutationMap, SuperNodeMap, VertexIndexMap>
impl(G, num_vertices(G), delta, degree, inverse_perm,
perm, supernode_size, vertex_index_map);
impl.do_mmd();
impl.build_permutation(inverse_perm, perm);
}
} // namespace boost
#endif // MINIMUM_DEGREE_ORDERING_HPP