graph_parallel/test/ssca.cpp

1264 lines
41 KiB
C++

// Copyright 2004 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Nick Edmonds
// Andrew Lumsdaine
#include <boost/graph/use_mpi.hpp>
#define CSR
#ifdef CSR
# include <boost/graph/distributed/compressed_sparse_row_graph.hpp>
#else
# include <boost/graph/distributed/adjacency_list.hpp>
#endif
#include <boost/test/minimal.hpp>
#include <boost/graph/distributed/mpi_process_group.hpp>
#include <boost/graph/distributed/queue.hpp>
#include <boost/graph/parallel/distribution.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/bind.hpp>
#include <sys/time.h>
#include <time.h>
#include <boost/random.hpp>
#include <boost/property_map/parallel/distributed_property_map.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/graph/distributed/graphviz.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <boost/graph/parallel/algorithm.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/pending/queue.hpp>
#include <boost/graph/rmat_graph_generator.hpp>
#include <boost/graph/distributed/betweenness_centrality.hpp>
#include <boost/graph/distributed/filtered_graph.hpp>
#include <boost/graph/parallel/container_traits.hpp>
#include <boost/graph/properties.hpp>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <sstream>
#include <stdint.h>
using namespace boost;
// #define DEBUG
typedef rand48 RandomGenerator;
/****************************************************************************
* Timing
****************************************************************************/
#ifndef PBGL_ACCOUNTING
typedef double time_type;
inline time_type get_time()
{
timeval tp;
gettimeofday(&tp, 0);
return tp.tv_sec + tp.tv_usec / 1000000.0;
}
std::string print_time(time_type t)
{
std::ostringstream out;
out << std::setiosflags(std::ios::fixed) << std::setprecision(2) << t;
return out.str();
}
#endif // PBGL_ACCOUNTING
/****************************************************************************
* Edge weight generator iterator *
****************************************************************************/
template<typename F, typename RandomGenerator>
class generator_iterator
{
public:
typedef std::input_iterator_tag iterator_category;
typedef typename F::result_type value_type;
typedef const value_type& reference;
typedef const value_type* pointer;
typedef void difference_type;
explicit
generator_iterator(RandomGenerator& gen, const F& f = F())
: f(f), gen(&gen)
{
value = this->f(gen);
}
reference operator*() const { return value; }
pointer operator->() const { return &value; }
generator_iterator& operator++()
{
value = f(*gen);
return *this;
}
generator_iterator operator++(int)
{
generator_iterator temp(*this);
++(*this);
return temp;
}
bool operator==(const generator_iterator& other) const
{ return f == other.f; }
bool operator!=(const generator_iterator& other) const
{ return !(*this == other); }
private:
F f;
RandomGenerator* gen;
value_type value;
};
template<typename F, typename RandomGenerator>
inline generator_iterator<F, RandomGenerator>
make_generator_iterator( RandomGenerator& gen, const F& f)
{ return generator_iterator<F, RandomGenerator>(gen, f); }
template<typename Graph, typename DistanceMap, typename WeightMap, typename ColorMap>
struct ssca_visitor : bfs_visitor<>
{
typedef typename property_traits<WeightMap>::value_type Weight;
typedef typename property_traits<ColorMap>::value_type ColorValue;
typedef color_traits<ColorValue> Color;
ssca_visitor(DistanceMap& distance, const WeightMap& weight, ColorMap& color,
Weight max_)
: distance(distance), weight(weight), color(color), max_(max_) {}
template<typename Edge>
void tree_edge(Edge e, const Graph& g)
{
int new_distance = get(weight, e) == (std::numeric_limits<Weight>::max)() ?
(std::numeric_limits<Weight>::max)() : get(distance, source(e, g)) + get(weight, e);
put(distance, target(e, g), new_distance);
if (new_distance > max_)
put(color, target(e, g), Color::black());
}
private:
DistanceMap& distance;
const WeightMap& weight;
ColorMap& color;
Weight max_;
};
// Generate source vertices for approximate BC
template <typename Graph, typename Buffer>
void
generate_sources(const Graph& g, Buffer sources,
typename graph_traits<Graph>::vertices_size_type num_sources)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename boost::graph::parallel::process_group_type<Graph>::type
process_group_type;
process_group_type pg = g.process_group();
typename process_group_type::process_id_type id = process_id(pg);
typename process_group_type::process_size_type p = num_processes(pg);
// Don't feel like adding a special case for num_sources < p
assert(num_sources >= p);
minstd_rand gen;
uniform_int<vertices_size_type> rand_vertex(0, num_vertices(g) - 1);
std::vector<vertex_descriptor> all_sources, local_sources;
vertices_size_type local_vertices = vertices_size_type(floor((double)num_sources / p));
local_vertices += (id < (num_sources - (p * local_vertices)) ? 1 : 0);
while (local_vertices > 0) {
vertex_iterator iter = vertices(g).first;
std::advance(iter, rand_vertex(gen));
if (out_degree(*iter, g) != 0
&& std::find(local_sources.begin(), local_sources.end(), *iter) == local_sources.end()) {
local_sources.push_back(*iter);
--local_vertices;
}
}
all_gather(pg, local_sources.begin(), local_sources.end(), all_sources);
std::sort(all_sources.begin(), all_sources.end());
for (typename std::vector<vertex_descriptor>::iterator iter = all_sources.begin();
iter != all_sources.end(); ++iter)
sources.push(*iter);
}
// Kernel 2 - Classify large sets
template <typename Graph, typename WeightMap>
void classify_sets(const Graph& g, const WeightMap& weight_map,
std::vector<std::pair<typename graph_traits<Graph>::vertex_descriptor,
typename graph_traits<Graph>::vertex_descriptor> > & global_S)
{
typedef typename boost::graph::parallel::process_group_type<Graph>::type
process_group_type;
process_group_type pg = g.process_group();
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
std::vector<std::pair<vertex_descriptor, vertex_descriptor> > S;
time_type start = get_time();
#ifdef CSR
typedef typename property_map<Graph, vertex_owner_t>::const_type OwnerMap;
typedef typename property_map<Graph, vertex_local_t>::const_type LocalMap;
OwnerMap owner = get(vertex_owner, g);
LocalMap local = get(vertex_local, g);
#endif
int max_ = 0;
BGL_FORALL_EDGES_T(e, g, Graph) {
#ifdef CSR
if (get(owner, source(e, g)) == process_id(pg)) {
#endif
int w = get(weight_map, e);
if (w > max_) {
max_ = w;
S.clear();
}
if (w >= max_)
S.push_back(std::make_pair(source(e, g), target(e, g)));
#ifdef CSR
}
#endif
}
int global_max = all_reduce(pg, max_, boost::parallel::maximum<int>());
if (max_ < global_max)
S.clear();
global_S.clear();
all_gather(pg, S.begin(), S.end(), global_S);
// This is probably unnecessary as long as the sets of edges owned by procs is disjoint
std::sort(global_S.begin(), global_S.end());
std::unique(global_S.begin(), global_S.end());
synchronize(pg);
time_type end = get_time();
if (process_id(pg) == 0) {
std::cerr << " Distributed Graph: " << print_time(end - start) << std::endl
<< " Max int weight = " << global_max << std::endl;
}
}
template <typename ProcessGroup, typename Graph, typename WeightMap,
typename EdgeVector>
void seq_classify_sets(const ProcessGroup& pg, const Graph& g,
const WeightMap& weight_map, EdgeVector& S)
{
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
typedef typename property_traits<WeightMap>::value_type edge_weight_type;
time_type start = get_time();
edge_weight_type max_ = 0;
BGL_FORALL_EDGES_T(e, g, Graph) {
edge_weight_type w = get(weight_map, e);
if (w > max_) {
max_ = w;
S.clear();
}
if (w >= max_)
S.push_back(e);
}
synchronize(pg);
time_type end = get_time();
if (process_id(pg) == 0)
std::cerr << " Non-Distributed Graph: " << print_time(end - start) << std::endl
<< " Max int weight = " << max_ << std::endl;
}
// Kernel 3 - Graph Extraction
template <typename Graph, typename OwnerMap, typename LocalMap,
typename WeightMap, typename DistanceMap, typename ColorMap,
typename EdgeVector>
void subgraph_extraction(Graph& g, const OwnerMap& owner, const LocalMap& local,
const WeightMap& weight_map, DistanceMap distances,
ColorMap color_map, const EdgeVector& S,
int subGraphEdgeLength)
{
// Nick: I think turning the vertex black when the maximum distance is
// exceeded will prevent BFS from exploring beyond the subgraph.
// Unfortunately we can't run subgraph extraction in parallel
// because the subgraphs may overlap
typedef typename property_traits<ColorMap>::value_type ColorValue;
typedef color_traits<ColorValue> Color;
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph::parallel::process_group_type<Graph>::type
process_group_type;
typedef boost::graph::distributed::distributed_queue<process_group_type,
OwnerMap, queue<vertex_descriptor> > queue_t;
process_group_type pg = g.process_group();
typename process_group_type::process_id_type id = process_id(pg);
queue_t Q(pg, owner);
EdgeVector sources(S.begin(), S.end());
#ifdef DEBUG
std::vector<std::vector<vertex_descriptor> > subgraphs;
#endif
synchronize(pg);
typedef typename std::vector<std::pair<vertex_descriptor, vertex_descriptor> >::iterator
source_iterator;
time_type start = get_time();
for (source_iterator iter = sources.begin(); iter != sources.end(); ++iter) {
// Reinitialize distance and color maps every BFS
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (get(owner, v) == id) {
local_put(color_map, v, Color::white());
local_put(distances, v, (std::numeric_limits<int>::max)());
}
}
vertex_descriptor u = iter->first, v = iter->second;
local_put(distances, u, 0);
local_put(distances, v, 0);
while (!Q.empty()) Q.pop();
if (get(owner, u) == id)
Q.push(u);
local_put(color_map, u, Color::gray());
breadth_first_search(g, v, Q,
ssca_visitor<Graph, DistanceMap, WeightMap, ColorMap>
(distances, weight_map, color_map, subGraphEdgeLength),
color_map);
// At this point all vertices with distance > 0 in addition to the
// starting vertices compose the subgraph.
#ifdef DEBUG
subgraphs.push_back(std::vector<vertex_descriptor>());
std::vector<vertex_descriptor>& subgraph = subgraphs.back();
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (get(distances, v) < (std::numeric_limits<int>::max)())
subgraph.push_back(v);
}
#endif
}
synchronize(pg);
time_type end = get_time();
#ifdef DEBUG
for (unsigned int i = 0; i < subgraphs.size(); i++) {
all_gather(pg, subgraphs[i].begin(), subgraphs[i].end(), subgraphs[i]);
std::sort(subgraphs[i].begin(), subgraphs[i].end());
subgraphs[i].erase(std::unique(subgraphs[i].begin(), subgraphs[i].end()),
subgraphs[i].end());
}
if (process_id(pg) == 0)
for (int i = 0; abs(i) < subgraphs.size(); i++) {
std::cerr << "Subgraph " << i << " :\n";
for (int j = 0; abs(j) < subgraphs[i].size(); j++)
std::cerr << " " << get(local, subgraphs[i][j]) << "@"
<< get(owner, subgraphs[i][j]) << std::endl;
}
#endif
if (process_id(pg) == 0)
std::cerr << " Distributed Graph: " << print_time(end - start) << std::endl;
}
template <typename ProcessGroup, typename Graph, typename WeightMap,
typename DistanceMap, typename ColorMap, typename EdgeVector>
void seq_subgraph_extraction(const ProcessGroup& pg, const Graph& g,
const WeightMap& weight_map, DistanceMap distances,
ColorMap color_map, const EdgeVector& S,
int subGraphEdgeLength)
{
// Nick: I think turning the vertex black when the maximum distance is
// exceeded will prevent BFS from exploring beyond the subgraph.
using boost::graph::distributed::mpi_process_group;
typedef typename property_traits<ColorMap>::value_type ColorValue;
typedef color_traits<ColorValue> Color;
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
boost::queue<vertex_descriptor> Q;
std::vector<edge_descriptor> sources(S.begin(), S.end());
#ifdef DEBUG
std::vector<std::vector<vertex_descriptor> > subgraphs;
#endif
synchronize(pg);
typedef ProcessGroup process_group_type;
typename process_group_type::process_id_type id = process_id(pg);
typename process_group_type::process_size_type p = num_processes(pg);
time_type start = get_time();
for (int i = id; i < sources.size(); i += p) {
// Reinitialize distance and color maps every BFS
BGL_FORALL_VERTICES_T(v, g, Graph) {
put(color_map, v, Color::white());
put(distances, v, (std::numeric_limits<int>::max)());
}
vertex_descriptor u = source(sources[i], g),
v = target(sources[i], g);
put(distances, u, 0);
put(distances, v, 0);
while (!Q.empty()) Q.pop();
Q.push(u);
put(color_map, u, Color::gray());
breadth_first_search(g, v, Q,
ssca_visitor<Graph, DistanceMap, WeightMap, ColorMap>
(distances, weight_map, color_map, subGraphEdgeLength),
color_map);
#ifdef DEBUG
subgraphs.push_back(std::vector<vertex_descriptor>());
std::vector<vertex_descriptor>& subgraph = subgraphs.back();
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (get(distances, v) < (std::numeric_limits<int>::max)())
subgraph.push_back(v);
}
#endif
}
synchronize(pg);
time_type end = get_time();
#ifdef DEBUG
std::vector<vertex_descriptor> ser_subgraphs;
for (int i = 0; i < subgraphs.size(); ++i) {
for (int j = 0; j < subgraphs[i].size(); ++j)
ser_subgraphs.push_back(subgraphs[i][j]);
ser_subgraphs.push_back(graph_traits<Graph>::null_vertex());
}
all_gather(pg, ser_subgraphs.begin(), ser_subgraphs.end(), ser_subgraphs);
int i = 0;
typename std::vector<vertex_descriptor>::iterator iter(ser_subgraphs.begin());
while (iter != ser_subgraphs.end()) {
std::cerr << "Subgraph " << i << " :\n";
while (*iter != graph_traits<Graph>::null_vertex()) {
std::cerr << " " << *iter << std::endl;
++iter;
}
++i;
++iter;
}
#endif
if (process_id(pg) == 0)
std::cerr << " Non-Distributed Graph: " << print_time(end - start) << std::endl;
}
template <typename ProcessGroup, typename Graph, typename CentralityMap>
void
extract_max_bc_vertices(const ProcessGroup& pg, const Graph& g, const CentralityMap& centrality,
std::vector<typename graph_traits<Graph>::vertex_descriptor>& max_bc_vec)
{
using boost::graph::parallel::process_group;
using boost::parallel::all_gather;
using boost::parallel::all_reduce;
// Find set of vertices with highest BC score
typedef typename property_traits<CentralityMap>::value_type centrality_type;
std::vector<centrality_type> max_bc_vertices;
centrality_type max_ = 0;
max_bc_vec.clear();
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (get(centrality, v) == max_)
max_bc_vec.push_back(v);
else if (get(centrality, v) > max_) {
max_ = get(centrality, v);
max_bc_vec.clear();
max_bc_vec.push_back(v);
}
}
centrality_type global_max = all_reduce(pg, max_, boost::parallel::minimum<int>());
if (global_max > max_)
max_bc_vec.clear();
all_gather(pg, max_bc_vec.begin(), max_bc_vec.end(), max_bc_vec);
}
// Function object to filter edges divisible by 8
// EdgeWeightMap::value_type must be integral!
template <typename EdgeWeightMap>
struct edge_weight_not_divisible_by_eight {
typedef typename property_traits<EdgeWeightMap>::value_type weight_type;
edge_weight_not_divisible_by_eight() { }
edge_weight_not_divisible_by_eight(EdgeWeightMap weight) : m_weight(weight) { }
template <typename Edge>
bool operator()(const Edge& e) const {
return (get(m_weight, e) & ((std::numeric_limits<weight_type>::max)() - 7)) != get(m_weight, e);
}
EdgeWeightMap m_weight;
};
//
// Vertex and Edge properties
//
#ifdef CSR
typedef int weight_type;
struct WeightedEdge {
WeightedEdge(weight_type weight = 0) : weight(weight) { }
weight_type weight;
};
struct VertexProperties {
VertexProperties(int distance = 0, default_color_type color = white_color)
: distance(distance), color(color) { }
int distance;
default_color_type color;
};
#endif
template <typename RandomGenerator, typename ProcessGroup, typename vertices_size_type,
typename edges_size_type>
void
run_non_distributed_graph_tests(RandomGenerator& gen, const ProcessGroup& pg,
vertices_size_type n, edges_size_type m,
std::size_t maxEdgeWeight, uint64_t seed,
int K4Alpha, double a, double b, double c, double d,
int subGraphEdgeLength, bool show_degree_dist,
bool full_bc, bool verify)
{
#ifdef CSR
typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge>
seqGraph;
#else
typedef adjacency_list<vecS, vecS, directedS,
// Vertex properties
property<vertex_distance_t, int,
property<vertex_color_t, default_color_type> >,
// Edge properties
property<edge_weight_t, int> > seqGraph;
#endif
// Generate sequential graph for non_distributed betweenness centrality
// Reseed the PRNG to get the same graph
gen.seed(seed);
synchronize(pg);
time_type start = get_time();
#ifdef CSR
seqGraph sg(edges_are_sorted,
sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(),
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
n);
#else
seqGraph sg(unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
unique_rmat_iterator<RandomGenerator, seqGraph>(),
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
n);
#endif
// Not strictly necessary to synchronize here, but it make sure that the
// time we measure is the time needed for all copies of the graph to be
// constructed
synchronize(pg);
time_type end = get_time();
if (process_id(pg) == 0)
std::cerr<< "Kernel 1:\n"
<< " Non-Distributed Graph: " << print_time(end - start) << std::endl;
std::map<int, int> degree_dist;
if ( show_degree_dist ) {
BGL_FORALL_VERTICES_T(v, sg, seqGraph) {
degree_dist[out_degree(v, sg)]++;
}
std::cerr << "Degree - Fraction of vertices of that degree\n";
for (std::map<int, int>::iterator iter = degree_dist.begin();
iter != degree_dist.end(); ++iter)
std::cerr << " " << iter->first << " - " << double(iter->second) / num_vertices(sg) << std::endl << std::endl;
}
//
// Kernel 2 - Classify large sets
//
std::vector<graph_traits<seqGraph>::edge_descriptor> seqS;
if (process_id(pg) == 0)
std::cerr << "Kernel 2:\n";
seq_classify_sets(pg, sg,
#ifdef CSR
get(&WeightedEdge::weight, sg),
#else
get(edge_weight, sg),
#endif
seqS);
//
// Kernel 3 - Graph Extraction
//
#ifdef CSR
typedef weight_type weight_t;
weight_t unit_weight(1);
#else
int unit_weight(1);;
#endif
if (process_id(pg) == 0)
std::cerr << "Kernel 3:\n";
seq_subgraph_extraction(pg, sg,
#ifdef CSR
// get(&WeightedEdge::weight, sg),
ref_property_map<graph_traits<seqGraph>::edge_descriptor, weight_t>(unit_weight),
get(&VertexProperties::distance, sg),
get(&VertexProperties::color, sg),
#else
// get(edge_weight, sg),
ref_property_map<graph_traits<seqGraph>::edge_descriptor, int>(unit_weight),
get(vertex_distance, sg),
get(vertex_color, sg),
#endif
seqS, subGraphEdgeLength);
#ifdef CSR
typedef property_map<seqGraph, weight_type WeightedEdge::*>::type seqEdgeWeightMap;
edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(&WeightedEdge::weight, sg));
#else
typedef property_map<seqGraph, edge_weight_t>::type seqEdgeWeightMap;
edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(edge_weight, sg));
#endif
typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
filteredSeqGraph;
filteredSeqGraph fsg(sg, sg_filter);
std::vector<graph_traits<seqGraph>::vertex_descriptor> max_seq_bc_vec;
// Non-Distributed Centrality Map
typedef property_map<seqGraph, vertex_index_t>::const_type seqIndexMap;
typedef iterator_property_map<std::vector<int>::iterator, seqIndexMap> seqCentralityMap;
std::vector<int> non_distributed_centralityS(num_vertices(sg), 0);
seqCentralityMap non_distributed_centrality(non_distributed_centralityS.begin(),
get(vertex_index, sg));
vertices_size_type n0 = 0;
BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph) {
if (out_degree(v, fsg) == 0) ++n0;
}
if (process_id(pg) == 0)
std::cerr << "Kernel 4:\n";
// Run Betweenness Centrality
if (full_bc) {
// Non-Distributed Graph BC
start = get_time();
non_distributed_brandes_betweenness_centrality(pg, fsg, non_distributed_centrality);
extract_max_bc_vertices(pg, fsg, non_distributed_centrality, max_seq_bc_vec);
end = get_time();
edges_size_type nonDistributedExactTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
if (process_id(pg) == 0)
std::cerr << " non-Distributed Graph Exact = " << print_time(end - start) << " ("
<< nonDistributedExactTEPs << " TEPs)\n";
}
// Non-Distributed Graph Approximate BC
std::vector<int> nonDistributedApproxCentralityS(num_vertices(sg), 0);
seqCentralityMap nonDistributedApproxCentrality(nonDistributedApproxCentralityS.begin(),
get(vertex_index, sg));
queue<typename graph_traits<filteredSeqGraph>::vertex_descriptor> sources;
{
minstd_rand gen;
uniform_int<vertices_size_type> rand_vertex(0, num_vertices(fsg) - 1);
int remaining_sources = floor(pow(2, K4Alpha));
std::vector<typename graph_traits<filteredSeqGraph>::vertex_descriptor> temp_sources;
while (remaining_sources > 0) {
typename graph_traits<filteredSeqGraph>::vertex_descriptor v =
vertex(rand_vertex(gen), fsg);
if (out_degree(v, fsg) != 0
&& std::find(temp_sources.begin(), temp_sources.end(), v) == temp_sources.end()) {
temp_sources.push_back(v);
--remaining_sources;
}
}
for (int i = 0; i < temp_sources.size(); ++i)
sources.push(temp_sources[i]);
}
start = get_time();
non_distributed_brandes_betweenness_centrality(pg, fsg, buffer(sources).
centrality_map(nonDistributedApproxCentrality));
extract_max_bc_vertices(pg, fsg, nonDistributedApproxCentrality, max_seq_bc_vec);
end = get_time();
edges_size_type nonDistributedApproxTEPs = edges_size_type(floor(7 * n * pow(2, K4Alpha) / (end - start)));
if (process_id(pg) == 0)
std::cerr << " Non-Distributed Graph Approximate (" << floor(pow(2, K4Alpha)) << " sources) = "
<< print_time(end - start) << " (" << nonDistributedApproxTEPs << " TEPs)\n";
// Verify Correctness of Kernel 4
if (full_bc && verify && process_id(pg) == 0) {
std::vector<int> seq_centralityS(num_vertices(fsg), 0);
seqCentralityMap seq_centrality(seq_centralityS.begin(), get(vertex_index, fsg));
max_seq_bc_vec.clear();
property_traits<seqCentralityMap>::value_type max_ = 0;
start = get_time();
brandes_betweenness_centrality(fsg, seq_centrality);
typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
filteredSeqGraph;
BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph ) {
if (get(seq_centrality, v) == max_)
max_seq_bc_vec.push_back(v);
else if (get(seq_centrality, v) > max_) {
max_ = get(seq_centrality, v);
max_seq_bc_vec.clear();
max_seq_bc_vec.push_back(v);
}
}
end = get_time();
edges_size_type sequentialTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
std::cerr << " Sequential = " << print_time(end - start) << " (" << sequentialTEPs << " TEPs)\n";
typename ProcessGroup::process_id_type id = process_id(pg);
typename ProcessGroup::process_size_type p = num_processes(pg);
assert((double)n/p == floor((double)n/p));
std::cerr << "\nVerifying non-scalable betweenness centrality...\n";
{
bool passed = true;
// Verify non-scalable betweenness centrality
BGL_FORALL_VERTICES_T(v, sg, seqGraph) {
if (get(non_distributed_centrality, v) != get(seq_centrality, v)) {
std::cerr << " " << id << ": Error - centrality of " << v
<< " does not match the sequential result ("
<< get(non_distributed_centrality, v) << " vs. "
<< get(seq_centrality, v) << ")\n";
passed = false;
}
}
if (passed)
std::cerr << " PASSED\n";
}
}
}
template <typename RandomGenerator, typename ProcessGroup, typename vertices_size_type,
typename edges_size_type>
void
run_distributed_graph_tests(RandomGenerator& gen, const ProcessGroup& pg,
vertices_size_type n, edges_size_type m,
std::size_t maxEdgeWeight, uint64_t seed,
int K4Alpha, double a, double b, double c, double d,
int subGraphEdgeLength, bool show_degree_dist,
bool emit_dot_file, bool full_bc, bool verify)
{
#ifdef CSR
typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge, no_property,
distributedS<ProcessGroup> > Graph;
#else
typedef adjacency_list<vecS,
distributedS<ProcessGroup, vecS>,
directedS,
// Vertex properties
property<vertex_distance_t, int,
property<vertex_color_t, default_color_type> >,
// Edge properties
property<edge_weight_t, int> > Graph;
#endif
gen.seed(seed);
parallel::variant_distribution<ProcessGroup> distrib
= parallel::block(pg, n);
typedef typename ProcessGroup::process_id_type process_id_type;
process_id_type id = process_id(pg);
typedef typename property_map<Graph, vertex_owner_t>::const_type OwnerMap;
typedef typename property_map<Graph, vertex_local_t>::const_type LocalMap;
typedef keep_local_edges<parallel::variant_distribution<ProcessGroup>,
process_id_type>
EdgeFilter;
//
// Kernel 1 - Graph construction
// Nick: The benchmark specifies that we only have to time graph generation from
// edge tuples, the generator generates the edge tuples at graph construction
// time so we're timing some overhead in the random number generator, etc.
synchronize(pg);
time_type start = get_time();
#ifdef CSR
// typedef sorted_unique_rmat_iterator<RandomGenerator, Graph, EdgeFilter> RMATIter;
typedef sorted_rmat_iterator<RandomGenerator, Graph, keep_all_edges> RMATIter;
Graph g(//RMATIter(gen, n, m, a, b, c, d, false, true, EdgeFilter(distrib, id)),
RMATIter(gen, n, m, a, b, c, d, true, keep_all_edges()),
RMATIter(),
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
n, pg, distrib);
#else
typedef unique_rmat_iterator<RandomGenerator, Graph, EdgeFilter> RMATIter;
Graph g(RMATIter(gen, n, m, a, b, c, d, true EdgeFilter(distrib, id)),
RMATIter(),
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
n, pg, distrib);
#endif
synchronize(pg);
time_type end = get_time();
if (id == 0)
std::cerr<< "Kernel 1:\n"
<< " Distributed Graph: " << print_time(end - start) << std::endl;
if ( emit_dot_file )
write_graphviz("ssca.dot", g);
//
// Kernel 2 - Classify large sets
//
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
std::vector<std::pair<vertex_descriptor, vertex_descriptor> > S;
if (id == 0)
std::cerr << "Kernel 2:\n";
classify_sets(g,
#ifdef CSR
get(&WeightedEdge::weight, g),
#else
get(edge_weight, g),
#endif
S);
//
// Kernel 3 - Graph Extraction
//
OwnerMap owner = get(vertex_owner, g);
LocalMap local = get(vertex_local, g);
if (id == 0)
std::cerr << "Kernel 3:\n";
#ifdef CSR
typedef weight_type weight_t;
weight_t unit_weight(1);
#else
int unit_weight(1);;
#endif
subgraph_extraction(g, owner, local,
#ifdef CSR
// get(&WeightedEdge::weight, g),
ref_property_map<typename graph_traits<Graph>::edge_descriptor, weight_t>(unit_weight),
get(&VertexProperties::distance, g),
get(&VertexProperties::color, g),
#else
// get(edge_weight, g),
ref_property_map<graph_traits<Graph>::edge_descriptor, int>(unit_weight),
get(vertex_distance, g),
get(vertex_color, g),
#endif
S, subGraphEdgeLength);
//
// Kernel 4 - Betweenness Centrality
//
// Filter edges with weights divisible by 8
#ifdef CSR
typedef typename property_map<Graph, weight_type WeightedEdge::*>::type EdgeWeightMap;
edge_weight_not_divisible_by_eight<EdgeWeightMap> filter(get(&WeightedEdge::weight, g));
#else
typedef typename property_map<Graph, edge_weight_t>::type EdgeWeightMap;
edge_weight_not_divisible_by_eight<EdgeWeightMap> filter(get(edge_weight, g));
#endif
typedef filtered_graph<const Graph, edge_weight_not_divisible_by_eight<EdgeWeightMap> >
filteredGraph;
filteredGraph fg(g, filter);
// Vectors of max BC scores for all tests
std::vector<typename graph_traits<Graph>::vertex_descriptor> max_bc_vec;
// Distributed Centrality Map
typedef typename property_map<Graph, vertex_index_t>::const_type IndexMap;
typedef iterator_property_map<std::vector<int>::iterator, IndexMap> CentralityMap;
std::vector<int> centralityS(num_vertices(g), 0);
CentralityMap centrality(centralityS.begin(), get(vertex_index, g));
// Calculate number of vertices of degree 0
vertices_size_type local_n0 = 0, n0;
BGL_FORALL_VERTICES_T(v, fg, filteredGraph) {
if (out_degree(v, g) == 0) local_n0++;
}
n0 = boost::parallel::all_reduce(pg, local_n0, std::plus<vertices_size_type>());
if (id == 0)
std::cerr << "Kernel 4:\n";
// Run Betweenness Centrality
if (full_bc) {
// Distributed Graph Full BC
start = get_time();
brandes_betweenness_centrality(fg, centrality);
extract_max_bc_vertices(pg, g, centrality, max_bc_vec);
end = get_time();
edges_size_type exactTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
if (id == 0)
std::cerr << " Exact = " << print_time(end - start) << " ("
<< exactTEPs << " TEPs)\n";
}
// Distributed Graph Approximate BC
std::vector<int> approxCentralityS(num_vertices(g), 0);
CentralityMap approxCentrality(approxCentralityS.begin(), get(vertex_index, g));
queue<vertex_descriptor> sources;
generate_sources(g, sources, vertices_size_type(floor(pow(2, K4Alpha))));
start = get_time();
brandes_betweenness_centrality(fg, buffer(sources).centrality_map(approxCentrality));
extract_max_bc_vertices(pg, fg, approxCentrality, max_bc_vec);
end = get_time();
edges_size_type approxTEPs = edges_size_type(floor(7 * n * pow(2, K4Alpha) / (end - start)));
if (id == 0)
std::cerr << " Approximate (" << floor(pow(2, K4Alpha)) << " sources) = "
<< print_time(end - start) << " (" << approxTEPs << " TEPs)\n";
// Verify Correctness of Kernel 4
if (full_bc && verify && id == 0) {
// Build non-distributed graph to verify against
typedef adjacency_list<vecS, vecS, directedS,
// Vertex properties
property<vertex_distance_t, int,
property<vertex_color_t, default_color_type> >,
// Edge properties
property<edge_weight_t, int> > seqGraph;
gen.seed(seed);
#ifdef CSR
seqGraph sg(sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(),
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
n);
#else
seqGraph sg(unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
unique_rmat_iterator<RandomGenerator, seqGraph>(),
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
n);
#endif
typedef property_map<seqGraph, edge_weight_t>::type seqEdgeWeightMap;
edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(edge_weight, sg));
filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
fsg(sg, sg_filter);
// Build sequential centrality map
typedef property_map<seqGraph, vertex_index_t>::const_type seqIndexMap;
typedef iterator_property_map<std::vector<int>::iterator, seqIndexMap> seqCentralityMap;
std::vector<int> seq_centralityS(num_vertices(sg), 0);
seqCentralityMap seq_centrality(seq_centralityS.begin(), get(vertex_index, sg));
std::vector<graph_traits<seqGraph>::vertex_descriptor> max_seq_bc_vec;
max_seq_bc_vec.clear();
property_traits<seqCentralityMap>::value_type max_ = 0;
start = get_time();
brandes_betweenness_centrality(fsg, seq_centrality);
typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
filteredSeqGraph;
BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph ) {
if (get(seq_centrality, v) == max_)
max_seq_bc_vec.push_back(v);
else if (get(seq_centrality, v) > max_) {
max_ = get(seq_centrality, v);
max_seq_bc_vec.clear();
max_seq_bc_vec.push_back(v);
}
}
end = get_time();
edges_size_type sequentialTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
std::cerr << " Sequential = " << print_time(end - start) << " (" << sequentialTEPs << " TEPs)\n";
typename ProcessGroup::process_size_type p = num_processes(pg);
assert((double)n/p == floor((double)n/p));
std::cerr << "\nVerifying betweenness centrality...\n";
{
bool passed = true;
// Verify exact betweenness centrality
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (get(centrality, v) != seq_centralityS[(n/p) * get(owner, v) + get(local, v)]) {
std::cerr << " " << id << ": Error - centrality of " << get(local, v) << "@" << get(owner, v)
<< " does not match the sequential result (" << get(centrality, v) << " vs. "
<< seq_centralityS[(n/p) * get(owner, v) + get(local, v)] << ")\n";
passed = false;
}
}
if (passed)
std::cerr << " PASSED\n";
}
}
}
void usage()
{
std::cerr << "SSCA benchmark.\n\n"
<< "Usage : ssca [options]\n\n"
<< "Options are:\n"
<< "\t--vertices v\t\t\tNumber of vertices in the graph\n"
<< "\t--edges v\t\t\tNumber of edges in the graph\n"
<< "\t--seed s\t\t\tSeed for synchronized random number generator\n"
<< "\t--full-bc\t\t\tRun full (exact) Betweenness Centrality\n"
<< "\t--max-weight miw\t\tMaximum integer edge weight\n"
<< "\t--subgraph-edge-length sel\tEdge length of subgraphs to extract in Kernel 3\n"
<< "\t--k4alpha k\t\t\tValue of K4Alpha in Kernel 4\n"
<< "\t--scale s\t\t\tSCALE parameter for the SSCA benchmark (sets n, m, and C)\n"
<< "\t--dot\t\t\t\tEmit a dot file containing the graph\n"
<< "\t--verify\t\t\tVerify result\n"
<< "\t--degree-dist\t\t\t Output degree distribution of graph\n"
<< "\t--no-distributed-graph\t\tOmit distributed graph tests\n";
}
int test_main(int argc, char* argv[])
{
mpi::environment env(argc, argv);
using boost::graph::distributed::mpi_process_group;
#ifdef CSR
typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge, no_property,
distributedS<mpi_process_group> > Graph;
#else
typedef adjacency_list<vecS,
distributedS<mpi_process_group, vecS>,
directedS,
// Vertex properties
property<vertex_distance_t, int,
property<vertex_color_t, default_color_type> >,
// Edge properties
property<edge_weight_t, int> > Graph;
#endif
typedef graph_traits<Graph>::vertices_size_type vertices_size_type;
typedef graph_traits<Graph>::edges_size_type edges_size_type;
RandomGenerator gen;
// Default args
vertices_size_type n = 100;
edges_size_type m = 8*n;
uint64_t seed = 1;
int maxEdgeWeight = 100,
subGraphEdgeLength = 8,
K4Alpha = 0.5;
double a = 0.57, b = 0.19, c = 0.19, d = 0.05;
bool emit_dot_file = false, verify = false, full_bc = true,
distributed_graph = true, show_degree_dist = false,
non_distributed_graph = true;
mpi_process_group pg;
if (argc == 1) {
if (process_id(pg) == 0)
usage();
exit(-1);
}
// Parse args
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (arg == "--vertices")
n = boost::lexical_cast<vertices_size_type>( argv[i+1] );
if (arg == "--seed")
seed = boost::lexical_cast<uint64_t>( argv[i+1] );
if (arg == "--full-bc")
full_bc = (argv[i+1]== "true");
if (arg == "--max-weight")
maxEdgeWeight = boost::lexical_cast<int>( argv[i+1] );
if (arg == "--subgraph-edge-length")
subGraphEdgeLength = boost::lexical_cast<int>( argv[i+1] );
if (arg == "--edges")
m = boost::lexical_cast<edges_size_type>( argv[i+1] );
if (arg == "--k4alpha")
K4Alpha = boost::lexical_cast<int>( argv[i+1] );
if (arg == "--dot")
emit_dot_file = true;
if (arg == "--verify")
verify = true;
if (arg == "--degree-dist")
show_degree_dist = true;
if (arg == "--no-distributed-graph")
distributed_graph = false;
if (arg == "--no-non-distributed-graph")
non_distributed_graph = false;
if (arg == "--scale") {
vertices_size_type scale = boost::lexical_cast<vertices_size_type>( argv[i+1] );
maxEdgeWeight = n = vertices_size_type(floor(pow(2, scale)));
m = 8 * n;
}
if (arg == "--help") {
if (process_id(pg) == 0)
usage();
exit(-1);
}
}
if (non_distributed_graph) {
if (process_id(pg) == 0)
std::cerr << "Non-Distributed Graph Tests\n";
run_non_distributed_graph_tests(gen, pg, n, m, maxEdgeWeight, seed, K4Alpha, a, b, c, d,
subGraphEdgeLength, show_degree_dist, full_bc, verify);
}
if (distributed_graph) {
if (process_id(pg) == 0)
std::cerr << "Distributed Graph Tests\n";
run_distributed_graph_tests(gen, pg, n, m, maxEdgeWeight, seed, K4Alpha, a, b, c, d,
subGraphEdgeLength, show_degree_dist, emit_dot_file,
full_bc, verify);
}
return 0;
}