graph/test/betweenness_centrality_test.cpp

521 lines
15 KiB
C++

// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#include <boost/graph/betweenness_centrality.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <vector>
#include <stack>
#include <queue>
#include <boost/property_map/property_map.hpp>
#include <boost/test/minimal.hpp>
#include <boost/random/uniform_01.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/lexical_cast.hpp>
using namespace boost;
const double error_tolerance = 0.001;
typedef property<edge_weight_t, double,
property<edge_index_t, std::size_t> > EdgeProperties;
struct weighted_edge
{
int source, target;
double weight;
};
template<typename Graph>
void
run_weighted_test(Graph*, int V, weighted_edge edge_init[], int E,
double correct_centrality[])
{
Graph g(V);
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
std::vector<Vertex> vertices(V);
{
vertex_iterator v, v_end;
int index = 0;
for (boost::tie(v, v_end) = boost::vertices(g); v != v_end; ++v, ++index) {
put(vertex_index, g, *v, index);
vertices[index] = *v;
}
}
std::vector<Edge> edges(E);
for (int e = 0; e < E; ++e) {
edges[e] = add_edge(vertices[edge_init[e].source],
vertices[edge_init[e].target],
g).first;
put(edge_weight, g, edges[e], 1.0);
}
std::vector<double> centrality(V);
brandes_betweenness_centrality(
g,
centrality_map(
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()))
.vertex_index_map(get(vertex_index, g)).weight_map(get(edge_weight, g)));
for (int v = 0; v < V; ++v) {
BOOST_CHECK(centrality[v] == correct_centrality[v]);
}
}
struct unweighted_edge
{
int source, target;
};
template<typename Graph>
void
run_unweighted_test(Graph*, int V, unweighted_edge edge_init[], int E,
double correct_centrality[],
double* correct_edge_centrality = 0)
{
Graph g(V);
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
std::vector<Vertex> vertices(V);
{
vertex_iterator v, v_end;
int index = 0;
for (boost::tie(v, v_end) = boost::vertices(g); v != v_end; ++v, ++index) {
put(vertex_index, g, *v, index);
vertices[index] = *v;
}
}
std::vector<Edge> edges(E);
for (int e = 0; e < E; ++e) {
edges[e] = add_edge(vertices[edge_init[e].source],
vertices[edge_init[e].target],
g).first;
put(edge_weight, g, edges[e], 1.0);
put(edge_index, g, edges[e], e);
}
std::vector<double> centrality(V);
std::vector<double> edge_centrality1(E);
brandes_betweenness_centrality(
g,
centrality_map(
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()))
.edge_centrality_map(
make_iterator_property_map(edge_centrality1.begin(),
get(edge_index, g), double()))
.vertex_index_map(get(vertex_index, g)));
std::vector<double> centrality2(V);
std::vector<double> edge_centrality2(E);
brandes_betweenness_centrality(
g,
vertex_index_map(get(vertex_index, g)).weight_map(get(edge_weight, g))
.centrality_map(
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()))
.edge_centrality_map(
make_iterator_property_map(edge_centrality2.begin(),
get(edge_index, g), double())));
std::vector<double> edge_centrality3(E);
brandes_betweenness_centrality(
g,
edge_centrality_map(
make_iterator_property_map(edge_centrality3.begin(),
get(edge_index, g), double())));
for (int v = 0; v < V; ++v) {
BOOST_CHECK(centrality[v] == centrality2[v]);
double relative_error =
correct_centrality[v] == 0.0? centrality[v]
: (centrality[v] - correct_centrality[v]) / correct_centrality[v];
if (relative_error < 0) relative_error = -relative_error;
BOOST_CHECK(relative_error < error_tolerance);
}
for (int e = 0; e < E; ++e) {
BOOST_CHECK(edge_centrality1[e] == edge_centrality2[e]);
BOOST_CHECK(edge_centrality1[e] == edge_centrality3[e]);
if (correct_edge_centrality) {
double relative_error =
correct_edge_centrality[e] == 0.0? edge_centrality1[e]
: (edge_centrality1[e] - correct_edge_centrality[e])
/ correct_edge_centrality[e];
if (relative_error < 0) relative_error = -relative_error;
BOOST_CHECK(relative_error < error_tolerance);
if (relative_error >= error_tolerance) {
std::cerr << "Edge " << e << " has edge centrality "
<< edge_centrality1[e] << ", should be "
<< correct_edge_centrality[e] << std::endl;
}
}
}
}
template<typename Graph>
void
run_wheel_test(Graph*, int V)
{
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
Graph g(V);
Vertex center = *boost::vertices(g).first;
std::vector<Vertex> vertices(V);
{
vertex_iterator v, v_end;
int index = 0;
for (boost::tie(v, v_end) = boost::vertices(g); v != v_end; ++v, ++index) {
put(vertex_index, g, *v, index);
vertices[index] = *v;
if (*v != center) {
Edge e = add_edge(*v, center, g).first;
put(edge_weight, g, e, 1.0);
}
}
}
std::vector<double> centrality(V);
brandes_betweenness_centrality(
g,
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()));
std::vector<double> centrality2(V);
brandes_betweenness_centrality(
g,
centrality_map(
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()))
.vertex_index_map(get(vertex_index, g)).weight_map(get(edge_weight, g)));
relative_betweenness_centrality(
g,
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()));
relative_betweenness_centrality(
g,
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()));
for (int v = 0; v < V; ++v) {
BOOST_CHECK(centrality[v] == centrality2[v]);
BOOST_CHECK((v == 0 && centrality[v] == 1)
|| (v != 0 && centrality[v] == 0));
}
double dominance =
central_point_dominance(
g,
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()));
BOOST_CHECK(dominance == 1.0);
}
template<typename MutableGraph>
void randomly_add_edges(MutableGraph& g, double edge_probability)
{
typedef typename graph_traits<MutableGraph>::directed_category
directed_category;
minstd_rand gen;
uniform_01<minstd_rand, double> rand_gen(gen);
typedef typename graph_traits<MutableGraph>::vertex_descriptor vertex;
typename graph_traits<MutableGraph>::vertex_iterator vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
vertex v = *vi;
typename graph_traits<MutableGraph>::vertex_iterator wi
= is_same<directed_category, undirected_tag>::value ? vi : vertices(g).first;
while (wi != vi_end) {
vertex w = *wi++;
if (v != w) {
if (rand_gen() < edge_probability) add_edge(v, w, g);
}
}
}
}
template<typename Graph, typename VertexIndexMap, typename CentralityMap>
void
simple_unweighted_betweenness_centrality(const Graph& g, VertexIndexMap index,
CentralityMap centrality)
{
typedef typename boost::graph_traits<Graph>::vertex_descriptor vertex;
typedef typename boost::graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename boost::graph_traits<Graph>::adjacency_iterator adjacency_iterator;
typedef typename boost::graph_traits<Graph>::vertices_size_type vertices_size_type;
typedef typename boost::property_traits<CentralityMap>::value_type centrality_type;
vertex_iterator vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(centrality, *vi, 0);
vertex_iterator si, si_end;
for (boost::tie(si, si_end) = vertices(g); si != si_end; ++si) {
vertex s = *si;
// S <-- empty stack
std::stack<vertex> S;
// P[w] <-- empty list, w \in V
typedef std::vector<vertex> Predecessors;
std::vector<Predecessors> predecessors(num_vertices(g));
// sigma[t] <-- 0, t \in V
std::vector<vertices_size_type> sigma(num_vertices(g), 0);
// sigma[s] <-- 1
sigma[get(index, s)] = 1;
// d[t] <-- -1, t \in V
std::vector<int> d(num_vertices(g), -1);
// d[s] <-- 0
d[get(index, s)] = 0;
// Q <-- empty queue
std::queue<vertex> Q;
// enqueue s --> Q
Q.push(s);
while (!Q.empty()) {
// dequeue v <-- Q
vertex v = Q.front(); Q.pop();
// push v --> S
S.push(v);
adjacency_iterator wi, wi_end;
for (boost::tie(wi, wi_end) = adjacent_vertices(v, g); wi != wi_end; ++wi) {
vertex w = *wi;
// w found for the first time?
if (d[get(index, w)] < 0) {
// enqueue w --> Q
Q.push(w);
// d[w] <-- d[v] + 1
d[get(index, w)] = d[get(index, v)] + 1;
}
// shortest path to w via v?
if (d[get(index, w)] == d[get(index, v)] + 1) {
// sigma[w] = sigma[w] + sigma[v]
sigma[get(index, w)] += sigma[get(index, v)];
// append v --> P[w]
predecessors[get(index, w)].push_back(v);
}
}
}
// delta[v] <-- 0, v \in V
std::vector<centrality_type> delta(num_vertices(g), 0);
// S returns vertices in order of non-increasing distance from s
while (!S.empty()) {
// pop w <-- S
vertex w = S.top(); S.pop();
const Predecessors& w_preds = predecessors[get(index, w)];
for (typename Predecessors::const_iterator vi = w_preds.begin();
vi != w_preds.end(); ++vi) {
vertex v = *vi;
// delta[v] <-- delta[v] + (sigma[v]/sigma[w])*(1 + delta[w])
delta[get(index, v)] +=
((centrality_type)sigma[get(index, v)]/sigma[get(index, w)])
* (1 + delta[get(index, w)]);
}
if (w != s) {
// C_B[w] <-- C_B[w] + delta[w]
centrality[w] += delta[get(index, w)];
}
}
}
typedef typename graph_traits<Graph>::directed_category directed_category;
const bool is_undirected =
is_same<directed_category, undirected_tag>::value;
if (is_undirected) {
vertex_iterator v, v_end;
for(boost::tie(v, v_end) = vertices(g); v != v_end; ++v) {
put(centrality, *v, get(centrality, *v) / centrality_type(2));
}
}
}
template<typename Graph>
void random_unweighted_test(Graph*, int n)
{
Graph g(n);
{
typename graph_traits<Graph>::vertex_iterator v, v_end;
int index = 0;
for (boost::tie(v, v_end) = boost::vertices(g); v != v_end; ++v, ++index) {
put(vertex_index, g, *v, index);
}
}
randomly_add_edges(g, 0.20);
std::cout << "Random graph with " << n << " vertices and "
<< num_edges(g) << " edges.\n";
std::cout << " Direct translation of Brandes' algorithm...";
std::vector<double> centrality(n);
simple_unweighted_betweenness_centrality(g, get(vertex_index, g),
make_iterator_property_map(centrality.begin(), get(vertex_index, g),
double()));
std::cout << "DONE.\n";
std::cout << " Real version, unweighted...";
std::vector<double> centrality2(n);
brandes_betweenness_centrality(g,
make_iterator_property_map(centrality2.begin(), get(vertex_index, g),
double()));
std::cout << "DONE.\n";
if (!std::equal(centrality.begin(), centrality.end(),
centrality2.begin())) {
for (std::size_t v = 0; v < centrality.size(); ++v) {
double relative_error =
centrality[v] == 0.0? centrality2[v]
: (centrality2[v] - centrality[v]) / centrality[v];
if (relative_error < 0) relative_error = -relative_error;
BOOST_CHECK(relative_error < error_tolerance);
}
}
std::cout << " Real version, weighted...";
std::vector<double> centrality3(n);
for (typename graph_traits<Graph>::edge_iterator ei = edges(g).first;
ei != edges(g).second; ++ei)
put(edge_weight, g, *ei, 1);
brandes_betweenness_centrality(g,
weight_map(get(edge_weight, g))
.centrality_map(
make_iterator_property_map(centrality3.begin(), get(vertex_index, g),
double())));
std::cout << "DONE.\n";
if (!std::equal(centrality.begin(), centrality.end(),
centrality3.begin())) {
for (std::size_t v = 0; v < centrality.size(); ++v) {
double relative_error =
centrality[v] == 0.0? centrality3[v]
: (centrality3[v] - centrality[v]) / centrality[v];
if (relative_error < 0) relative_error = -relative_error;
BOOST_CHECK(relative_error < error_tolerance);
}
}
}
int test_main(int argc, char* argv[])
{
int random_test_num_vertices = 300;
if (argc >= 2) random_test_num_vertices = boost::lexical_cast<int>(argv[1]);
typedef adjacency_list<listS, listS, undirectedS,
property<vertex_index_t, int>, EdgeProperties>
Graph;
typedef adjacency_list<listS, listS, directedS,
property<vertex_index_t, int>, EdgeProperties>
Digraph;
struct unweighted_edge ud_edge_init1[5] = {
{ 0, 1 },
{ 0, 3 },
{ 1, 2 },
{ 3, 2 },
{ 2, 4 }
};
double ud_centrality1[5] = { 0.5, 1.0, 3.5, 1.0, 0.0 };
run_unweighted_test((Graph*)0, 5, ud_edge_init1, 5, ud_centrality1);
// Example borrowed from the JUNG test suite
struct unweighted_edge ud_edge_init2[10] = {
{ 0, 1 },
{ 0, 6 },
{ 1, 2 },
{ 1, 3 },
{ 2, 4 },
{ 3, 4 },
{ 4, 5 },
{ 5, 8 },
{ 7, 8 },
{ 6, 7 },
};
double ud_centrality2[9] = {
0.2142 * 28,
0.2797 * 28,
0.0892 * 28,
0.0892 * 28,
0.2797 * 28,
0.2142 * 28,
0.1666 * 28,
0.1428 * 28,
0.1666 * 28
};
double ud_edge_centrality2[10] = {
10.66666,
9.33333,
6.5,
6.5,
6.5,
6.5,
10.66666,
9.33333,
8.0,
8.0
};
run_unweighted_test((Graph*)0, 9, ud_edge_init2, 10, ud_centrality2,
ud_edge_centrality2);
weighted_edge dw_edge_init1[6] = {
{ 0, 1, 1.0 },
{ 0, 3, 1.0 },
{ 1, 2, 0.5 },
{ 3, 1, 1.0 },
{ 3, 4, 1.0 },
{ 4, 2, 0.5 }
};
double dw_centrality1[5] = { 0.0, 1.5, 0.0, 1.0, 0.5 };
run_weighted_test((Digraph*)0, 5, dw_edge_init1, 6, dw_centrality1);
run_wheel_test((Graph*)0, 15);
random_unweighted_test((Graph*)0, random_test_num_vertices);
return 0;
}