5922324c2b
[SVN r85813]
363 lines
11 KiB
C++
363 lines
11 KiB
C++
//=======================================================================
|
|
// Copyright 2007 Aaron Windsor
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
//=======================================================================
|
|
|
|
/*
|
|
|
|
This test is almost identical to all_planar_input_files_test.cpp
|
|
except that parallel edges and loops are added to the graphs as
|
|
they are read in.
|
|
|
|
This test needs to be linked against Boost.Filesystem.
|
|
|
|
*/
|
|
|
|
#define BOOST_FILESYSTEM_VERSION 3
|
|
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
|
|
#include <boost/property_map/property_map.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
#include <boost/tuple/tuple.hpp>
|
|
#include <boost/filesystem.hpp>
|
|
#include <boost/algorithm/string.hpp>
|
|
#include <boost/test/minimal.hpp>
|
|
|
|
|
|
#include <boost/graph/adjacency_list.hpp>
|
|
#include <boost/graph/depth_first_search.hpp>
|
|
#include <boost/graph/properties.hpp>
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/planar_canonical_ordering.hpp>
|
|
#include <boost/graph/make_connected.hpp>
|
|
#include <boost/graph/make_biconnected_planar.hpp>
|
|
#include <boost/graph/make_maximal_planar.hpp>
|
|
#include <boost/graph/is_straight_line_drawing.hpp>
|
|
#include <boost/graph/is_kuratowski_subgraph.hpp>
|
|
#include <boost/graph/chrobak_payne_drawing.hpp>
|
|
#include <boost/graph/boyer_myrvold_planar_test.hpp>
|
|
#include <boost/graph/planar_detail/add_edge_visitors.hpp>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
using namespace boost;
|
|
|
|
struct coord_t
|
|
{
|
|
std::size_t x;
|
|
std::size_t y;
|
|
};
|
|
|
|
|
|
|
|
template <typename Graph>
|
|
void read_dimacs(Graph& g, const std::string& filename)
|
|
{
|
|
|
|
// every <vertex_stride>th vertex has a self-loop
|
|
int vertex_stride = 5;
|
|
|
|
// on vertices with self loops, there are between 1 and
|
|
// <max_loop_multiplicity> loops
|
|
int max_loop_multiplicity = 6;
|
|
|
|
// every <edge_stride>th edge is a parallel edge
|
|
int edge_stride = 7;
|
|
|
|
// parallel edges come in groups of 2 to <max_edge_multiplicity> + 1
|
|
int max_edge_multiplicity = 5;
|
|
|
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator_t;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
|
|
std::vector<vertex_t> vertices_by_index;
|
|
|
|
std::ifstream in(filename.c_str());
|
|
|
|
long num_edges_added = 0;
|
|
long num_parallel_edges = 0;
|
|
|
|
while (!in.eof())
|
|
{
|
|
|
|
char buffer[256];
|
|
in.getline(buffer, 256);
|
|
std::string s(buffer);
|
|
|
|
if (s.size() == 0)
|
|
continue;
|
|
|
|
std::vector<std::string> v;
|
|
split(v, buffer, is_any_of(" \t\n"));
|
|
|
|
if (v[0] == "p")
|
|
{
|
|
//v[1] == "edge"
|
|
long num_vertices = boost::lexical_cast<long>(v[2].c_str());
|
|
g = Graph(num_vertices);
|
|
|
|
|
|
vertex_iterator_t vi, vi_end;
|
|
long count = 0;
|
|
long mult_count = 0;
|
|
for(boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
|
{
|
|
if (count % vertex_stride == 0)
|
|
{
|
|
for(int i = 0;
|
|
i < (mult_count % max_loop_multiplicity) + 1;
|
|
++i
|
|
)
|
|
{
|
|
add_edge(*vi, *vi, g);
|
|
}
|
|
++mult_count;
|
|
}
|
|
++count;
|
|
}
|
|
|
|
std::copy(vertices(g).first,
|
|
vertices(g).second,
|
|
std::back_inserter(vertices_by_index)
|
|
);
|
|
}
|
|
else if (v[0] == "e")
|
|
{
|
|
add_edge(vertices_by_index[boost::lexical_cast<long>(v[1].c_str())],
|
|
vertices_by_index[boost::lexical_cast<long>(v[2].c_str())],
|
|
g);
|
|
|
|
if (num_edges_added % edge_stride == 0)
|
|
{
|
|
for(int i = 0;
|
|
i < (num_parallel_edges % max_edge_multiplicity) + 1;
|
|
++i
|
|
)
|
|
{
|
|
add_edge(vertices_by_index
|
|
[boost::lexical_cast<long>(v[1].c_str())],
|
|
vertices_by_index
|
|
[boost::lexical_cast<long>(v[2].c_str())],
|
|
g);
|
|
}
|
|
++num_parallel_edges;
|
|
}
|
|
++num_edges_added;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
struct face_counter : planar_face_traversal_visitor
|
|
{
|
|
|
|
face_counter() : m_num_faces(0) {}
|
|
|
|
void begin_face() { ++m_num_faces; }
|
|
|
|
long num_faces() { return m_num_faces; }
|
|
|
|
private:
|
|
|
|
long m_num_faces;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int test_graph(const std::string& dimacs_filename)
|
|
{
|
|
|
|
typedef adjacency_list<listS,
|
|
vecS,
|
|
undirectedS,
|
|
property<vertex_index_t, int>,
|
|
property<edge_index_t, int> > graph;
|
|
|
|
typedef graph_traits<graph>::edge_descriptor edge_t;
|
|
typedef graph_traits<graph>::edge_iterator edge_iterator_t;
|
|
typedef graph_traits<graph>::vertex_iterator vertex_iterator_t;
|
|
typedef graph_traits<graph>::edges_size_type e_size_t;
|
|
typedef graph_traits<graph>::vertex_descriptor vertex_t;
|
|
typedef edge_index_update_visitor<property_map<graph, edge_index_t>::type>
|
|
edge_visitor_t;
|
|
|
|
vertex_iterator_t vi, vi_end;
|
|
edge_iterator_t ei, ei_end;
|
|
|
|
graph g;
|
|
read_dimacs(g, dimacs_filename);
|
|
|
|
// Initialize the interior edge index
|
|
property_map<graph, edge_index_t>::type e_index = get(edge_index, g);
|
|
e_size_t edge_count = 0;
|
|
for(boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
|
|
put(e_index, *ei, edge_count++);
|
|
|
|
// Initialize the interior vertex index - not needed if the vertices
|
|
// are stored with a vecS
|
|
/*
|
|
property_map<graph, vertex_index_t>::type v_index = get(vertex_index, g);
|
|
v_size_t vertex_count = 0;
|
|
for(boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi)
|
|
put(v_index, *vi, vertex_count++);
|
|
*/
|
|
|
|
// This edge_updater will automatically update the interior edge
|
|
// index of the graph as edges are created.
|
|
edge_visitor_t edge_updater(get(edge_index, g), num_edges(g));
|
|
|
|
// The input graph may not be maximal planar, but the Chrobak-Payne straight
|
|
// line drawing needs a maximal planar graph as input. So, we make a copy of
|
|
// the original graph here, then add edges to the graph to make it maximal
|
|
// planar. When we're done creating a drawing of the maximal planar graph,
|
|
// we can use the same mapping of vertices to points on the grid to embed the
|
|
// original, non-maximal graph.
|
|
graph g_copy(g);
|
|
|
|
// Add edges to make g connected, if it isn't already
|
|
make_connected(g, get(vertex_index, g), edge_updater);
|
|
|
|
std::vector<graph_traits<graph>::edge_descriptor> kuratowski_edges;
|
|
|
|
typedef std::vector< std::vector<edge_t> > edge_permutation_storage_t;
|
|
typedef boost::iterator_property_map
|
|
< edge_permutation_storage_t::iterator,
|
|
property_map<graph, vertex_index_t>::type
|
|
>
|
|
edge_permutation_t;
|
|
|
|
edge_permutation_storage_t edge_permutation_storage(num_vertices(g));
|
|
edge_permutation_t perm(edge_permutation_storage.begin(),
|
|
get(vertex_index,g)
|
|
);
|
|
|
|
// Test for planarity, computing the planar embedding or the kuratowski
|
|
// subgraph.
|
|
if (!boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
|
|
boyer_myrvold_params::embedding = perm,
|
|
boyer_myrvold_params::kuratowski_subgraph
|
|
= std::back_inserter(kuratowski_edges)
|
|
)
|
|
)
|
|
{
|
|
std::cerr << "Not planar. ";
|
|
BOOST_REQUIRE(is_kuratowski_subgraph
|
|
(g, kuratowski_edges.begin(), kuratowski_edges.end())
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// If we get this far, we have a connected planar graph.
|
|
make_biconnected_planar(g, perm, get(edge_index, g), edge_updater);
|
|
|
|
// Compute the planar embedding of the (now) biconnected planar graph
|
|
BOOST_CHECK (boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
|
|
boyer_myrvold_params::embedding
|
|
= perm
|
|
)
|
|
);
|
|
|
|
// If we get this far, we have a biconnected planar graph
|
|
make_maximal_planar(g, perm, get(vertex_index,g), get(edge_index,g),
|
|
edge_updater);
|
|
|
|
// Now the graph is triangulated - we can compute the final planar embedding
|
|
BOOST_CHECK (boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
|
|
boyer_myrvold_params::embedding
|
|
= perm
|
|
)
|
|
);
|
|
|
|
// Make sure Euler's formula holds
|
|
face_counter vis;
|
|
planar_face_traversal(g, perm, vis, get(edge_index, g));
|
|
|
|
BOOST_CHECK(num_vertices(g) - num_edges(g) + vis.num_faces() == 2);
|
|
|
|
// Compute a planar canonical ordering of the vertices
|
|
std::vector<vertex_t> ordering;
|
|
planar_canonical_ordering(g, perm, std::back_inserter(ordering));
|
|
|
|
BOOST_CHECK(ordering.size() == num_vertices(g));
|
|
|
|
typedef std::vector< coord_t > drawing_storage_t;
|
|
typedef boost::iterator_property_map
|
|
< drawing_storage_t::iterator, property_map<graph, vertex_index_t>::type >
|
|
drawing_map_t;
|
|
|
|
drawing_storage_t drawing_vector(num_vertices(g));
|
|
drawing_map_t drawing(drawing_vector.begin(), get(vertex_index,g));
|
|
|
|
// Compute a straight line drawing
|
|
chrobak_payne_straight_line_drawing(g,
|
|
perm,
|
|
ordering.begin(),
|
|
ordering.end(),
|
|
drawing
|
|
);
|
|
|
|
std::cerr << "Planar. ";
|
|
BOOST_REQUIRE (is_straight_line_drawing(g, drawing));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int test_main(int argc, char* argv[])
|
|
{
|
|
|
|
std::string input_directory_str = "planar_input_graphs";
|
|
if (argc > 1)
|
|
{
|
|
input_directory_str = std::string(argv[1]);
|
|
}
|
|
|
|
std::cout << "Reading planar input files from " << input_directory_str
|
|
<< std::endl;
|
|
|
|
filesystem::path input_directory =
|
|
filesystem::system_complete(filesystem::path(input_directory_str));
|
|
const std::string dimacs_extension = ".dimacs";
|
|
|
|
filesystem::directory_iterator dir_end;
|
|
for( filesystem::directory_iterator dir_itr(input_directory);
|
|
dir_itr != dir_end; ++dir_itr)
|
|
{
|
|
|
|
if (dir_itr->path().extension() != dimacs_extension)
|
|
continue;
|
|
|
|
std::cerr << "Testing " << dir_itr->path().leaf() << "... ";
|
|
BOOST_REQUIRE (test_graph(dir_itr->path().string()) == 0);
|
|
|
|
std::cerr << std::endl;
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|