Daryle Walker's GCD library submission

[SVN r11814]
This commit is contained in:
Dave Abrahams 2001-11-29 21:42:58 +00:00 committed by Peter Dimov
parent 7c2b4a799d
commit 5f810b2754
2 changed files with 579 additions and 0 deletions

View File

@ -0,0 +1,464 @@
// Boost common_factor.hpp header file -------------------------------------//
// (C) Copyright Daryle Walker, Stephen Cleary, Paul Moore 2001. Permission
// to copy, use, modify, sell and distribute this software is granted provided
// this copyright notice appears in all copies. This software is provided "as
// is" without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for updates, documentation, and revision history.
#ifndef BOOST_MATH_COMMON_FACTOR_HPP
#define BOOST_MATH_COMMON_FACTOR_HPP
#include <boost/math_fwd.hpp> // self include
#include <boost/config.hpp> // for BOOST_STATIC_CONSTANT, etc.
#include <boost/limits.hpp> // for std::numeric_limits
namespace boost
{
namespace math
{
// Forward declarations for function templates -----------------------------//
template < typename IntegerType >
IntegerType gcd( IntegerType const &a, IntegerType const &b );
template < typename IntegerType >
IntegerType lcm( IntegerType const &a, IntegerType const &b );
// Greatest common divisor evaluator class declaration ---------------------//
template < typename IntegerType >
class gcd_evaluator
{
public:
// Types
typedef IntegerType result_type, first_argument_type, second_argument_type;
// Function object interface
result_type operator ()( first_argument_type const &a,
second_argument_type const &b ) const;
}; // boost::math::gcd_evaluator
// Least common multiple evaluator class declaration -----------------------//
template < typename IntegerType >
class lcm_evaluator
{
public:
// Types
typedef IntegerType result_type, first_argument_type, second_argument_type;
// Function object interface
result_type operator ()( first_argument_type const &a,
second_argument_type const &b ) const;
}; // boost::math::lcm_evaluator
// Implementation details --------------------------------------------------//
namespace detail
{
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// Build GCD with Euclid's recursive algorithm
template < unsigned long Value1, unsigned long Value2 >
struct static_gcd_helper_t
{
private:
BOOST_STATIC_CONSTANT( unsigned long, new_value1 = Value2 );
BOOST_STATIC_CONSTANT( unsigned long, new_value2 = Value1 % Value2 );
#ifndef __BORLANDC__
#define BOOST_DETAIL_GCD_HELPER_VAL(Value) Value
#else
typedef static_gcd_helper_t self_type;
#define BOOST_DETAIL_GCD_HELPER_VAL(Value) (self_type:: Value )
#endif
typedef static_gcd_helper_t< BOOST_DETAIL_GCD_HELPER_VAL(new_value1),
BOOST_DETAIL_GCD_HELPER_VAL(new_value2) > next_step_type;
#undef BOOST_DETAIL_GCD_HELPER_VAL
public:
BOOST_STATIC_CONSTANT( unsigned long, value = next_step_type::value );
};
// Non-recursive case
template < unsigned long Value1 >
struct static_gcd_helper_t< Value1, 0UL >
{
BOOST_STATIC_CONSTANT( unsigned long, value = Value1 );
};
#else
// Use inner class template workaround from Peter Dimov
template < unsigned long Value1 >
struct static_gcd_helper2_t
{
template < unsigned long Value2 >
struct helper
{
BOOST_STATIC_CONSTANT( unsigned long, value
= static_gcd_helper2_t<Value2>::helper<Value1 % Value2>::value );
};
template < >
struct helper< 0UL >
{
BOOST_STATIC_CONSTANT( unsigned long, value = Value1 );
};
};
// Special case
template < >
struct static_gcd_helper2_t< 0UL >
{
template < unsigned long Value2 >
struct helper
{
BOOST_STATIC_CONSTANT( unsigned long, value = Value2 );
};
};
// Build the GCD from the above template(s)
template < unsigned long Value1, unsigned long Value2 >
struct static_gcd_helper_t
{
BOOST_STATIC_CONSTANT( unsigned long, value
= static_gcd_helper2_t<Value1>::helper<Value2>::value );
};
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// Build the LCM from the GCD
template < unsigned long Value1, unsigned long Value2 >
struct static_lcm_helper_t
{
typedef static_gcd_helper_t<Value1, Value2> gcd_type;
BOOST_STATIC_CONSTANT( unsigned long, value = Value1 / gcd_type::value
* Value2 );
};
// Special case for zero-GCD values
template < >
struct static_lcm_helper_t< 0UL, 0UL >
{
BOOST_STATIC_CONSTANT( unsigned long, value = 0UL );
};
#else
// Adapt GCD's inner class template workaround for LCM
template < unsigned long Value1 >
struct static_lcm_helper2_t
{
template < unsigned long Value2 >
struct helper
{
typedef static_gcd_helper_t<Value1, Value2> gcd_type;
BOOST_STATIC_CONSTANT( unsigned long, value = Value1
/ gcd_type::value * Value2 );
};
template < >
struct helper< 0UL >
{
BOOST_STATIC_CONSTANT( unsigned long, value = 0UL );
};
};
// Special case
template < >
struct static_lcm_helper2_t< 0UL >
{
template < unsigned long Value2 >
struct helper
{
BOOST_STATIC_CONSTANT( unsigned long, value = 0UL );
};
};
// Build the LCM from the above template(s)
template < unsigned long Value1, unsigned long Value2 >
struct static_lcm_helper_t
{
BOOST_STATIC_CONSTANT( unsigned long, value
= static_lcm_helper2_t<Value1>::helper<Value2>::value );
};
#endif
// Greatest common divisor for rings (including unsigned integers)
template < typename RingType >
RingType
gcd_euclidean
(
RingType a,
RingType b
)
{
// Avoid repeated construction
#ifndef __BORLANDC__
RingType const zero = static_cast<RingType>( 0 );
#else
RingType zero = static_cast<RingType>( 0 );
#endif
// Reduce by GCD-remainder property [GCD(a,b) == GCD(b,a MOD b)]
while ( true )
{
if ( a == zero )
return b;
b %= a;
if ( b == zero )
return a;
a %= b;
}
}
// Greatest common divisor for (signed) integers
template < typename IntegerType >
inline
IntegerType
gcd_integer
(
IntegerType const & a,
IntegerType const & b
)
{
// Avoid repeated construction
IntegerType const zero = static_cast<IntegerType>( 0 );
IntegerType const result = gcd_euclidean( a, b );
return ( result < zero ) ? -result : result;
}
// Least common multiple for rings (including unsigned integers)
template < typename RingType >
inline
RingType
lcm_euclidean
(
RingType const & a,
RingType const & b
)
{
RingType const zero = static_cast<RingType>( 0 );
RingType const temp = gcd_euclidean( a, b );
return ( temp != zero ) ? ( a / temp * b ) : zero;
}
// Least common multiple for (signed) integers
template < typename IntegerType >
inline
IntegerType
lcm_integer
(
IntegerType const & a,
IntegerType const & b
)
{
// Avoid repeated construction
IntegerType const zero = static_cast<IntegerType>( 0 );
IntegerType const result = lcm_euclidean( a, b );
return ( result < zero ) ? -result : result;
}
// Function objects to find the best way of computing GCD or LCM
template < typename T >
struct gcd_optimal_evaluator
{
template < bool IsSpecialized, bool IsSigned >
struct helper
{
T operator ()( T const &a, T const &b )
{
return gcd_euclidean( a, b );
}
};
template < >
struct helper< true, true >
{
T operator ()( T const &a, T const &b )
{
return gcd_integer( a, b );
}
};
T operator ()( T const &a, T const &b )
{
typedef ::std::numeric_limits<T> limits_type;
typedef helper<limits_type::is_specialized, limits_type::is_signed>
helper_type;
helper_type solver;
return solver( a, b );
}
};
template < typename T >
struct lcm_optimal_evaluator
{
template < bool IsSpecialized, bool IsSigned >
struct helper
{
T operator ()( T const &a, T const &b )
{
return lcm_euclidean( a, b );
}
};
template < >
struct helper< true, true >
{
T operator ()( T const &a, T const &b )
{
return lcm_integer( a, b );
}
};
T operator ()( T const &a, T const &b )
{
typedef ::std::numeric_limits<T> limits_type;
typedef helper<limits_type::is_specialized, limits_type::is_signed>
helper_type;
helper_type solver;
return solver( a, b );
}
};
// Functions to find the GCD or LCM in the best way
template < typename T >
inline
gcd_optimal
(
T const & a,
T const & b
)
{
gcd_optimal_evaluator<T> solver;
return solver( a, b );
}
template < typename T >
inline
lcm_optimal
(
T const & a,
T const & b
)
{
lcm_optimal_evaluator<T> solver;
return solver( a, b );
}
} // namespace detail
// Compile-time greatest common divisor evaluator class declaration --------//
template < unsigned long Value1, unsigned long Value2 >
struct static_gcd
{
BOOST_STATIC_CONSTANT( unsigned long, value
= (detail::static_gcd_helper_t<Value1, Value2>::value) );
}; // boost::math::static_gcd
// Compile-time least common multiple evaluator class declaration ----------//
template < unsigned long Value1, unsigned long Value2 >
struct static_lcm
{
BOOST_STATIC_CONSTANT( unsigned long, value
= (detail::static_lcm_helper_t<Value1, Value2>::value) );
}; // boost::math::static_lcm
// Greatest common divisor evaluator member function definition ------------//
template < typename IntegerType >
inline
typename gcd_evaluator<IntegerType>::result_type
gcd_evaluator<IntegerType>::operator ()
(
first_argument_type const & a,
second_argument_type const & b
) const
{
return detail::gcd_optimal( a, b );
}
// Least common multiple evaluator member function definition --------------//
template < typename IntegerType >
inline
typename lcm_evaluator<IntegerType>::result_type
lcm_evaluator<IntegerType>::operator ()
(
first_argument_type const & a,
second_argument_type const & b
) const
{
return detail::lcm_optimal( a, b );
}
// Greatest common divisor and least common multiple function definitions --//
template < typename IntegerType >
inline
IntegerType
gcd
(
IntegerType const & a,
IntegerType const & b
)
{
gcd_evaluator<IntegerType> solver;
return solver( a, b );
}
template < typename IntegerType >
inline
IntegerType
lcm
(
IntegerType const & a,
IntegerType const & b
)
{
lcm_evaluator<IntegerType> solver;
return solver( a, b );
}
} // namespace math
} // namespace boost
#endif // BOOST_MATH_COMMON_FACTOR_HPP

115
test/common_factor_test.cpp Normal file
View File

@ -0,0 +1,115 @@
// Boost GCD & LCM common_factor.hpp test program --------------------------//
// (C) Copyright Daryle Walker 2001. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 07 Nov 2001 Initial version (Daryle Walker)
#define BOOST_INCLUDE_MAIN
#include <boost/config.hpp> // for BOOST_MSVC
#include <boost/cstdlib.hpp> // for boost::exit_success
#include <boost/math/common_factor.hpp> // for boost::math::gcd, etc.
#include <boost/test/test_tools.hpp> // for main, BOOST_TEST
#include <iostream> // for std::cout (std::endl indirectly)
// Control to determine what kind of built-in integers are used
#ifndef CONTROL_INT_TYPE
#define CONTROL_INT_TYPE int
#endif
// Main testing function
int
test_main
(
int , // "argc" is unused
char * [] // "argv" is unused
)
{
using std::cout;
using std::endl;
#ifndef BOOST_MSVC
using boost::math::gcd;
using boost::math::static_gcd;
using boost::math::lcm;
using boost::math::static_lcm;
#else
using namespace boost::math;
#endif
typedef CONTROL_INT_TYPE int_type;
// GCD tests
cout << "Doing tests on gcd." << endl;
BOOST_TEST( gcd<int_type>( 1, -1) == 1 );
BOOST_TEST( gcd<int_type>( -1, 1) == 1 );
BOOST_TEST( gcd<int_type>( 1, 1) == 1 );
BOOST_TEST( gcd<int_type>( -1, -1) == 1 );
BOOST_TEST( gcd<int_type>( 0, 0) == 0 );
BOOST_TEST( gcd<int_type>( 7, 0) == 7 );
BOOST_TEST( gcd<int_type>( 0, 9) == 9 );
BOOST_TEST( gcd<int_type>( -7, 0) == 7 );
BOOST_TEST( gcd<int_type>( 0, -9) == 9 );
BOOST_TEST( gcd<int_type>( 42, 30) == 6 );
BOOST_TEST( gcd<int_type>( 6, -9) == 3 );
BOOST_TEST( gcd<int_type>(-10, -10) == 10 );
BOOST_TEST( gcd<int_type>(-25, -10) == 5 );
BOOST_TEST( gcd<int_type>( 3, 7) == 1 );
BOOST_TEST( gcd<int_type>( 8, 9) == 1 );
BOOST_TEST( gcd<int_type>( 7, 49) == 7 );
cout << "Doing tests on static_gcd." << endl;
BOOST_TEST( (static_gcd< 1, 1>::value) == 1 );
BOOST_TEST( (static_gcd< 0, 0>::value) == 0 );
BOOST_TEST( (static_gcd< 7, 0>::value) == 7 );
BOOST_TEST( (static_gcd< 0, 9>::value) == 9 );
BOOST_TEST( (static_gcd<42, 30>::value) == 6 );
BOOST_TEST( (static_gcd< 3, 7>::value) == 1 );
BOOST_TEST( (static_gcd< 8, 9>::value) == 1 );
BOOST_TEST( (static_gcd< 7, 49>::value) == 7 );
// LCM tests
cout << "Doing tests on lcm." << endl;
BOOST_TEST( lcm<int_type>( 1, -1) == 1 );
BOOST_TEST( lcm<int_type>( -1, 1) == 1 );
BOOST_TEST( lcm<int_type>( 1, 1) == 1 );
BOOST_TEST( lcm<int_type>( -1, -1) == 1 );
BOOST_TEST( lcm<int_type>( 0, 0) == 0 );
BOOST_TEST( lcm<int_type>( 6, 0) == 0 );
BOOST_TEST( lcm<int_type>( 0, 7) == 0 );
BOOST_TEST( lcm<int_type>( -5, 0) == 0 );
BOOST_TEST( lcm<int_type>( 0, -4) == 0 );
BOOST_TEST( lcm<int_type>( 18, 30) == 90 );
BOOST_TEST( lcm<int_type>( -6, 9) == 18 );
BOOST_TEST( lcm<int_type>(-10, -10) == 10 );
BOOST_TEST( lcm<int_type>( 25, -10) == 50 );
BOOST_TEST( lcm<int_type>( 3, 7) == 21 );
BOOST_TEST( lcm<int_type>( 8, 9) == 72 );
BOOST_TEST( lcm<int_type>( 7, 49) == 49 );
cout << "Doing tests on static_lcm." << endl;
BOOST_TEST( (static_lcm< 1, 1>::value) == 1 );
BOOST_TEST( (static_lcm< 0, 0>::value) == 0 );
BOOST_TEST( (static_lcm< 6, 0>::value) == 0 );
BOOST_TEST( (static_lcm< 0, 7>::value) == 0 );
BOOST_TEST( (static_lcm<18, 30>::value) == 90 );
BOOST_TEST( (static_lcm< 3, 7>::value) == 21 );
BOOST_TEST( (static_lcm< 8, 9>::value) == 72 );
BOOST_TEST( (static_lcm< 7, 49>::value) == 49 );
return boost::exit_success;
}