graph/test/layout_test.cpp

378 lines
12 KiB
C++

// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#include <boost/config.hpp>
#ifdef BOOST_MSVC
// Without disabling this we get hard errors about initialialized pointers:
#pragma warning(disable:4703)
#endif
#include <boost/graph/fruchterman_reingold.hpp>
#include <boost/graph/random_layout.hpp>
#include <boost/graph/kamada_kawai_spring_layout.hpp>
#include <boost/graph/circle_layout.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/point_traits.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/test/minimal.hpp>
#include <iostream>
#include <boost/limits.hpp>
#include <fstream>
#include <string>
using namespace boost;
enum vertex_position_t { vertex_position };
namespace boost { BOOST_INSTALL_PROPERTY(vertex, position); }
typedef square_topology<>::point_type point;
template<typename Graph, typename PositionMap, typename Topology>
void print_graph_layout(const Graph& g, PositionMap position, const Topology& topology)
{
typedef typename Topology::point_type Point;
// Find min/max ranges
Point min_point = position[*vertices(g).first], max_point = min_point;
BGL_FORALL_VERTICES_T(v, g, Graph) {
min_point = topology.pointwise_min(min_point, position[v]);
max_point = topology.pointwise_max(max_point, position[v]);
}
for (int y = (int)min_point[1]; y <= (int)max_point[1]; ++y) {
for (int x = (int)min_point[0]; x <= (int)max_point[0]; ++x) {
typename graph_traits<Graph>::vertex_iterator vi, vi_end;
// Find vertex at this position
typename graph_traits<Graph>::vertices_size_type index = 0;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi, ++index) {
if ((int)position[*vi][0] == x && (int)position[*vi][1] == y)
break;
}
if (vi == vi_end) std::cout << ' ';
else std::cout << (char)(index + 'A');
}
std::cout << std::endl;
}
}
template<typename Graph, typename PositionMap>
void dump_graph_layout(std::string name, const Graph& g, PositionMap position)
{
std::ofstream out((name + ".dot").c_str());
out << "graph " << name << " {" << std::endl;
typename graph_traits<Graph>::vertex_iterator vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
out << " n" << get(vertex_index, g, *vi) << "[ pos=\""
<< (int)position[*vi][0] + 25 << ", " << (int)position[*vi][1] + 25
<< "\" ];\n";
}
typename graph_traits<Graph>::edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
out << " n" << get(vertex_index, g, source(*ei, g)) << " -- n"
<< get(vertex_index, g, target(*ei, g)) << ";\n";
}
out << "}\n";
}
template<typename Graph>
void
test_circle_layout(Graph*, typename graph_traits<Graph>::vertices_size_type n)
{
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
Graph g(n);
// Initialize vertex indices
vertex_iterator vi = vertices(g).first;
for (vertices_size_type i = 0; i < n; ++i, ++vi)
put(vertex_index, g, *vi, i);
circle_graph_layout(g, get(vertex_position, g), 10.0);
std::cout << "Regular polygon layout with " << n << " points.\n";
square_topology<> topology;
print_graph_layout(g, get(vertex_position, g), topology);
}
struct simple_edge
{
int first, second;
};
struct kamada_kawai_done
{
kamada_kawai_done() : last_delta() {}
template<typename Graph>
bool operator()(double delta_p,
typename boost::graph_traits<Graph>::vertex_descriptor /*p*/,
const Graph& /*g*/,
bool global)
{
if (global) {
double diff = last_delta - delta_p;
if (diff < 0) diff = -diff;
last_delta = delta_p;
return diff < 0.01;
} else {
return delta_p < 0.01;
}
}
double last_delta;
};
template<typename Graph>
void
test_triangle(Graph*)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
Graph g;
vertex_descriptor u = add_vertex(g); put(vertex_index, g, u, 0);
vertex_descriptor v = add_vertex(g); put(vertex_index, g, v, 1);
vertex_descriptor w = add_vertex(g); put(vertex_index, g, w, 2);
edge_descriptor e1 = add_edge(u, v, g).first; put(edge_weight, g, e1, 1.0);
edge_descriptor e2 = add_edge(v, w, g).first; put(edge_weight, g, e2, 1.0);
edge_descriptor e3 = add_edge(w, u, g).first; put(edge_weight, g, e3, 1.0);
circle_graph_layout(g, get(vertex_position, g), 25.0);
bool ok = kamada_kawai_spring_layout(g,
get(vertex_position, g),
get(edge_weight, g),
square_topology<>(50.0),
side_length(50.0));
BOOST_CHECK(ok);
std::cout << "Triangle layout (Kamada-Kawai).\n";
print_graph_layout(g, get(vertex_position, g));
}
template<typename Graph>
void
test_cube(Graph*)
{
enum {A, B, C, D, E, F, G, H};
simple_edge cube_edges[12] = {
{A, E}, {A, B}, {A, D}, {B, F}, {B, C}, {C, D}, {C, G}, {D, H},
{E, H}, {E, F}, {F, G}, {G, H}
};
Graph g(&cube_edges[0], &cube_edges[12], 8);
typedef typename graph_traits<Graph>::edge_iterator edge_iterator;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
vertex_iterator vi, vi_end;
int i = 0;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(vertex_index, g, *vi, i++);
edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
put(edge_weight, g, *ei, 1.0);
std::cerr << "(" << (char)(get(vertex_index, g, source(*ei, g)) + 'A')
<< ", " << (char)(get(vertex_index, g, target(*ei, g)) + 'A')
<< ") ";
}
std::cerr << std::endl;
circle_graph_layout(g, get(vertex_position, g), 25.0);
bool ok = kamada_kawai_spring_layout(g,
get(vertex_position, g),
get(edge_weight, g),
square_topology<>(50.0),
side_length(50.0),
kamada_kawai_done());
BOOST_CHECK(ok);
std::cout << "Cube layout (Kamada-Kawai).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("cube", g, get(vertex_position, g));
minstd_rand gen;
typedef square_topology<> Topology;
Topology topology(gen, 50.0);
std::vector<Topology::point_difference_type> displacements(num_vertices(g));
rectangle_topology<> rect_top(gen, 0, 0, 50, 50);
random_graph_layout(g, get(vertex_position, g), rect_top);
fruchterman_reingold_force_directed_layout
(g,
get(vertex_position, g),
topology,
square_distance_attractive_force(),
square_distance_repulsive_force(),
all_force_pairs(),
linear_cooling<double>(100),
make_iterator_property_map(displacements.begin(),
get(vertex_index, g),
Topology::point_difference_type()));
std::cout << "Cube layout (Fruchterman-Reingold).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("cube-fr", g, get(vertex_position, g));
}
template<typename Graph>
void
test_triangular(Graph*)
{
enum {A, B, C, D, E, F, G, H, I, J};
simple_edge triangular_edges[18] = {
{A, B}, {A, C}, {B, C}, {B, D}, {B, E}, {C, E}, {C, F}, {D, E}, {D, G},
{D, H}, {E, F}, {E, H}, {E, I}, {F, I}, {F, J}, {G, H}, {H, I}, {I, J}
};
Graph g(&triangular_edges[0], &triangular_edges[18], 10);
typedef typename graph_traits<Graph>::edge_iterator edge_iterator;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
vertex_iterator vi, vi_end;
int i = 0;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(vertex_index, g, *vi, i++);
edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
put(edge_weight, g, *ei, 1.0);
std::cerr << "(" << (char)(get(vertex_index, g, source(*ei, g)) + 'A')
<< ", " << (char)(get(vertex_index, g, target(*ei, g)) + 'A')
<< ") ";
}
std::cerr << std::endl;
typedef square_topology<> Topology;
minstd_rand gen;
Topology topology(gen, 50.0);
Topology::point_type origin;
origin[0] = origin[1] = 50.0;
Topology::point_difference_type extent;
extent[0] = extent[1] = 50.0;
circle_graph_layout(g, get(vertex_position, g), 25.0);
bool ok = kamada_kawai_spring_layout(g,
get(vertex_position, g),
get(edge_weight, g),
topology,
side_length(50.0),
kamada_kawai_done());
BOOST_CHECK(ok);
std::cout << "Triangular layout (Kamada-Kawai).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("triangular-kk", g, get(vertex_position, g));
rectangle_topology<> rect_top(gen, -25, -25, 25, 25);
random_graph_layout(g, get(vertex_position, g), rect_top);
dump_graph_layout("random", g, get(vertex_position, g));
std::vector<Topology::point_difference_type> displacements(num_vertices(g));
fruchterman_reingold_force_directed_layout
(g,
get(vertex_position, g),
topology,
attractive_force(square_distance_attractive_force()).
cooling(linear_cooling<double>(100)));
std::cout << "Triangular layout (Fruchterman-Reingold).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("triangular-fr", g, get(vertex_position, g));
}
template<typename Graph>
void
test_disconnected(Graph*)
{
enum {A, B, C, D, E, F, G, H};
simple_edge triangular_edges[13] = {
{A, B}, {B, C}, {C, A},
{D, E}, {E, F}, {F, G}, {G, H}, {H, D},
{D, F}, {F, H}, {H, E}, {E, G}, {G, D}
};
Graph g(&triangular_edges[0], &triangular_edges[13], 8);
typedef typename graph_traits<Graph>::edge_iterator edge_iterator;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
vertex_iterator vi, vi_end;
int i = 0;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
put(vertex_index, g, *vi, i++);
edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
put(edge_weight, g, *ei, 1.0);
std::cerr << "(" << (char)(get(vertex_index, g, source(*ei, g)) + 'A')
<< ", " << (char)(get(vertex_index, g, target(*ei, g)) + 'A')
<< ") ";
}
std::cerr << std::endl;
circle_graph_layout(g, get(vertex_position, g), 25.0);
bool ok = kamada_kawai_spring_layout(g,
get(vertex_position, g),
get(edge_weight, g),
square_topology<>(50.0),
side_length(50.0),
kamada_kawai_done());
BOOST_CHECK(!ok);
minstd_rand gen;
rectangle_topology<> rect_top(gen, -25, -25, 25, 25);
random_graph_layout(g, get(vertex_position, g), rect_top);
typedef square_topology<> Topology;
Topology topology(gen, 50.0);
std::vector<Topology::point_difference_type> displacements(num_vertices(g));
fruchterman_reingold_force_directed_layout
(g,
get(vertex_position, g),
topology,
attractive_force(square_distance_attractive_force()).
cooling(linear_cooling<double>(50)));
std::cout << "Disconnected layout (Fruchterman-Reingold).\n";
print_graph_layout(g, get(vertex_position, g), square_topology<>(50.));
dump_graph_layout("disconnected-fr", g, get(vertex_position, g));
}
int test_main(int, char*[])
{
typedef adjacency_list<listS, listS, undirectedS,
// Vertex properties
property<vertex_index_t, int,
property<vertex_position_t, point> >,
// Edge properties
property<edge_weight_t, double> > Graph;
test_circle_layout((Graph*)0, 5);
test_cube((Graph*)0);
test_triangular((Graph*)0);
test_disconnected((Graph*)0);
return 0;
}