11e660b615
[SVN r68168]
1264 lines
41 KiB
C++
1264 lines
41 KiB
C++
// Copyright 2004 The Trustees of Indiana University.
|
|
|
|
// Use, modification and distribution is subject to the Boost Software
|
|
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// Authors: Nick Edmonds
|
|
// Andrew Lumsdaine
|
|
|
|
#include <boost/graph/use_mpi.hpp>
|
|
|
|
#define CSR
|
|
|
|
#ifdef CSR
|
|
# include <boost/graph/distributed/compressed_sparse_row_graph.hpp>
|
|
#else
|
|
# include <boost/graph/distributed/adjacency_list.hpp>
|
|
#endif
|
|
|
|
#include <boost/test/minimal.hpp>
|
|
#include <boost/graph/distributed/mpi_process_group.hpp>
|
|
#include <boost/graph/distributed/queue.hpp>
|
|
|
|
#include <boost/graph/parallel/distribution.hpp>
|
|
#include <boost/lexical_cast.hpp>
|
|
#include <boost/bind.hpp>
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
|
|
#include <boost/random.hpp>
|
|
#include <boost/property_map/parallel/distributed_property_map.hpp>
|
|
|
|
#include <boost/random/linear_congruential.hpp>
|
|
|
|
#include <boost/graph/distributed/graphviz.hpp>
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/iteration_macros.hpp>
|
|
|
|
#include <boost/graph/parallel/algorithm.hpp>
|
|
#include <boost/graph/breadth_first_search.hpp>
|
|
#include <boost/pending/queue.hpp>
|
|
|
|
#include <boost/graph/rmat_graph_generator.hpp>
|
|
#include <boost/graph/distributed/betweenness_centrality.hpp>
|
|
#include <boost/graph/distributed/filtered_graph.hpp>
|
|
#include <boost/graph/parallel/container_traits.hpp>
|
|
|
|
#include <boost/graph/properties.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <fstream>
|
|
#include <string>
|
|
#include <sstream>
|
|
#include <stdint.h>
|
|
|
|
using namespace boost;
|
|
|
|
// #define DEBUG
|
|
|
|
typedef rand48 RandomGenerator;
|
|
|
|
/****************************************************************************
|
|
* Timing
|
|
****************************************************************************/
|
|
#ifndef PBGL_ACCOUNTING
|
|
|
|
typedef double time_type;
|
|
|
|
inline time_type get_time()
|
|
{
|
|
timeval tp;
|
|
gettimeofday(&tp, 0);
|
|
return tp.tv_sec + tp.tv_usec / 1000000.0;
|
|
}
|
|
|
|
std::string print_time(time_type t)
|
|
{
|
|
std::ostringstream out;
|
|
out << std::setiosflags(std::ios::fixed) << std::setprecision(2) << t;
|
|
return out.str();
|
|
}
|
|
|
|
#endif // PBGL_ACCOUNTING
|
|
|
|
/****************************************************************************
|
|
* Edge weight generator iterator *
|
|
****************************************************************************/
|
|
template<typename F, typename RandomGenerator>
|
|
class generator_iterator
|
|
{
|
|
public:
|
|
typedef std::input_iterator_tag iterator_category;
|
|
typedef typename F::result_type value_type;
|
|
typedef const value_type& reference;
|
|
typedef const value_type* pointer;
|
|
typedef void difference_type;
|
|
|
|
explicit
|
|
generator_iterator(RandomGenerator& gen, const F& f = F())
|
|
: f(f), gen(&gen)
|
|
{
|
|
value = this->f(gen);
|
|
}
|
|
|
|
reference operator*() const { return value; }
|
|
pointer operator->() const { return &value; }
|
|
|
|
generator_iterator& operator++()
|
|
{
|
|
value = f(*gen);
|
|
return *this;
|
|
}
|
|
|
|
generator_iterator operator++(int)
|
|
{
|
|
generator_iterator temp(*this);
|
|
++(*this);
|
|
return temp;
|
|
}
|
|
|
|
bool operator==(const generator_iterator& other) const
|
|
{ return f == other.f; }
|
|
|
|
bool operator!=(const generator_iterator& other) const
|
|
{ return !(*this == other); }
|
|
|
|
private:
|
|
F f;
|
|
RandomGenerator* gen;
|
|
value_type value;
|
|
};
|
|
|
|
template<typename F, typename RandomGenerator>
|
|
inline generator_iterator<F, RandomGenerator>
|
|
make_generator_iterator( RandomGenerator& gen, const F& f)
|
|
{ return generator_iterator<F, RandomGenerator>(gen, f); }
|
|
|
|
template<typename Graph, typename DistanceMap, typename WeightMap, typename ColorMap>
|
|
struct ssca_visitor : bfs_visitor<>
|
|
{
|
|
typedef typename property_traits<WeightMap>::value_type Weight;
|
|
typedef typename property_traits<ColorMap>::value_type ColorValue;
|
|
typedef color_traits<ColorValue> Color;
|
|
|
|
ssca_visitor(DistanceMap& distance, const WeightMap& weight, ColorMap& color,
|
|
Weight max_)
|
|
: distance(distance), weight(weight), color(color), max_(max_) {}
|
|
|
|
template<typename Edge>
|
|
void tree_edge(Edge e, const Graph& g)
|
|
{
|
|
int new_distance = get(weight, e) == (std::numeric_limits<Weight>::max)() ?
|
|
(std::numeric_limits<Weight>::max)() : get(distance, source(e, g)) + get(weight, e);
|
|
|
|
put(distance, target(e, g), new_distance);
|
|
if (new_distance > max_)
|
|
put(color, target(e, g), Color::black());
|
|
}
|
|
|
|
private:
|
|
DistanceMap& distance;
|
|
const WeightMap& weight;
|
|
ColorMap& color;
|
|
Weight max_;
|
|
};
|
|
|
|
// Generate source vertices for approximate BC
|
|
template <typename Graph, typename Buffer>
|
|
void
|
|
generate_sources(const Graph& g, Buffer sources,
|
|
typename graph_traits<Graph>::vertices_size_type num_sources)
|
|
{
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
typedef typename graph_traits<Graph>::vertices_size_type vertices_size_type;
|
|
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
|
|
|
|
typedef typename boost::graph::parallel::process_group_type<Graph>::type
|
|
process_group_type;
|
|
process_group_type pg = g.process_group();
|
|
|
|
typename process_group_type::process_id_type id = process_id(pg);
|
|
typename process_group_type::process_size_type p = num_processes(pg);
|
|
|
|
// Don't feel like adding a special case for num_sources < p
|
|
assert(num_sources >= p);
|
|
|
|
minstd_rand gen;
|
|
uniform_int<vertices_size_type> rand_vertex(0, num_vertices(g) - 1);
|
|
std::vector<vertex_descriptor> all_sources, local_sources;
|
|
vertices_size_type local_vertices = vertices_size_type(floor((double)num_sources / p));
|
|
local_vertices += (id < (num_sources - (p * local_vertices)) ? 1 : 0);
|
|
|
|
while (local_vertices > 0) {
|
|
vertex_iterator iter = vertices(g).first;
|
|
std::advance(iter, rand_vertex(gen));
|
|
|
|
if (out_degree(*iter, g) != 0
|
|
&& std::find(local_sources.begin(), local_sources.end(), *iter) == local_sources.end()) {
|
|
local_sources.push_back(*iter);
|
|
--local_vertices;
|
|
}
|
|
}
|
|
all_gather(pg, local_sources.begin(), local_sources.end(), all_sources);
|
|
std::sort(all_sources.begin(), all_sources.end());
|
|
for (typename std::vector<vertex_descriptor>::iterator iter = all_sources.begin();
|
|
iter != all_sources.end(); ++iter)
|
|
sources.push(*iter);
|
|
}
|
|
|
|
// Kernel 2 - Classify large sets
|
|
template <typename Graph, typename WeightMap>
|
|
void classify_sets(const Graph& g, const WeightMap& weight_map,
|
|
std::vector<std::pair<typename graph_traits<Graph>::vertex_descriptor,
|
|
typename graph_traits<Graph>::vertex_descriptor> > & global_S)
|
|
{
|
|
typedef typename boost::graph::parallel::process_group_type<Graph>::type
|
|
process_group_type;
|
|
process_group_type pg = g.process_group();
|
|
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
std::vector<std::pair<vertex_descriptor, vertex_descriptor> > S;
|
|
|
|
time_type start = get_time();
|
|
|
|
#ifdef CSR
|
|
typedef typename property_map<Graph, vertex_owner_t>::const_type OwnerMap;
|
|
typedef typename property_map<Graph, vertex_local_t>::const_type LocalMap;
|
|
OwnerMap owner = get(vertex_owner, g);
|
|
LocalMap local = get(vertex_local, g);
|
|
#endif
|
|
|
|
int max_ = 0;
|
|
BGL_FORALL_EDGES_T(e, g, Graph) {
|
|
#ifdef CSR
|
|
if (get(owner, source(e, g)) == process_id(pg)) {
|
|
#endif
|
|
int w = get(weight_map, e);
|
|
if (w > max_) {
|
|
max_ = w;
|
|
S.clear();
|
|
}
|
|
|
|
if (w >= max_)
|
|
S.push_back(std::make_pair(source(e, g), target(e, g)));
|
|
#ifdef CSR
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int global_max = all_reduce(pg, max_, boost::parallel::maximum<int>());
|
|
if (max_ < global_max)
|
|
S.clear();
|
|
|
|
global_S.clear();
|
|
|
|
all_gather(pg, S.begin(), S.end(), global_S);
|
|
|
|
// This is probably unnecessary as long as the sets of edges owned by procs is disjoint
|
|
std::sort(global_S.begin(), global_S.end());
|
|
std::unique(global_S.begin(), global_S.end());
|
|
|
|
synchronize(pg);
|
|
|
|
time_type end = get_time();
|
|
|
|
if (process_id(pg) == 0) {
|
|
std::cerr << " Distributed Graph: " << print_time(end - start) << std::endl
|
|
<< " Max int weight = " << global_max << std::endl;
|
|
}
|
|
}
|
|
|
|
template <typename ProcessGroup, typename Graph, typename WeightMap,
|
|
typename EdgeVector>
|
|
void seq_classify_sets(const ProcessGroup& pg, const Graph& g,
|
|
const WeightMap& weight_map, EdgeVector& S)
|
|
{
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
typedef typename property_traits<WeightMap>::value_type edge_weight_type;
|
|
|
|
time_type start = get_time();
|
|
|
|
edge_weight_type max_ = 0;
|
|
BGL_FORALL_EDGES_T(e, g, Graph) {
|
|
edge_weight_type w = get(weight_map, e);
|
|
if (w > max_) {
|
|
max_ = w;
|
|
S.clear();
|
|
}
|
|
|
|
if (w >= max_)
|
|
S.push_back(e);
|
|
}
|
|
|
|
synchronize(pg);
|
|
|
|
time_type end = get_time();
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr << " Non-Distributed Graph: " << print_time(end - start) << std::endl
|
|
<< " Max int weight = " << max_ << std::endl;
|
|
}
|
|
|
|
// Kernel 3 - Graph Extraction
|
|
template <typename Graph, typename OwnerMap, typename LocalMap,
|
|
typename WeightMap, typename DistanceMap, typename ColorMap,
|
|
typename EdgeVector>
|
|
void subgraph_extraction(Graph& g, const OwnerMap& owner, const LocalMap& local,
|
|
const WeightMap& weight_map, DistanceMap distances,
|
|
ColorMap color_map, const EdgeVector& S,
|
|
int subGraphEdgeLength)
|
|
{
|
|
// Nick: I think turning the vertex black when the maximum distance is
|
|
// exceeded will prevent BFS from exploring beyond the subgraph.
|
|
// Unfortunately we can't run subgraph extraction in parallel
|
|
// because the subgraphs may overlap
|
|
|
|
typedef typename property_traits<ColorMap>::value_type ColorValue;
|
|
typedef color_traits<ColorValue> Color;
|
|
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
|
|
typedef typename boost::graph::parallel::process_group_type<Graph>::type
|
|
process_group_type;
|
|
|
|
typedef boost::graph::distributed::distributed_queue<process_group_type,
|
|
OwnerMap, queue<vertex_descriptor> > queue_t;
|
|
|
|
process_group_type pg = g.process_group();
|
|
typename process_group_type::process_id_type id = process_id(pg);
|
|
|
|
queue_t Q(pg, owner);
|
|
|
|
EdgeVector sources(S.begin(), S.end());
|
|
|
|
#ifdef DEBUG
|
|
std::vector<std::vector<vertex_descriptor> > subgraphs;
|
|
#endif
|
|
|
|
synchronize(pg);
|
|
|
|
typedef typename std::vector<std::pair<vertex_descriptor, vertex_descriptor> >::iterator
|
|
source_iterator;
|
|
|
|
time_type start = get_time();
|
|
for (source_iterator iter = sources.begin(); iter != sources.end(); ++iter) {
|
|
// Reinitialize distance and color maps every BFS
|
|
BGL_FORALL_VERTICES_T(v, g, Graph) {
|
|
if (get(owner, v) == id) {
|
|
local_put(color_map, v, Color::white());
|
|
local_put(distances, v, (std::numeric_limits<int>::max)());
|
|
}
|
|
}
|
|
|
|
vertex_descriptor u = iter->first, v = iter->second;
|
|
|
|
local_put(distances, u, 0);
|
|
local_put(distances, v, 0);
|
|
|
|
while (!Q.empty()) Q.pop();
|
|
if (get(owner, u) == id)
|
|
Q.push(u);
|
|
|
|
local_put(color_map, u, Color::gray());
|
|
|
|
breadth_first_search(g, v, Q,
|
|
ssca_visitor<Graph, DistanceMap, WeightMap, ColorMap>
|
|
(distances, weight_map, color_map, subGraphEdgeLength),
|
|
color_map);
|
|
|
|
// At this point all vertices with distance > 0 in addition to the
|
|
// starting vertices compose the subgraph.
|
|
#ifdef DEBUG
|
|
subgraphs.push_back(std::vector<vertex_descriptor>());
|
|
std::vector<vertex_descriptor>& subgraph = subgraphs.back();
|
|
|
|
BGL_FORALL_VERTICES_T(v, g, Graph) {
|
|
if (get(distances, v) < (std::numeric_limits<int>::max)())
|
|
subgraph.push_back(v);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
synchronize(pg);
|
|
|
|
time_type end = get_time();
|
|
|
|
#ifdef DEBUG
|
|
for (unsigned int i = 0; i < subgraphs.size(); i++) {
|
|
all_gather(pg, subgraphs[i].begin(), subgraphs[i].end(), subgraphs[i]);
|
|
std::sort(subgraphs[i].begin(), subgraphs[i].end());
|
|
subgraphs[i].erase(std::unique(subgraphs[i].begin(), subgraphs[i].end()),
|
|
subgraphs[i].end());
|
|
}
|
|
|
|
if (process_id(pg) == 0)
|
|
for (int i = 0; abs(i) < subgraphs.size(); i++) {
|
|
std::cerr << "Subgraph " << i << " :\n";
|
|
for (int j = 0; abs(j) < subgraphs[i].size(); j++)
|
|
std::cerr << " " << get(local, subgraphs[i][j]) << "@"
|
|
<< get(owner, subgraphs[i][j]) << std::endl;
|
|
}
|
|
#endif
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr << " Distributed Graph: " << print_time(end - start) << std::endl;
|
|
}
|
|
|
|
template <typename ProcessGroup, typename Graph, typename WeightMap,
|
|
typename DistanceMap, typename ColorMap, typename EdgeVector>
|
|
void seq_subgraph_extraction(const ProcessGroup& pg, const Graph& g,
|
|
const WeightMap& weight_map, DistanceMap distances,
|
|
ColorMap color_map, const EdgeVector& S,
|
|
int subGraphEdgeLength)
|
|
{
|
|
// Nick: I think turning the vertex black when the maximum distance is
|
|
// exceeded will prevent BFS from exploring beyond the subgraph.
|
|
|
|
using boost::graph::distributed::mpi_process_group;
|
|
|
|
typedef typename property_traits<ColorMap>::value_type ColorValue;
|
|
typedef color_traits<ColorValue> Color;
|
|
|
|
typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
|
|
boost::queue<vertex_descriptor> Q;
|
|
|
|
std::vector<edge_descriptor> sources(S.begin(), S.end());
|
|
|
|
#ifdef DEBUG
|
|
std::vector<std::vector<vertex_descriptor> > subgraphs;
|
|
#endif
|
|
|
|
synchronize(pg);
|
|
|
|
typedef ProcessGroup process_group_type;
|
|
|
|
typename process_group_type::process_id_type id = process_id(pg);
|
|
typename process_group_type::process_size_type p = num_processes(pg);
|
|
|
|
time_type start = get_time();
|
|
|
|
for (int i = id; i < sources.size(); i += p) {
|
|
|
|
// Reinitialize distance and color maps every BFS
|
|
BGL_FORALL_VERTICES_T(v, g, Graph) {
|
|
put(color_map, v, Color::white());
|
|
put(distances, v, (std::numeric_limits<int>::max)());
|
|
}
|
|
|
|
vertex_descriptor u = source(sources[i], g),
|
|
v = target(sources[i], g);
|
|
|
|
put(distances, u, 0);
|
|
put(distances, v, 0);
|
|
|
|
while (!Q.empty()) Q.pop();
|
|
Q.push(u);
|
|
|
|
put(color_map, u, Color::gray());
|
|
|
|
breadth_first_search(g, v, Q,
|
|
ssca_visitor<Graph, DistanceMap, WeightMap, ColorMap>
|
|
(distances, weight_map, color_map, subGraphEdgeLength),
|
|
color_map);
|
|
|
|
#ifdef DEBUG
|
|
subgraphs.push_back(std::vector<vertex_descriptor>());
|
|
std::vector<vertex_descriptor>& subgraph = subgraphs.back();
|
|
|
|
BGL_FORALL_VERTICES_T(v, g, Graph) {
|
|
if (get(distances, v) < (std::numeric_limits<int>::max)())
|
|
subgraph.push_back(v);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
synchronize(pg);
|
|
|
|
time_type end = get_time();
|
|
|
|
#ifdef DEBUG
|
|
std::vector<vertex_descriptor> ser_subgraphs;
|
|
|
|
for (int i = 0; i < subgraphs.size(); ++i) {
|
|
for (int j = 0; j < subgraphs[i].size(); ++j)
|
|
ser_subgraphs.push_back(subgraphs[i][j]);
|
|
ser_subgraphs.push_back(graph_traits<Graph>::null_vertex());
|
|
}
|
|
|
|
all_gather(pg, ser_subgraphs.begin(), ser_subgraphs.end(), ser_subgraphs);
|
|
|
|
int i = 0;
|
|
typename std::vector<vertex_descriptor>::iterator iter(ser_subgraphs.begin());
|
|
|
|
while (iter != ser_subgraphs.end()) {
|
|
std::cerr << "Subgraph " << i << " :\n";
|
|
while (*iter != graph_traits<Graph>::null_vertex()) {
|
|
std::cerr << " " << *iter << std::endl;
|
|
++iter;
|
|
}
|
|
++i;
|
|
++iter;
|
|
}
|
|
#endif
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr << " Non-Distributed Graph: " << print_time(end - start) << std::endl;
|
|
}
|
|
|
|
template <typename ProcessGroup, typename Graph, typename CentralityMap>
|
|
void
|
|
extract_max_bc_vertices(const ProcessGroup& pg, const Graph& g, const CentralityMap& centrality,
|
|
std::vector<typename graph_traits<Graph>::vertex_descriptor>& max_bc_vec)
|
|
{
|
|
using boost::graph::parallel::process_group;
|
|
using boost::parallel::all_gather;
|
|
using boost::parallel::all_reduce;
|
|
|
|
// Find set of vertices with highest BC score
|
|
typedef typename property_traits<CentralityMap>::value_type centrality_type;
|
|
std::vector<centrality_type> max_bc_vertices;
|
|
centrality_type max_ = 0;
|
|
|
|
max_bc_vec.clear();
|
|
|
|
BGL_FORALL_VERTICES_T(v, g, Graph) {
|
|
if (get(centrality, v) == max_)
|
|
max_bc_vec.push_back(v);
|
|
else if (get(centrality, v) > max_) {
|
|
max_ = get(centrality, v);
|
|
max_bc_vec.clear();
|
|
max_bc_vec.push_back(v);
|
|
}
|
|
}
|
|
|
|
centrality_type global_max = all_reduce(pg, max_, boost::parallel::minimum<int>());
|
|
|
|
if (global_max > max_)
|
|
max_bc_vec.clear();
|
|
|
|
all_gather(pg, max_bc_vec.begin(), max_bc_vec.end(), max_bc_vec);
|
|
}
|
|
|
|
|
|
// Function object to filter edges divisible by 8
|
|
// EdgeWeightMap::value_type must be integral!
|
|
template <typename EdgeWeightMap>
|
|
struct edge_weight_not_divisible_by_eight {
|
|
typedef typename property_traits<EdgeWeightMap>::value_type weight_type;
|
|
|
|
edge_weight_not_divisible_by_eight() { }
|
|
edge_weight_not_divisible_by_eight(EdgeWeightMap weight) : m_weight(weight) { }
|
|
template <typename Edge>
|
|
bool operator()(const Edge& e) const {
|
|
return (get(m_weight, e) & ((std::numeric_limits<weight_type>::max)() - 7)) != get(m_weight, e);
|
|
}
|
|
|
|
EdgeWeightMap m_weight;
|
|
};
|
|
|
|
//
|
|
// Vertex and Edge properties
|
|
//
|
|
#ifdef CSR
|
|
typedef int weight_type;
|
|
|
|
struct WeightedEdge {
|
|
WeightedEdge(weight_type weight = 0) : weight(weight) { }
|
|
|
|
weight_type weight;
|
|
};
|
|
|
|
struct VertexProperties {
|
|
VertexProperties(int distance = 0, default_color_type color = white_color)
|
|
: distance(distance), color(color) { }
|
|
|
|
int distance;
|
|
default_color_type color;
|
|
};
|
|
#endif
|
|
|
|
template <typename RandomGenerator, typename ProcessGroup, typename vertices_size_type,
|
|
typename edges_size_type>
|
|
void
|
|
run_non_distributed_graph_tests(RandomGenerator& gen, const ProcessGroup& pg,
|
|
vertices_size_type n, edges_size_type m,
|
|
std::size_t maxEdgeWeight, uint64_t seed,
|
|
int K4Alpha, double a, double b, double c, double d,
|
|
int subGraphEdgeLength, bool show_degree_dist,
|
|
bool full_bc, bool verify)
|
|
{
|
|
#ifdef CSR
|
|
typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge>
|
|
seqGraph;
|
|
#else
|
|
typedef adjacency_list<vecS, vecS, directedS,
|
|
// Vertex properties
|
|
property<vertex_distance_t, int,
|
|
property<vertex_color_t, default_color_type> >,
|
|
// Edge properties
|
|
property<edge_weight_t, int> > seqGraph;
|
|
#endif
|
|
|
|
// Generate sequential graph for non_distributed betweenness centrality
|
|
// Reseed the PRNG to get the same graph
|
|
gen.seed(seed);
|
|
|
|
synchronize(pg);
|
|
|
|
time_type start = get_time();
|
|
|
|
#ifdef CSR
|
|
seqGraph sg(edges_are_sorted,
|
|
sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
|
|
sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(),
|
|
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
|
|
n);
|
|
#else
|
|
seqGraph sg(unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
|
|
unique_rmat_iterator<RandomGenerator, seqGraph>(),
|
|
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
|
|
n);
|
|
#endif
|
|
|
|
// Not strictly necessary to synchronize here, but it make sure that the
|
|
// time we measure is the time needed for all copies of the graph to be
|
|
// constructed
|
|
synchronize(pg);
|
|
|
|
time_type end = get_time();
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr<< "Kernel 1:\n"
|
|
<< " Non-Distributed Graph: " << print_time(end - start) << std::endl;
|
|
|
|
std::map<int, int> degree_dist;
|
|
if ( show_degree_dist ) {
|
|
BGL_FORALL_VERTICES_T(v, sg, seqGraph) {
|
|
degree_dist[out_degree(v, sg)]++;
|
|
}
|
|
|
|
std::cerr << "Degree - Fraction of vertices of that degree\n";
|
|
for (std::map<int, int>::iterator iter = degree_dist.begin();
|
|
iter != degree_dist.end(); ++iter)
|
|
std::cerr << " " << iter->first << " - " << double(iter->second) / num_vertices(sg) << std::endl << std::endl;
|
|
}
|
|
|
|
//
|
|
// Kernel 2 - Classify large sets
|
|
//
|
|
std::vector<graph_traits<seqGraph>::edge_descriptor> seqS;
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr << "Kernel 2:\n";
|
|
|
|
seq_classify_sets(pg, sg,
|
|
#ifdef CSR
|
|
get(&WeightedEdge::weight, sg),
|
|
#else
|
|
get(edge_weight, sg),
|
|
#endif
|
|
seqS);
|
|
|
|
//
|
|
// Kernel 3 - Graph Extraction
|
|
//
|
|
#ifdef CSR
|
|
typedef weight_type weight_t;
|
|
weight_t unit_weight(1);
|
|
#else
|
|
int unit_weight(1);;
|
|
#endif
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr << "Kernel 3:\n";
|
|
|
|
seq_subgraph_extraction(pg, sg,
|
|
#ifdef CSR
|
|
// get(&WeightedEdge::weight, sg),
|
|
ref_property_map<graph_traits<seqGraph>::edge_descriptor, weight_t>(unit_weight),
|
|
get(&VertexProperties::distance, sg),
|
|
get(&VertexProperties::color, sg),
|
|
#else
|
|
// get(edge_weight, sg),
|
|
ref_property_map<graph_traits<seqGraph>::edge_descriptor, int>(unit_weight),
|
|
get(vertex_distance, sg),
|
|
get(vertex_color, sg),
|
|
#endif
|
|
seqS, subGraphEdgeLength);
|
|
|
|
#ifdef CSR
|
|
typedef property_map<seqGraph, weight_type WeightedEdge::*>::type seqEdgeWeightMap;
|
|
edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(&WeightedEdge::weight, sg));
|
|
#else
|
|
typedef property_map<seqGraph, edge_weight_t>::type seqEdgeWeightMap;
|
|
edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(edge_weight, sg));
|
|
#endif
|
|
|
|
typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
|
|
filteredSeqGraph;
|
|
|
|
filteredSeqGraph fsg(sg, sg_filter);
|
|
|
|
std::vector<graph_traits<seqGraph>::vertex_descriptor> max_seq_bc_vec;
|
|
|
|
// Non-Distributed Centrality Map
|
|
typedef property_map<seqGraph, vertex_index_t>::const_type seqIndexMap;
|
|
typedef iterator_property_map<std::vector<int>::iterator, seqIndexMap> seqCentralityMap;
|
|
|
|
std::vector<int> non_distributed_centralityS(num_vertices(sg), 0);
|
|
seqCentralityMap non_distributed_centrality(non_distributed_centralityS.begin(),
|
|
get(vertex_index, sg));
|
|
|
|
vertices_size_type n0 = 0;
|
|
BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph) {
|
|
if (out_degree(v, fsg) == 0) ++n0;
|
|
}
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr << "Kernel 4:\n";
|
|
|
|
// Run Betweenness Centrality
|
|
if (full_bc) {
|
|
|
|
// Non-Distributed Graph BC
|
|
start = get_time();
|
|
non_distributed_brandes_betweenness_centrality(pg, fsg, non_distributed_centrality);
|
|
extract_max_bc_vertices(pg, fsg, non_distributed_centrality, max_seq_bc_vec);
|
|
end = get_time();
|
|
|
|
edges_size_type nonDistributedExactTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr << " non-Distributed Graph Exact = " << print_time(end - start) << " ("
|
|
<< nonDistributedExactTEPs << " TEPs)\n";
|
|
}
|
|
|
|
// Non-Distributed Graph Approximate BC
|
|
std::vector<int> nonDistributedApproxCentralityS(num_vertices(sg), 0);
|
|
seqCentralityMap nonDistributedApproxCentrality(nonDistributedApproxCentralityS.begin(),
|
|
get(vertex_index, sg));
|
|
|
|
queue<typename graph_traits<filteredSeqGraph>::vertex_descriptor> sources;
|
|
{
|
|
minstd_rand gen;
|
|
uniform_int<vertices_size_type> rand_vertex(0, num_vertices(fsg) - 1);
|
|
int remaining_sources = floor(pow(2, K4Alpha));
|
|
std::vector<typename graph_traits<filteredSeqGraph>::vertex_descriptor> temp_sources;
|
|
|
|
while (remaining_sources > 0) {
|
|
typename graph_traits<filteredSeqGraph>::vertex_descriptor v =
|
|
vertex(rand_vertex(gen), fsg);
|
|
|
|
if (out_degree(v, fsg) != 0
|
|
&& std::find(temp_sources.begin(), temp_sources.end(), v) == temp_sources.end()) {
|
|
temp_sources.push_back(v);
|
|
--remaining_sources;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < temp_sources.size(); ++i)
|
|
sources.push(temp_sources[i]);
|
|
}
|
|
|
|
start = get_time();
|
|
non_distributed_brandes_betweenness_centrality(pg, fsg, buffer(sources).
|
|
centrality_map(nonDistributedApproxCentrality));
|
|
extract_max_bc_vertices(pg, fsg, nonDistributedApproxCentrality, max_seq_bc_vec);
|
|
end = get_time();
|
|
|
|
edges_size_type nonDistributedApproxTEPs = edges_size_type(floor(7 * n * pow(2, K4Alpha) / (end - start)));
|
|
|
|
if (process_id(pg) == 0)
|
|
std::cerr << " Non-Distributed Graph Approximate (" << floor(pow(2, K4Alpha)) << " sources) = "
|
|
<< print_time(end - start) << " (" << nonDistributedApproxTEPs << " TEPs)\n";
|
|
|
|
// Verify Correctness of Kernel 4
|
|
if (full_bc && verify && process_id(pg) == 0) {
|
|
|
|
std::vector<int> seq_centralityS(num_vertices(fsg), 0);
|
|
seqCentralityMap seq_centrality(seq_centralityS.begin(), get(vertex_index, fsg));
|
|
|
|
max_seq_bc_vec.clear();
|
|
property_traits<seqCentralityMap>::value_type max_ = 0;
|
|
|
|
start = get_time();
|
|
brandes_betweenness_centrality(fsg, seq_centrality);
|
|
|
|
typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
|
|
filteredSeqGraph;
|
|
|
|
BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph ) {
|
|
if (get(seq_centrality, v) == max_)
|
|
max_seq_bc_vec.push_back(v);
|
|
else if (get(seq_centrality, v) > max_) {
|
|
max_ = get(seq_centrality, v);
|
|
max_seq_bc_vec.clear();
|
|
max_seq_bc_vec.push_back(v);
|
|
}
|
|
}
|
|
|
|
end = get_time();
|
|
|
|
edges_size_type sequentialTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
|
|
|
|
std::cerr << " Sequential = " << print_time(end - start) << " (" << sequentialTEPs << " TEPs)\n";
|
|
|
|
typename ProcessGroup::process_id_type id = process_id(pg);
|
|
typename ProcessGroup::process_size_type p = num_processes(pg);
|
|
|
|
assert((double)n/p == floor((double)n/p));
|
|
|
|
std::cerr << "\nVerifying non-scalable betweenness centrality...\n";
|
|
|
|
{
|
|
bool passed = true;
|
|
|
|
// Verify non-scalable betweenness centrality
|
|
BGL_FORALL_VERTICES_T(v, sg, seqGraph) {
|
|
if (get(non_distributed_centrality, v) != get(seq_centrality, v)) {
|
|
std::cerr << " " << id << ": Error - centrality of " << v
|
|
<< " does not match the sequential result ("
|
|
<< get(non_distributed_centrality, v) << " vs. "
|
|
<< get(seq_centrality, v) << ")\n";
|
|
passed = false;
|
|
}
|
|
}
|
|
|
|
if (passed)
|
|
std::cerr << " PASSED\n";
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
template <typename RandomGenerator, typename ProcessGroup, typename vertices_size_type,
|
|
typename edges_size_type>
|
|
void
|
|
run_distributed_graph_tests(RandomGenerator& gen, const ProcessGroup& pg,
|
|
vertices_size_type n, edges_size_type m,
|
|
std::size_t maxEdgeWeight, uint64_t seed,
|
|
int K4Alpha, double a, double b, double c, double d,
|
|
int subGraphEdgeLength, bool show_degree_dist,
|
|
bool emit_dot_file, bool full_bc, bool verify)
|
|
{
|
|
#ifdef CSR
|
|
typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge, no_property,
|
|
distributedS<ProcessGroup> > Graph;
|
|
#else
|
|
typedef adjacency_list<vecS,
|
|
distributedS<ProcessGroup, vecS>,
|
|
directedS,
|
|
// Vertex properties
|
|
property<vertex_distance_t, int,
|
|
property<vertex_color_t, default_color_type> >,
|
|
// Edge properties
|
|
property<edge_weight_t, int> > Graph;
|
|
#endif
|
|
|
|
gen.seed(seed);
|
|
|
|
parallel::variant_distribution<ProcessGroup> distrib
|
|
= parallel::block(pg, n);
|
|
|
|
typedef typename ProcessGroup::process_id_type process_id_type;
|
|
process_id_type id = process_id(pg);
|
|
|
|
typedef typename property_map<Graph, vertex_owner_t>::const_type OwnerMap;
|
|
typedef typename property_map<Graph, vertex_local_t>::const_type LocalMap;
|
|
|
|
typedef keep_local_edges<parallel::variant_distribution<ProcessGroup>,
|
|
process_id_type>
|
|
EdgeFilter;
|
|
|
|
//
|
|
// Kernel 1 - Graph construction
|
|
// Nick: The benchmark specifies that we only have to time graph generation from
|
|
// edge tuples, the generator generates the edge tuples at graph construction
|
|
// time so we're timing some overhead in the random number generator, etc.
|
|
synchronize(pg);
|
|
|
|
time_type start = get_time();
|
|
|
|
#ifdef CSR
|
|
// typedef sorted_unique_rmat_iterator<RandomGenerator, Graph, EdgeFilter> RMATIter;
|
|
typedef sorted_rmat_iterator<RandomGenerator, Graph, keep_all_edges> RMATIter;
|
|
|
|
Graph g(//RMATIter(gen, n, m, a, b, c, d, false, true, EdgeFilter(distrib, id)),
|
|
RMATIter(gen, n, m, a, b, c, d, true, keep_all_edges()),
|
|
RMATIter(),
|
|
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
|
|
n, pg, distrib);
|
|
#else
|
|
typedef unique_rmat_iterator<RandomGenerator, Graph, EdgeFilter> RMATIter;
|
|
Graph g(RMATIter(gen, n, m, a, b, c, d, true EdgeFilter(distrib, id)),
|
|
RMATIter(),
|
|
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
|
|
n, pg, distrib);
|
|
#endif
|
|
|
|
synchronize(pg);
|
|
|
|
time_type end = get_time();
|
|
|
|
if (id == 0)
|
|
std::cerr<< "Kernel 1:\n"
|
|
<< " Distributed Graph: " << print_time(end - start) << std::endl;
|
|
|
|
if ( emit_dot_file )
|
|
write_graphviz("ssca.dot", g);
|
|
|
|
//
|
|
// Kernel 2 - Classify large sets
|
|
//
|
|
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
|
|
std::vector<std::pair<vertex_descriptor, vertex_descriptor> > S;
|
|
|
|
if (id == 0)
|
|
std::cerr << "Kernel 2:\n";
|
|
|
|
classify_sets(g,
|
|
#ifdef CSR
|
|
get(&WeightedEdge::weight, g),
|
|
#else
|
|
get(edge_weight, g),
|
|
#endif
|
|
S);
|
|
|
|
//
|
|
// Kernel 3 - Graph Extraction
|
|
//
|
|
OwnerMap owner = get(vertex_owner, g);
|
|
LocalMap local = get(vertex_local, g);
|
|
|
|
if (id == 0)
|
|
std::cerr << "Kernel 3:\n";
|
|
|
|
#ifdef CSR
|
|
typedef weight_type weight_t;
|
|
weight_t unit_weight(1);
|
|
#else
|
|
int unit_weight(1);;
|
|
#endif
|
|
|
|
subgraph_extraction(g, owner, local,
|
|
#ifdef CSR
|
|
// get(&WeightedEdge::weight, g),
|
|
ref_property_map<typename graph_traits<Graph>::edge_descriptor, weight_t>(unit_weight),
|
|
get(&VertexProperties::distance, g),
|
|
get(&VertexProperties::color, g),
|
|
#else
|
|
// get(edge_weight, g),
|
|
ref_property_map<graph_traits<Graph>::edge_descriptor, int>(unit_weight),
|
|
get(vertex_distance, g),
|
|
get(vertex_color, g),
|
|
#endif
|
|
S, subGraphEdgeLength);
|
|
|
|
//
|
|
// Kernel 4 - Betweenness Centrality
|
|
//
|
|
|
|
// Filter edges with weights divisible by 8
|
|
#ifdef CSR
|
|
typedef typename property_map<Graph, weight_type WeightedEdge::*>::type EdgeWeightMap;
|
|
edge_weight_not_divisible_by_eight<EdgeWeightMap> filter(get(&WeightedEdge::weight, g));
|
|
#else
|
|
typedef typename property_map<Graph, edge_weight_t>::type EdgeWeightMap;
|
|
edge_weight_not_divisible_by_eight<EdgeWeightMap> filter(get(edge_weight, g));
|
|
#endif
|
|
|
|
typedef filtered_graph<const Graph, edge_weight_not_divisible_by_eight<EdgeWeightMap> >
|
|
filteredGraph;
|
|
filteredGraph fg(g, filter);
|
|
|
|
// Vectors of max BC scores for all tests
|
|
std::vector<typename graph_traits<Graph>::vertex_descriptor> max_bc_vec;
|
|
|
|
// Distributed Centrality Map
|
|
typedef typename property_map<Graph, vertex_index_t>::const_type IndexMap;
|
|
typedef iterator_property_map<std::vector<int>::iterator, IndexMap> CentralityMap;
|
|
|
|
std::vector<int> centralityS(num_vertices(g), 0);
|
|
CentralityMap centrality(centralityS.begin(), get(vertex_index, g));
|
|
|
|
// Calculate number of vertices of degree 0
|
|
vertices_size_type local_n0 = 0, n0;
|
|
BGL_FORALL_VERTICES_T(v, fg, filteredGraph) {
|
|
if (out_degree(v, g) == 0) local_n0++;
|
|
}
|
|
n0 = boost::parallel::all_reduce(pg, local_n0, std::plus<vertices_size_type>());
|
|
|
|
if (id == 0)
|
|
std::cerr << "Kernel 4:\n";
|
|
|
|
// Run Betweenness Centrality
|
|
if (full_bc) {
|
|
|
|
// Distributed Graph Full BC
|
|
start = get_time();
|
|
brandes_betweenness_centrality(fg, centrality);
|
|
extract_max_bc_vertices(pg, g, centrality, max_bc_vec);
|
|
end = get_time();
|
|
|
|
edges_size_type exactTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
|
|
|
|
if (id == 0)
|
|
std::cerr << " Exact = " << print_time(end - start) << " ("
|
|
<< exactTEPs << " TEPs)\n";
|
|
}
|
|
|
|
// Distributed Graph Approximate BC
|
|
std::vector<int> approxCentralityS(num_vertices(g), 0);
|
|
CentralityMap approxCentrality(approxCentralityS.begin(), get(vertex_index, g));
|
|
|
|
queue<vertex_descriptor> sources;
|
|
generate_sources(g, sources, vertices_size_type(floor(pow(2, K4Alpha))));
|
|
|
|
start = get_time();
|
|
brandes_betweenness_centrality(fg, buffer(sources).centrality_map(approxCentrality));
|
|
extract_max_bc_vertices(pg, fg, approxCentrality, max_bc_vec);
|
|
end = get_time();
|
|
|
|
edges_size_type approxTEPs = edges_size_type(floor(7 * n * pow(2, K4Alpha) / (end - start)));
|
|
|
|
if (id == 0)
|
|
std::cerr << " Approximate (" << floor(pow(2, K4Alpha)) << " sources) = "
|
|
<< print_time(end - start) << " (" << approxTEPs << " TEPs)\n";
|
|
|
|
|
|
// Verify Correctness of Kernel 4
|
|
if (full_bc && verify && id == 0) {
|
|
|
|
// Build non-distributed graph to verify against
|
|
typedef adjacency_list<vecS, vecS, directedS,
|
|
// Vertex properties
|
|
property<vertex_distance_t, int,
|
|
property<vertex_color_t, default_color_type> >,
|
|
// Edge properties
|
|
property<edge_weight_t, int> > seqGraph;
|
|
|
|
gen.seed(seed);
|
|
|
|
#ifdef CSR
|
|
seqGraph sg(sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
|
|
sorted_unique_rmat_iterator<RandomGenerator, seqGraph>(),
|
|
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
|
|
n);
|
|
#else
|
|
seqGraph sg(unique_rmat_iterator<RandomGenerator, seqGraph>(gen, n, m, a, b, c, d),
|
|
unique_rmat_iterator<RandomGenerator, seqGraph>(),
|
|
make_generator_iterator(gen, uniform_int<int>(0, maxEdgeWeight)),
|
|
n);
|
|
#endif
|
|
|
|
typedef property_map<seqGraph, edge_weight_t>::type seqEdgeWeightMap;
|
|
edge_weight_not_divisible_by_eight<seqEdgeWeightMap> sg_filter(get(edge_weight, sg));
|
|
|
|
filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
|
|
fsg(sg, sg_filter);
|
|
|
|
// Build sequential centrality map
|
|
typedef property_map<seqGraph, vertex_index_t>::const_type seqIndexMap;
|
|
typedef iterator_property_map<std::vector<int>::iterator, seqIndexMap> seqCentralityMap;
|
|
|
|
std::vector<int> seq_centralityS(num_vertices(sg), 0);
|
|
seqCentralityMap seq_centrality(seq_centralityS.begin(), get(vertex_index, sg));
|
|
|
|
std::vector<graph_traits<seqGraph>::vertex_descriptor> max_seq_bc_vec;
|
|
|
|
max_seq_bc_vec.clear();
|
|
property_traits<seqCentralityMap>::value_type max_ = 0;
|
|
|
|
start = get_time();
|
|
brandes_betweenness_centrality(fsg, seq_centrality);
|
|
|
|
typedef filtered_graph<const seqGraph, edge_weight_not_divisible_by_eight<seqEdgeWeightMap> >
|
|
filteredSeqGraph;
|
|
|
|
BGL_FORALL_VERTICES_T(v, fsg, filteredSeqGraph ) {
|
|
if (get(seq_centrality, v) == max_)
|
|
max_seq_bc_vec.push_back(v);
|
|
else if (get(seq_centrality, v) > max_) {
|
|
max_ = get(seq_centrality, v);
|
|
max_seq_bc_vec.clear();
|
|
max_seq_bc_vec.push_back(v);
|
|
}
|
|
}
|
|
|
|
end = get_time();
|
|
|
|
edges_size_type sequentialTEPs = edges_size_type(floor(7 * n* (n - n0) / (end - start)));
|
|
|
|
std::cerr << " Sequential = " << print_time(end - start) << " (" << sequentialTEPs << " TEPs)\n";
|
|
|
|
typename ProcessGroup::process_size_type p = num_processes(pg);
|
|
|
|
assert((double)n/p == floor((double)n/p));
|
|
|
|
std::cerr << "\nVerifying betweenness centrality...\n";
|
|
|
|
{
|
|
bool passed = true;
|
|
|
|
// Verify exact betweenness centrality
|
|
BGL_FORALL_VERTICES_T(v, g, Graph) {
|
|
if (get(centrality, v) != seq_centralityS[(n/p) * get(owner, v) + get(local, v)]) {
|
|
std::cerr << " " << id << ": Error - centrality of " << get(local, v) << "@" << get(owner, v)
|
|
<< " does not match the sequential result (" << get(centrality, v) << " vs. "
|
|
<< seq_centralityS[(n/p) * get(owner, v) + get(local, v)] << ")\n";
|
|
passed = false;
|
|
}
|
|
}
|
|
|
|
if (passed)
|
|
std::cerr << " PASSED\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
void usage()
|
|
{
|
|
std::cerr << "SSCA benchmark.\n\n"
|
|
<< "Usage : ssca [options]\n\n"
|
|
<< "Options are:\n"
|
|
<< "\t--vertices v\t\t\tNumber of vertices in the graph\n"
|
|
<< "\t--edges v\t\t\tNumber of edges in the graph\n"
|
|
<< "\t--seed s\t\t\tSeed for synchronized random number generator\n"
|
|
<< "\t--full-bc\t\t\tRun full (exact) Betweenness Centrality\n"
|
|
<< "\t--max-weight miw\t\tMaximum integer edge weight\n"
|
|
<< "\t--subgraph-edge-length sel\tEdge length of subgraphs to extract in Kernel 3\n"
|
|
<< "\t--k4alpha k\t\t\tValue of K4Alpha in Kernel 4\n"
|
|
<< "\t--scale s\t\t\tSCALE parameter for the SSCA benchmark (sets n, m, and C)\n"
|
|
<< "\t--dot\t\t\t\tEmit a dot file containing the graph\n"
|
|
<< "\t--verify\t\t\tVerify result\n"
|
|
<< "\t--degree-dist\t\t\t Output degree distribution of graph\n"
|
|
<< "\t--no-distributed-graph\t\tOmit distributed graph tests\n";
|
|
}
|
|
|
|
int test_main(int argc, char* argv[])
|
|
{
|
|
mpi::environment env(argc, argv);
|
|
|
|
using boost::graph::distributed::mpi_process_group;
|
|
|
|
#ifdef CSR
|
|
typedef compressed_sparse_row_graph<directedS, VertexProperties, WeightedEdge, no_property,
|
|
distributedS<mpi_process_group> > Graph;
|
|
#else
|
|
typedef adjacency_list<vecS,
|
|
distributedS<mpi_process_group, vecS>,
|
|
directedS,
|
|
// Vertex properties
|
|
property<vertex_distance_t, int,
|
|
property<vertex_color_t, default_color_type> >,
|
|
// Edge properties
|
|
property<edge_weight_t, int> > Graph;
|
|
#endif
|
|
|
|
typedef graph_traits<Graph>::vertices_size_type vertices_size_type;
|
|
typedef graph_traits<Graph>::edges_size_type edges_size_type;
|
|
|
|
RandomGenerator gen;
|
|
|
|
// Default args
|
|
vertices_size_type n = 100;
|
|
edges_size_type m = 8*n;
|
|
uint64_t seed = 1;
|
|
int maxEdgeWeight = 100,
|
|
subGraphEdgeLength = 8,
|
|
K4Alpha = 0.5;
|
|
double a = 0.57, b = 0.19, c = 0.19, d = 0.05;
|
|
bool emit_dot_file = false, verify = false, full_bc = true,
|
|
distributed_graph = true, show_degree_dist = false,
|
|
non_distributed_graph = true;
|
|
|
|
mpi_process_group pg;
|
|
|
|
if (argc == 1) {
|
|
if (process_id(pg) == 0)
|
|
usage();
|
|
exit(-1);
|
|
}
|
|
|
|
// Parse args
|
|
for (int i = 1; i < argc; ++i) {
|
|
std::string arg = argv[i];
|
|
|
|
if (arg == "--vertices")
|
|
n = boost::lexical_cast<vertices_size_type>( argv[i+1] );
|
|
|
|
if (arg == "--seed")
|
|
seed = boost::lexical_cast<uint64_t>( argv[i+1] );
|
|
|
|
if (arg == "--full-bc")
|
|
full_bc = (argv[i+1]== "true");
|
|
|
|
if (arg == "--max-weight")
|
|
maxEdgeWeight = boost::lexical_cast<int>( argv[i+1] );
|
|
|
|
if (arg == "--subgraph-edge-length")
|
|
subGraphEdgeLength = boost::lexical_cast<int>( argv[i+1] );
|
|
|
|
if (arg == "--edges")
|
|
m = boost::lexical_cast<edges_size_type>( argv[i+1] );
|
|
|
|
if (arg == "--k4alpha")
|
|
K4Alpha = boost::lexical_cast<int>( argv[i+1] );
|
|
|
|
if (arg == "--dot")
|
|
emit_dot_file = true;
|
|
|
|
if (arg == "--verify")
|
|
verify = true;
|
|
|
|
if (arg == "--degree-dist")
|
|
show_degree_dist = true;
|
|
|
|
if (arg == "--no-distributed-graph")
|
|
distributed_graph = false;
|
|
|
|
if (arg == "--no-non-distributed-graph")
|
|
non_distributed_graph = false;
|
|
|
|
if (arg == "--scale") {
|
|
vertices_size_type scale = boost::lexical_cast<vertices_size_type>( argv[i+1] );
|
|
maxEdgeWeight = n = vertices_size_type(floor(pow(2, scale)));
|
|
m = 8 * n;
|
|
}
|
|
|
|
if (arg == "--help") {
|
|
if (process_id(pg) == 0)
|
|
usage();
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
if (non_distributed_graph) {
|
|
if (process_id(pg) == 0)
|
|
std::cerr << "Non-Distributed Graph Tests\n";
|
|
|
|
run_non_distributed_graph_tests(gen, pg, n, m, maxEdgeWeight, seed, K4Alpha, a, b, c, d,
|
|
subGraphEdgeLength, show_degree_dist, full_bc, verify);
|
|
}
|
|
|
|
if (distributed_graph) {
|
|
if (process_id(pg) == 0)
|
|
std::cerr << "Distributed Graph Tests\n";
|
|
|
|
run_distributed_graph_tests(gen, pg, n, m, maxEdgeWeight, seed, K4Alpha, a, b, c, d,
|
|
subGraphEdgeLength, show_degree_dist, emit_dot_file,
|
|
full_bc, verify);
|
|
}
|
|
|
|
return 0;
|
|
}
|