246 lines
28 KiB
HTML
246 lines
28 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Sets</title>
|
|
<link rel="stylesheet" href="../../../../../../doc/src/boostbook.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.74.0">
|
|
<link rel="home" href="../../index.html" title="Chapter 1. Boost.Icl">
|
|
<link rel="up" href="../semantics.html" title="Semantics">
|
|
<link rel="prev" href="../semantics.html" title="Semantics">
|
|
<link rel="next" href="maps.html" title="Maps">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="../semantics.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../semantics.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="maps.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section boost_icl_semantics_sets" lang="en">
|
|
<div class="titlepage"><div><div><h3 class="title">
|
|
<a name="boost_icl.semantics.sets"></a><a class="link" href="sets.html" title="Sets">Sets</a>
|
|
</h3></div></div></div>
|
|
<p>
|
|
For all set types <code class="computeroutput"><span class="identifier">S</span></code> that
|
|
are models concept <code class="computeroutput"><span class="identifier">Set</span></code> (<a href="http://www.cplusplus.com/reference/stl/set/" target="_top"><code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">set</span></code>
|
|
</a>, <code class="computeroutput"><a class="link" href="../../boost/icl/interval_set.html" title="Class template interval_set">interval_set</a></code>,
|
|
<code class="computeroutput"><a class="link" href="../../boost/icl/separate_interval_set.html" title="Class template separate_interval_set">separate_interval_set</a></code>
|
|
and <code class="computeroutput"><a class="link" href="../../boost/icl/split_interval_set.html" title="Class template split_interval_set">split_interval_set</a></code>)
|
|
most of the well known mathematical <a href="http://en.wikipedia.org/wiki/Algebra_of_sets" target="_top">laws
|
|
on sets</a> were successfully checked via LaBatea. The next tables are
|
|
giving an overview over the checked laws ordered by operations. If possible,
|
|
the laws are formulated with the stronger lexicographical equality (<code class="computeroutput"><span class="keyword">operator</span> <span class="special">==</span></code>)
|
|
which implies the law's validity for the weaker element equality <code class="computeroutput"><span class="identifier">is_element_equal</span></code>. Throughout this chapter
|
|
we will denote element equality as <code class="computeroutput"><span class="special">=</span><span class="identifier">e</span><span class="special">=</span></code> instead
|
|
of <code class="computeroutput"><span class="identifier">is_element_equal</span></code> where
|
|
a short notation is advantageous.
|
|
</p>
|
|
<a name="boost_icl.semantics.sets.laws_on_set_union"></a><h6>
|
|
<a name="id1085081"></a>
|
|
<a class="link" href="sets.html#boost_icl.semantics.sets.laws_on_set_union">Laws on set union</a>
|
|
</h6>
|
|
<p>
|
|
For the operation <span class="emphasis"><em><span class="bold"><strong>set union</strong></span></em></span>
|
|
available as <code class="computeroutput"><span class="keyword">operator</span> <span class="special">+,</span>
|
|
<span class="special">+=,</span> <span class="special">|,</span> <span class="special">|=</span></code> and the neutral element <code class="computeroutput"><span class="identifier">identity_element</span><span class="special"><</span><span class="identifier">S</span><span class="special">>::</span><span class="identifier">value</span><span class="special">()</span></code>
|
|
which is the empty set <code class="computeroutput"><span class="identifier">S</span><span class="special">()</span></code> these laws hold:
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">Associativity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,+,==</span> <span class="special">>:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span><span class="special">+(</span><span class="identifier">b</span><span class="special">+</span><span class="identifier">c</span><span class="special">)</span> <span class="special">==</span> <span class="special">(</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span><span class="special">)+</span><span class="identifier">c</span>
|
|
<span class="identifier">Neutrality</span><span class="special"><</span><span class="identifier">S</span><span class="special">,+,==</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">;</span> <span class="identifier">a</span><span class="special">+</span><span class="identifier">S</span><span class="special">()</span> <span class="special">==</span> <span class="identifier">a</span>
|
|
<span class="identifier">Commutativity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,+,==</span> <span class="special">>:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">;</span> <span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span> <span class="special">==</span> <span class="identifier">b</span><span class="special">+</span><span class="identifier">a</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<a name="boost_icl.semantics.sets.laws_on_set_intersection"></a><h6>
|
|
<a name="id1085402"></a>
|
|
<a class="link" href="sets.html#boost_icl.semantics.sets.laws_on_set_intersection">Laws on
|
|
set intersection</a>
|
|
</h6>
|
|
<p>
|
|
For the operation <span class="emphasis"><em><span class="bold"><strong>set intersection</strong></span></em></span>
|
|
available as <code class="computeroutput"><span class="keyword">operator</span> <span class="special">&,</span>
|
|
<span class="special">&=</span></code> these laws were validated:
|
|
</p>
|
|
<p>
|
|
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">Associativity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,&,==</span> <span class="special">>:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span><span class="special">&(</span><span class="identifier">b</span><span class="special">&</span><span class="identifier">c</span><span class="special">)</span> <span class="special">==</span> <span class="special">(</span><span class="identifier">a</span><span class="special">&</span><span class="identifier">b</span><span class="special">)&</span><span class="identifier">c</span>
|
|
<span class="identifier">Commutativity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,&,==</span> <span class="special">>:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">;</span> <span class="identifier">a</span><span class="special">&</span><span class="identifier">b</span> <span class="special">==</span> <span class="identifier">b</span><span class="special">&</span><span class="identifier">a</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<a name="boost_icl.semantics.sets.laws_on_set_difference"></a><h6>
|
|
<a name="id1085616"></a>
|
|
<a class="link" href="sets.html#boost_icl.semantics.sets.laws_on_set_difference">Laws on set
|
|
difference</a>
|
|
</h6>
|
|
<p>
|
|
For set difference there are only these laws. It is not associative and not
|
|
commutative. It's neutrality is non symmetrical.
|
|
</p>
|
|
<p>
|
|
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">RightNeutrality</span><span class="special"><</span><span class="identifier">S</span><span class="special">,-,==</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">;</span> <span class="identifier">a</span><span class="special">-</span><span class="identifier">S</span><span class="special">()</span> <span class="special">==</span> <span class="identifier">a</span>
|
|
<span class="identifier">Inversion</span><span class="special"><</span><span class="identifier">S</span><span class="special">,-,==</span> <span class="special">>:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">-</span> <span class="identifier">a</span> <span class="special">==</span> <span class="identifier">S</span><span class="special">()</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
Summarized in the next table are laws that use <code class="computeroutput"><span class="special">+</span></code>,
|
|
<code class="computeroutput"><span class="special">&</span></code> and <code class="computeroutput"><span class="special">-</span></code>
|
|
as a single operation. For all validated laws, the left and right hand sides
|
|
of the equations are lexicographically equal, as denoted by <code class="computeroutput"><span class="special">==</span></code> in the cells of the table.
|
|
</p>
|
|
<p>
|
|
|
|
</p>
|
|
<pre class="programlisting"> <span class="special">+</span> <span class="special">&</span> <span class="special">-</span>
|
|
<span class="identifier">Associativity</span> <span class="special">==</span> <span class="special">==</span>
|
|
<span class="identifier">Neutrality</span> <span class="special">==</span> <span class="special">==</span>
|
|
<span class="identifier">Commutativity</span> <span class="special">==</span> <span class="special">==</span>
|
|
<span class="identifier">Inversion</span> <span class="special">==</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<a name="boost_icl.semantics.sets.distributivity_laws"></a><h6>
|
|
<a name="id1085874"></a>
|
|
<a class="link" href="sets.html#boost_icl.semantics.sets.distributivity_laws">Distributivity
|
|
Laws</a>
|
|
</h6>
|
|
<p>
|
|
Laws, like distributivity, that use more than one operation can sometimes
|
|
be instantiated for different sequences of operators as can be seen below.
|
|
In the two instantiations of the distributivity laws operators <code class="computeroutput"><span class="special">+</span></code> and <code class="computeroutput"><span class="special">&</span></code>
|
|
are swapped. So we can have small operator signatures like <code class="computeroutput"><span class="special">+,&</span></code> and <code class="computeroutput"><span class="special">&,+</span></code>
|
|
to describe such instantiations, which will be used below. Not all instances
|
|
of distributivity laws hold for lexicographical equality. Therefore they
|
|
are denoted using a <span class="emphasis"><em>variable</em></span> equality <code class="computeroutput"><span class="special">=</span><span class="identifier">v</span><span class="special">=</span></code>
|
|
below.
|
|
</p>
|
|
<p>
|
|
|
|
</p>
|
|
<pre class="programlisting"> <span class="identifier">Distributivity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,+,&,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">&</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">&</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">)</span>
|
|
<span class="identifier">Distributivity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,&,+,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">&</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&</span> <span class="identifier">c</span><span class="special">)</span>
|
|
<span class="identifier">RightDistributivity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,+,-,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">c</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
|
|
<span class="identifier">RightDistributivity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,&,-,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">c</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">&</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
The next table shows the relationship between law instances, <a class="link" href="../../index.html#boost_icl.introduction.interval_combining_styles" title="Interval Combining Styles">interval
|
|
combining style</a> and the used equality relation.
|
|
</p>
|
|
<p>
|
|
|
|
</p>
|
|
<pre class="programlisting"> <span class="special">+,&</span> <span class="special">&,+</span>
|
|
<span class="identifier">Distributivity</span> <span class="identifier">joining</span> <span class="special">==</span> <span class="special">==</span>
|
|
<span class="identifier">separating</span> <span class="special">==</span> <span class="special">==</span>
|
|
<span class="identifier">splitting</span> <span class="special">=</span><span class="identifier">e</span><span class="special">=</span> <span class="special">=</span><span class="identifier">e</span><span class="special">=</span>
|
|
|
|
<span class="special">+,-</span> <span class="special">&,-</span>
|
|
<span class="identifier">RightDistributivity</span> <span class="identifier">joining</span> <span class="special">==</span> <span class="special">==</span>
|
|
<span class="identifier">separating</span> <span class="special">==</span> <span class="special">==</span>
|
|
<span class="identifier">splitting</span> <span class="special">=</span><span class="identifier">e</span><span class="special">=</span> <span class="special">==</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
The table gives an overview over 12 instantiations of the four distributivity
|
|
laws and shows the equalities which the instantiations holds for. For instance
|
|
<code class="computeroutput"><span class="identifier">RightDistributivity</span></code> with
|
|
operator signature <code class="computeroutput"><span class="special">+,-</span></code> instantiated
|
|
for <code class="computeroutput"><a class="link" href="../../boost/icl/split_interval_set.html" title="Class template split_interval_set">split_interval_sets</a></code>
|
|
holds only for element equality (denoted as <code class="computeroutput"><span class="special">=</span><span class="identifier">e</span><span class="special">=</span></code>):
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">RightDistributivity</span><span class="special"><</span><span class="identifier">S</span><span class="special">,+,-,=</span><span class="identifier">e</span><span class="special">=</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">c</span> <span class="special">=</span><span class="identifier">e</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
|
|
</pre>
|
|
<p>
|
|
The remaining five instantiations of <code class="computeroutput"><span class="identifier">RightDistributivity</span></code>
|
|
are valid for lexicographical equality (demoted as <code class="computeroutput"><span class="special">==</span></code>)
|
|
as well.
|
|
</p>
|
|
<p>
|
|
<a class="link" href="../../index.html#boost_icl.introduction.interval_combining_styles" title="Interval Combining Styles">Interval
|
|
combining styles</a> correspond to containers according to
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">style</span> <span class="identifier">set</span>
|
|
<span class="identifier">joining</span> <span class="identifier">interval_set</span>
|
|
<span class="identifier">separating</span> <span class="identifier">separate_interval_set</span>
|
|
<span class="identifier">splitting</span> <span class="identifier">split_interval_set</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
Finally there are two laws that combine all three major set operations: De
|
|
Mogans Law and Symmetric Difference.
|
|
</p>
|
|
<a name="boost_icl.semantics.sets.demorgan_s_law"></a><h6>
|
|
<a name="id1088062"></a>
|
|
<a class="link" href="sets.html#boost_icl.semantics.sets.demorgan_s_law">DeMorgan's Law</a>
|
|
</h6>
|
|
<p>
|
|
De Morgans Law is better known in an incarnation where the unary complement
|
|
operation <code class="computeroutput"><span class="special">~</span></code> is used. <code class="computeroutput"><span class="special">~(</span><span class="identifier">a</span><span class="special">+</span><span class="identifier">b</span><span class="special">)</span> <span class="special">==</span>
|
|
<span class="special">~</span><span class="identifier">a</span> <span class="special">*</span> <span class="special">~</span><span class="identifier">b</span></code>.
|
|
The version below is an adaption for the binary set difference <code class="computeroutput"><span class="special">-</span></code>, which is also called <span class="emphasis"><em><span class="bold"><strong>relative complement</strong></span></em></span>.
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">DeMorgan</span><span class="special"><</span><span class="identifier">S</span><span class="special">,+,&,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">+</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">&</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
|
|
<span class="identifier">DeMorgan</span><span class="special"><</span><span class="identifier">S</span><span class="special">,&,+,=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="identifier">a</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">&</span> <span class="identifier">c</span><span class="special">)</span> <span class="special">=</span><span class="identifier">v</span><span class="special">=</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">c</span><span class="special">)</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
|
|
</p>
|
|
<pre class="programlisting"> <span class="special">+,&</span> <span class="special">&,+</span>
|
|
<span class="identifier">DeMorgan</span> <span class="identifier">joining</span> <span class="special">==</span> <span class="special">==</span>
|
|
<span class="identifier">separating</span> <span class="special">==</span> <span class="special">=</span><span class="identifier">e</span><span class="special">=</span>
|
|
<span class="identifier">splitting</span> <span class="special">==</span> <span class="special">=</span><span class="identifier">e</span><span class="special">=</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
Again not all law instances are valid for lexicographical equality. The second
|
|
instantiations only holds for element equality, if the interval sets are
|
|
non joining.
|
|
</p>
|
|
<a name="boost_icl.semantics.sets.symmetric_difference"></a><h6>
|
|
<a name="id1088537"></a>
|
|
<a class="link" href="sets.html#boost_icl.semantics.sets.symmetric_difference">Symmetric Difference</a>
|
|
</h6>
|
|
<p>
|
|
|
|
</p>
|
|
<pre class="programlisting"><span class="identifier">SymmetricDifference</span><span class="special"><</span><span class="identifier">S</span><span class="special">,==</span> <span class="special">></span> <span class="special">:</span> <span class="identifier">S</span> <span class="identifier">a</span><span class="special">,</span><span class="identifier">b</span><span class="special">,</span><span class="identifier">c</span><span class="special">;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">+</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">==</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">b</span><span class="special">)</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">b</span> <span class="special">-</span> <span class="identifier">a</span><span class="special">)</span>
|
|
</pre>
|
|
<p>
|
|
</p>
|
|
<p>
|
|
Finally Symmetric Difference holds for all of icl set types and lexicographical
|
|
equality.
|
|
</p>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2007 -2010 Joachim Faulhaber<br>Copyright © 1999 -2006 Cortex Software GmbH<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="../semantics.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../semantics.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="maps.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|