graph/test/all_planar_input_files_test.cpp

287 lines
8.8 KiB
C++

//=======================================================================
// Copyright 2007 Aaron Windsor
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
/*
This test looks in the directory "planar_input_graphs" for any files
of the form *.dimacs. Each such file is used to create an input graph
and test the input graph for planarity. If the graph is planar, a
straight line drawing is generated and verified. If the graph isn't
planar, a kuratowski subgraph is isolated and verified.
This test needs to be linked against Boost.Filesystem.
*/
#define BOOST_FILESYSTEM_VERSION 3
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <utility>
#include <boost/property_map/property_map.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/filesystem.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/test/minimal.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/planar_canonical_ordering.hpp>
#include <boost/graph/make_connected.hpp>
#include <boost/graph/make_biconnected_planar.hpp>
#include <boost/graph/make_maximal_planar.hpp>
#include <boost/graph/is_straight_line_drawing.hpp>
#include <boost/graph/is_kuratowski_subgraph.hpp>
#include <boost/graph/chrobak_payne_drawing.hpp>
#include <boost/graph/boyer_myrvold_planar_test.hpp>
#include <boost/graph/planar_detail/add_edge_visitors.hpp>
using namespace boost;
struct coord_t
{
std::size_t x;
std::size_t y;
};
template <typename Graph>
void read_dimacs(Graph& g, const std::string& filename)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
std::vector<vertex_t> vertices_by_index;
std::ifstream in(filename.c_str());
while (!in.eof())
{
char buffer[256];
in.getline(buffer, 256);
std::string s(buffer);
if (s.size() == 0)
continue;
std::vector<std::string> v;
split(v, buffer, is_any_of(" \t\n"));
if (v[0] == "p")
{
//v[1] == "edge"
g = Graph(boost::lexical_cast<std::size_t>(v[2].c_str()));
std::copy(vertices(g).first,
vertices(g).second,
std::back_inserter(vertices_by_index)
);
}
else if (v[0] == "e")
{
add_edge(vertices_by_index
[boost::lexical_cast<std::size_t>(v[1].c_str())],
vertices_by_index
[boost::lexical_cast<std::size_t>(v[2].c_str())],
g);
}
}
}
int test_graph(const std::string& dimacs_filename)
{
typedef adjacency_list<listS,
vecS,
undirectedS,
property<vertex_index_t, int>,
property<edge_index_t, int> > graph;
typedef graph_traits<graph>::edge_descriptor edge_t;
typedef graph_traits<graph>::edge_iterator edge_iterator_t;
typedef graph_traits<graph>::vertex_iterator vertex_iterator_t;
typedef graph_traits<graph>::edges_size_type e_size_t;
typedef graph_traits<graph>::vertex_descriptor vertex_t;
typedef edge_index_update_visitor<property_map<graph, edge_index_t>::type>
edge_visitor_t;
vertex_iterator_t vi, vi_end;
edge_iterator_t ei, ei_end;
graph g;
read_dimacs(g, dimacs_filename);
// Initialize the interior edge index
property_map<graph, edge_index_t>::type e_index = get(edge_index, g);
e_size_t edge_count = 0;
for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
put(e_index, *ei, edge_count++);
// Initialize the interior vertex index - not needed if the vertices
// are stored with a vecS
/*
property_map<graph, vertex_index_t>::type v_index = get(vertex_index, g);
v_size_t vertex_count = 0;
for(boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(v_index, *vi, vertex_count++);
*/
// This edge_updater will automatically update the interior edge
// index of the graph as edges are created.
edge_visitor_t edge_updater(get(edge_index, g), num_edges(g));
// The input graph may not be maximal planar, but the Chrobak-Payne straight
// line drawing needs a maximal planar graph as input. So, we make a copy of
// the original graph here, then add edges to the graph to make it maximal
// planar. When we're done creating a drawing of the maximal planar graph,
// we can use the same mapping of vertices to points on the grid to embed the
// original, non-maximal graph.
graph g_copy(g);
// Add edges to make g connected, if it isn't already
make_connected(g, get(vertex_index, g), edge_updater);
std::vector<graph_traits<graph>::edge_descriptor> kuratowski_edges;
typedef std::vector< std::vector<edge_t> > edge_permutation_storage_t;
typedef boost::iterator_property_map
< edge_permutation_storage_t::iterator,
property_map<graph, vertex_index_t>::type
>
edge_permutation_t;
edge_permutation_storage_t edge_permutation_storage(num_vertices(g));
edge_permutation_t perm(edge_permutation_storage.begin(),
get(vertex_index,g)
);
// Test for planarity, computing the planar embedding or the kuratowski
// subgraph.
if (!boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding = perm,
boyer_myrvold_params::kuratowski_subgraph
= std::back_inserter(kuratowski_edges)
)
)
{
std::cout << "Not planar. ";
BOOST_REQUIRE(is_kuratowski_subgraph(g,
kuratowski_edges.begin(),
kuratowski_edges.end()
)
);
return 0;
}
// If we get this far, we have a connected planar graph.
make_biconnected_planar(g, perm, get(edge_index, g), edge_updater);
// Compute the planar embedding of the (now) biconnected planar graph
BOOST_CHECK (boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding =
perm
)
);
// If we get this far, we have a biconnected planar graph
make_maximal_planar(g, perm, get(vertex_index,g), get(edge_index,g),
edge_updater
);
// Now the graph is triangulated - we can compute the final planar embedding
BOOST_CHECK (boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding =
perm
)
);
// Compute a planar canonical ordering of the vertices
std::vector<vertex_t> ordering;
planar_canonical_ordering(g, perm, std::back_inserter(ordering));
BOOST_CHECK(ordering.size() == num_vertices(g));
typedef std::vector< coord_t > drawing_storage_t;
typedef boost::iterator_property_map
< drawing_storage_t::iterator, property_map<graph, vertex_index_t>::type >
drawing_map_t;
drawing_storage_t drawing_vector(num_vertices(g));
drawing_map_t drawing(drawing_vector.begin(), get(vertex_index,g));
// Compute a straight line drawing
chrobak_payne_straight_line_drawing(g,
perm,
ordering.begin(),
ordering.end(),
drawing
);
std::cout << "Planar. ";
BOOST_REQUIRE (is_straight_line_drawing(g, drawing));
return 0;
}
int test_main(int argc, char* argv[])
{
std::string input_directory_str = "planar_input_graphs";
if (argc > 1)
{
input_directory_str = std::string(argv[1]);
}
std::cout << "Reading planar input files from " << input_directory_str
<< std::endl;
filesystem::path input_directory =
filesystem::system_complete(filesystem::path(input_directory_str));
const std::string dimacs_extension = ".dimacs";
filesystem::directory_iterator dir_end;
for( filesystem::directory_iterator dir_itr(input_directory);
dir_itr != dir_end; ++dir_itr)
{
if (dir_itr->path().extension() != dimacs_extension)
continue;
std::cout << "Testing " << dir_itr->path().leaf() << "... ";
BOOST_REQUIRE (test_graph(dir_itr->path().string()) == 0);
std::cout << std::endl;
}
return 0;
}