graph/test/dominator_tree_test.cpp
2010-07-05 16:40:23 +00:00

298 lines
11 KiB
C++

//=======================================================================
// Copyright (C) 2005 Jong Soo Park <jongsoo.park -at- gmail.com>
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#include <boost/test/minimal.hpp>
#include <iostream>
#include <algorithm>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/dominator_tree.hpp>
using namespace std;
struct DominatorCorrectnessTestSet
{
typedef pair<int, int> edge;
int numOfVertices;
vector<edge> edges;
vector<int> correctIdoms;
};
using namespace boost;
typedef adjacency_list<
listS,
listS,
bidirectionalS,
property<vertex_index_t, std::size_t>, no_property> G;
int test_main(int, char*[])
{
typedef DominatorCorrectnessTestSet::edge edge;
DominatorCorrectnessTestSet testSet[7];
// Tarjan's paper
testSet[0].numOfVertices = 13;
testSet[0].edges.push_back(edge(0, 1));
testSet[0].edges.push_back(edge(0, 2));
testSet[0].edges.push_back(edge(0, 3));
testSet[0].edges.push_back(edge(1, 4));
testSet[0].edges.push_back(edge(2, 1));
testSet[0].edges.push_back(edge(2, 4));
testSet[0].edges.push_back(edge(2, 5));
testSet[0].edges.push_back(edge(3, 6));
testSet[0].edges.push_back(edge(3, 7));
testSet[0].edges.push_back(edge(4, 12));
testSet[0].edges.push_back(edge(5, 8));
testSet[0].edges.push_back(edge(6, 9));
testSet[0].edges.push_back(edge(7, 9));
testSet[0].edges.push_back(edge(7, 10));
testSet[0].edges.push_back(edge(8, 5));
testSet[0].edges.push_back(edge(8, 11));
testSet[0].edges.push_back(edge(9, 11));
testSet[0].edges.push_back(edge(10, 9));
testSet[0].edges.push_back(edge(11, 0));
testSet[0].edges.push_back(edge(11, 9));
testSet[0].edges.push_back(edge(12, 8));
testSet[0].correctIdoms.push_back((numeric_limits<int>::max)());
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(3);
testSet[0].correctIdoms.push_back(3);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(7);
testSet[0].correctIdoms.push_back(0);
testSet[0].correctIdoms.push_back(4);
// Appel. p441. figure 19.4
testSet[1].numOfVertices = 7;
testSet[1].edges.push_back(edge(0, 1));
testSet[1].edges.push_back(edge(1, 2));
testSet[1].edges.push_back(edge(1, 3));
testSet[1].edges.push_back(edge(2, 4));
testSet[1].edges.push_back(edge(2, 5));
testSet[1].edges.push_back(edge(4, 6));
testSet[1].edges.push_back(edge(5, 6));
testSet[1].edges.push_back(edge(6, 1));
testSet[1].correctIdoms.push_back((numeric_limits<int>::max)());
testSet[1].correctIdoms.push_back(0);
testSet[1].correctIdoms.push_back(1);
testSet[1].correctIdoms.push_back(1);
testSet[1].correctIdoms.push_back(2);
testSet[1].correctIdoms.push_back(2);
testSet[1].correctIdoms.push_back(2);
// Appel. p449. figure 19.8
testSet[2].numOfVertices = 13,
testSet[2].edges.push_back(edge(0, 1));
testSet[2].edges.push_back(edge(0, 2));
testSet[2].edges.push_back(edge(1, 3));
testSet[2].edges.push_back(edge(1, 6));
testSet[2].edges.push_back(edge(2, 4));
testSet[2].edges.push_back(edge(2, 7));
testSet[2].edges.push_back(edge(3, 5));
testSet[2].edges.push_back(edge(3, 6));
testSet[2].edges.push_back(edge(4, 7));
testSet[2].edges.push_back(edge(4, 2));
testSet[2].edges.push_back(edge(5, 8));
testSet[2].edges.push_back(edge(5, 10));
testSet[2].edges.push_back(edge(6, 9));
testSet[2].edges.push_back(edge(7, 12));
testSet[2].edges.push_back(edge(8, 11));
testSet[2].edges.push_back(edge(9, 8));
testSet[2].edges.push_back(edge(10, 11));
testSet[2].edges.push_back(edge(11, 1));
testSet[2].edges.push_back(edge(11, 12));
testSet[2].correctIdoms.push_back((numeric_limits<int>::max)());
testSet[2].correctIdoms.push_back(0);
testSet[2].correctIdoms.push_back(0);
testSet[2].correctIdoms.push_back(1);
testSet[2].correctIdoms.push_back(2);
testSet[2].correctIdoms.push_back(3);
testSet[2].correctIdoms.push_back(1);
testSet[2].correctIdoms.push_back(2);
testSet[2].correctIdoms.push_back(1);
testSet[2].correctIdoms.push_back(6);
testSet[2].correctIdoms.push_back(5);
testSet[2].correctIdoms.push_back(1);
testSet[2].correctIdoms.push_back(0);
testSet[3].numOfVertices = 8,
testSet[3].edges.push_back(edge(0, 1));
testSet[3].edges.push_back(edge(1, 2));
testSet[3].edges.push_back(edge(1, 3));
testSet[3].edges.push_back(edge(2, 7));
testSet[3].edges.push_back(edge(3, 4));
testSet[3].edges.push_back(edge(4, 5));
testSet[3].edges.push_back(edge(4, 6));
testSet[3].edges.push_back(edge(5, 7));
testSet[3].edges.push_back(edge(6, 4));
testSet[3].correctIdoms.push_back((numeric_limits<int>::max)());
testSet[3].correctIdoms.push_back(0);
testSet[3].correctIdoms.push_back(1);
testSet[3].correctIdoms.push_back(1);
testSet[3].correctIdoms.push_back(3);
testSet[3].correctIdoms.push_back(4);
testSet[3].correctIdoms.push_back(4);
testSet[3].correctIdoms.push_back(1);
// Muchnick. p256. figure 8.21
testSet[4].numOfVertices = 8,
testSet[4].edges.push_back(edge(0, 1));
testSet[4].edges.push_back(edge(1, 2));
testSet[4].edges.push_back(edge(2, 3));
testSet[4].edges.push_back(edge(2, 4));
testSet[4].edges.push_back(edge(3, 2));
testSet[4].edges.push_back(edge(4, 5));
testSet[4].edges.push_back(edge(4, 6));
testSet[4].edges.push_back(edge(5, 7));
testSet[4].edges.push_back(edge(6, 7));
testSet[4].correctIdoms.push_back((numeric_limits<int>::max)());
testSet[4].correctIdoms.push_back(0);
testSet[4].correctIdoms.push_back(1);
testSet[4].correctIdoms.push_back(2);
testSet[4].correctIdoms.push_back(2);
testSet[4].correctIdoms.push_back(4);
testSet[4].correctIdoms.push_back(4);
testSet[4].correctIdoms.push_back(4);
// Muchnick. p253. figure 8.18
testSet[5].numOfVertices = 8,
testSet[5].edges.push_back(edge(0, 1));
testSet[5].edges.push_back(edge(0, 2));
testSet[5].edges.push_back(edge(1, 6));
testSet[5].edges.push_back(edge(2, 3));
testSet[5].edges.push_back(edge(2, 4));
testSet[5].edges.push_back(edge(3, 7));
testSet[5].edges.push_back(edge(5, 7));
testSet[5].edges.push_back(edge(6, 7));
testSet[5].correctIdoms.push_back((numeric_limits<int>::max)());
testSet[5].correctIdoms.push_back(0);
testSet[5].correctIdoms.push_back(0);
testSet[5].correctIdoms.push_back(2);
testSet[5].correctIdoms.push_back(2);
testSet[5].correctIdoms.push_back((numeric_limits<int>::max)());
testSet[5].correctIdoms.push_back(1);
testSet[5].correctIdoms.push_back(0);
// Cytron's paper, fig. 9
testSet[6].numOfVertices = 14,
testSet[6].edges.push_back(edge(0, 1));
testSet[6].edges.push_back(edge(0, 13));
testSet[6].edges.push_back(edge(1, 2));
testSet[6].edges.push_back(edge(2, 3));
testSet[6].edges.push_back(edge(2, 7));
testSet[6].edges.push_back(edge(3, 4));
testSet[6].edges.push_back(edge(3, 5));
testSet[6].edges.push_back(edge(4, 6));
testSet[6].edges.push_back(edge(5, 6));
testSet[6].edges.push_back(edge(6, 8));
testSet[6].edges.push_back(edge(7, 8));
testSet[6].edges.push_back(edge(8, 9));
testSet[6].edges.push_back(edge(9, 10));
testSet[6].edges.push_back(edge(9, 11));
testSet[6].edges.push_back(edge(10, 11));
testSet[6].edges.push_back(edge(11, 9));
testSet[6].edges.push_back(edge(11, 12));
testSet[6].edges.push_back(edge(12, 2));
testSet[6].edges.push_back(edge(12, 13));
testSet[6].correctIdoms.push_back((numeric_limits<int>::max)());
testSet[6].correctIdoms.push_back(0);
testSet[6].correctIdoms.push_back(1);
testSet[6].correctIdoms.push_back(2);
testSet[6].correctIdoms.push_back(3);
testSet[6].correctIdoms.push_back(3);
testSet[6].correctIdoms.push_back(3);
testSet[6].correctIdoms.push_back(2);
testSet[6].correctIdoms.push_back(2);
testSet[6].correctIdoms.push_back(8);
testSet[6].correctIdoms.push_back(9);
testSet[6].correctIdoms.push_back(9);
testSet[6].correctIdoms.push_back(11);
testSet[6].correctIdoms.push_back(0);
for (size_t i = 0; i < sizeof(testSet)/sizeof(testSet[0]); ++i)
{
const int numOfVertices = testSet[i].numOfVertices;
G g(
testSet[i].edges.begin(), testSet[i].edges.end(),
numOfVertices);
typedef graph_traits<G>::vertex_descriptor Vertex;
typedef property_map<G, vertex_index_t>::type IndexMap;
typedef
iterator_property_map<vector<Vertex>::iterator, IndexMap>
PredMap;
vector<Vertex> domTreePredVector, domTreePredVector2;
IndexMap indexMap(get(vertex_index, g));
graph_traits<G>::vertex_iterator uItr, uEnd;
int j = 0;
for (boost::tie(uItr, uEnd) = vertices(g); uItr != uEnd; ++uItr, ++j)
{
put(indexMap, *uItr, j);
}
// Lengauer-Tarjan dominator tree algorithm
domTreePredVector =
vector<Vertex>(num_vertices(g), graph_traits<G>::null_vertex());
PredMap domTreePredMap =
make_iterator_property_map(domTreePredVector.begin(), indexMap);
lengauer_tarjan_dominator_tree(g, vertex(0, g), domTreePredMap);
vector<int> idom(num_vertices(g));
for (boost::tie(uItr, uEnd) = vertices(g); uItr != uEnd; ++uItr)
{
if (get(domTreePredMap, *uItr) != graph_traits<G>::null_vertex())
idom[get(indexMap, *uItr)] =
get(indexMap, get(domTreePredMap, *uItr));
else
idom[get(indexMap, *uItr)] = (numeric_limits<int>::max)();
}
copy(idom.begin(), idom.end(), ostream_iterator<int>(cout, " "));
cout << endl;
// dominator tree correctness test
BOOST_CHECK(std::equal(idom.begin(), idom.end(), testSet[i].correctIdoms.begin()));
// compare results of fast version and slow version of dominator tree
domTreePredVector2 =
vector<Vertex>(num_vertices(g), graph_traits<G>::null_vertex());
domTreePredMap =
make_iterator_property_map(domTreePredVector2.begin(), indexMap);
iterative_bit_vector_dominator_tree(g, vertex(0, g), domTreePredMap);
vector<int> idom2(num_vertices(g));
for (boost::tie(uItr, uEnd) = vertices(g); uItr != uEnd; ++uItr)
{
if (get(domTreePredMap, *uItr) != graph_traits<G>::null_vertex())
idom2[get(indexMap, *uItr)] =
get(indexMap, get(domTreePredMap, *uItr));
else
idom2[get(indexMap, *uItr)] = (numeric_limits<int>::max)();
}
copy(idom2.begin(), idom2.end(), ostream_iterator<int>(cout, " "));
cout << endl;
size_t k;
for (k = 0; k < num_vertices(g); ++k)
BOOST_CHECK(domTreePredVector[k] == domTreePredVector2[k]);
}
return 0;
}