interprocess/test/memory_algorithm_test_template.hpp

1037 lines
30 KiB
C++

//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2006-2012. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/interprocess for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTERPROCESS_TEST_MEMORY_ALGORITHM_TEST_TEMPLATE_HEADER
#define BOOST_INTERPROCESS_TEST_MEMORY_ALGORITHM_TEST_TEMPLATE_HEADER
#include <boost/interprocess/detail/config_begin.hpp>
#include <boost/interprocess/containers/vector.hpp>
#include <vector>
#include <iostream>
#include <new> //std::nothrow
#include <cstring> //std::memset
namespace boost { namespace interprocess { namespace test {
enum deallocation_type { DirectDeallocation, InverseDeallocation, MixedDeallocation, EndDeallocationType };
//This test allocates until there is no more memory
//and after that deallocates all in the inverse order
template<class Allocator>
bool test_allocation(Allocator &a)
{
for( deallocation_type t = DirectDeallocation
; t != EndDeallocationType
; t = (deallocation_type)((int)t + 1)){
std::vector<void*> buffers;
typename Allocator::size_type free_memory = a.get_free_memory();
for(int i = 0; true; ++i){
void *ptr = a.allocate(i, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 0, size);
buffers.push_back(ptr);
}
switch(t){
case DirectDeallocation:
{
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
a.deallocate(buffers[j]);
}
}
break;
case InverseDeallocation:
{
for(int j = (int)buffers.size()
;j--
;){
a.deallocate(buffers[j]);
}
}
break;
case MixedDeallocation:
{
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers.size())/4;
a.deallocate(buffers[pos]);
buffers.erase(buffers.begin()+pos);
}
}
break;
default:
break;
}
bool ok = free_memory == a.get_free_memory() &&
a.all_memory_deallocated() && a.check_sanity();
if(!ok) return ok;
}
return true;
}
//This test allocates until there is no more memory
//and after that tries to shrink all the buffers to the
//half of the original size
template<class Allocator>
bool test_allocation_shrink(Allocator &a)
{
std::vector<void*> buffers;
//Allocate buffers with extra memory
for(int i = 0; true; ++i){
void *ptr = a.allocate(i*2, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 0, size);
buffers.push_back(ptr);
}
//Now shrink to half
for(int i = 0, max = (int)buffers.size()
;i < max
; ++i){
typename Allocator::size_type received_size;
char *reuse = static_cast<char*>(buffers[i]);
if(a.template allocation_command<char>
( boost::interprocess::shrink_in_place | boost::interprocess::nothrow_allocation, i*2
, received_size = i, reuse)){
if(received_size > std::size_t(i*2)){
return false;
}
if(received_size < std::size_t(i)){
return false;
}
std::memset(buffers[i], 0, a.size(buffers[i]));
}
}
//Deallocate it in non sequential order
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers.size())/4;
a.deallocate(buffers[pos]);
buffers.erase(buffers.begin()+pos);
}
return a.all_memory_deallocated() && a.check_sanity();
}
//This test allocates until there is no more memory
//and after that tries to expand all the buffers to
//avoid the wasted internal fragmentation
template<class Allocator>
bool test_allocation_expand(Allocator &a)
{
std::vector<void*> buffers;
//Allocate buffers with extra memory
for(int i = 0; true; ++i){
void *ptr = a.allocate(i, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 0, size);
buffers.push_back(ptr);
}
//Now try to expand to the double of the size
for(int i = 0, max = (int)buffers.size()
;i < max
;++i){
typename Allocator::size_type received_size;
std::size_t min_size = i+1;
std::size_t preferred_size = i*2;
preferred_size = min_size > preferred_size ? min_size : preferred_size;
char *reuse = static_cast<char*>(buffers[i]);
while(a.template allocation_command<char>
( boost::interprocess::expand_fwd | boost::interprocess::nothrow_allocation, min_size
, received_size = preferred_size, reuse)){
//Check received size is bigger than minimum
if(received_size < min_size){
return false;
}
//Now, try to expand further
min_size = received_size+1;
preferred_size = min_size*2;
}
}
//Deallocate it in non sequential order
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers.size())/4;
a.deallocate(buffers[pos]);
buffers.erase(buffers.begin()+pos);
}
return a.all_memory_deallocated() && a.check_sanity();
}
//This test allocates until there is no more memory
//and after that tries to expand all the buffers to
//avoid the wasted internal fragmentation
template<class Allocator>
bool test_allocation_shrink_and_expand(Allocator &a)
{
std::vector<void*> buffers;
std::vector<typename Allocator::size_type> received_sizes;
std::vector<bool> size_reduced;
//Allocate buffers wand store received sizes
for(int i = 0; true; ++i){
typename Allocator::size_type received_size;
char *reuse = 0;
void *ptr = a.template allocation_command<char>
( boost::interprocess::allocate_new | boost::interprocess::nothrow_allocation, i, received_size = i*2, reuse);
if(!ptr){
ptr = a.template allocation_command<char>
( boost::interprocess::allocate_new | boost::interprocess::nothrow_allocation, 1, received_size = i*2, reuse);
if(!ptr)
break;
}
buffers.push_back(ptr);
received_sizes.push_back(received_size);
}
//Now shrink to half
for(int i = 0, max = (int)buffers.size()
; i < max
; ++i){
typename Allocator::size_type received_size;
char *reuse = static_cast<char*>(buffers[i]);
if(a.template allocation_command<char>
( boost::interprocess::shrink_in_place | boost::interprocess::nothrow_allocation, received_sizes[i]
, received_size = i, reuse)){
if(received_size > std::size_t(received_sizes[i])){
return false;
}
if(received_size < std::size_t(i)){
return false;
}
size_reduced.push_back(received_size != received_sizes[i]);
}
}
//Now try to expand to the original size
for(int i = 0, max = (int)buffers.size()
;i < max
;++i){
typename Allocator::size_type received_size;
std::size_t request_size = received_sizes[i];
char *reuse = static_cast<char*>(buffers[i]);
if(a.template allocation_command<char>
( boost::interprocess::expand_fwd | boost::interprocess::nothrow_allocation, request_size
, received_size = request_size, reuse)){
if(received_size != received_sizes[i]){
return false;
}
}
else{
return false;
}
}
//Deallocate it in non sequential order
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers.size())/4;
a.deallocate(buffers[pos]);
buffers.erase(buffers.begin()+pos);
}
return a.all_memory_deallocated() && a.check_sanity();
}
//This test allocates until there is no more memory
//and after that deallocates the odd buffers to
//make room for expansions. The expansion will probably
//success since the deallocation left room for that.
template<class Allocator>
bool test_allocation_deallocation_expand(Allocator &a)
{
std::vector<void*> buffers;
//Allocate buffers with extra memory
for(int i = 0; true; ++i){
void *ptr = a.allocate(i, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 0, size);
buffers.push_back(ptr);
}
//Now deallocate the half of the blocks
//so expand maybe can merge new free blocks
for(int i = 0, max = (int)buffers.size()
;i < max
;++i){
if(i%2){
a.deallocate(buffers[i]);
buffers[i] = 0;
}
}
//Now try to expand to the double of the size
for(int i = 0, max = (int)buffers.size()
;i < max
;++i){
//
if(buffers[i]){
typename Allocator::size_type received_size;
std::size_t min_size = i+1;
std::size_t preferred_size = i*2;
preferred_size = min_size > preferred_size ? min_size : preferred_size;
char *reuse = static_cast<char*>(buffers[i]);
while(a.template allocation_command<char>
( boost::interprocess::expand_fwd | boost::interprocess::nothrow_allocation, min_size
, received_size = preferred_size, reuse)){
//Check received size is bigger than minimum
if(received_size < min_size){
return false;
}
//Now, try to expand further
min_size = received_size+1;
preferred_size = min_size*2;
}
}
}
//Now erase null values from the vector
buffers.erase( std::remove(buffers.begin(), buffers.end(), static_cast<void*>(0))
, buffers.end());
//Deallocate it in non sequential order
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers.size())/4;
a.deallocate(buffers[pos]);
buffers.erase(buffers.begin()+pos);
}
return a.all_memory_deallocated() && a.check_sanity();
}
//This test allocates until there is no more memory
//and after that deallocates all except the last.
//If the allocation algorithm is a bottom-up algorithm
//the last buffer will be in the end of the segment.
//Then the test will start expanding backwards, until
//the buffer fills all the memory
template<class Allocator>
bool test_allocation_with_reuse(Allocator &a)
{
//We will repeat this test for different sized elements
for(int sizeof_object = 1; sizeof_object < 20; ++sizeof_object){
std::vector<void*> buffers;
//Allocate buffers with extra memory
for(int i = 0; true; ++i){
void *ptr = a.allocate(i*sizeof_object, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 0, size);
buffers.push_back(ptr);
}
//Now deallocate all except the latest
//Now try to expand to the double of the sizeof_object
for(int i = 0, max = (int)buffers.size() - 1
;i < max
;++i){
a.deallocate(buffers[i]);
}
//Save the unique buffer and clear vector
void *ptr = buffers.back();
buffers.clear();
//Now allocate with reuse
typename Allocator::size_type received_size = 0;
for(int i = 0; true; ++i){
std::size_t min_size = (received_size + 1);
std::size_t prf_size = (received_size + (i+1)*2);
void *reuse = ptr;
void *ret = a.raw_allocation_command
( boost::interprocess::expand_bwd | boost::interprocess::nothrow_allocation, min_size
, received_size = prf_size, reuse, sizeof_object);
if(!ret)
break;
//If we have memory, this must be a buffer reuse
if(!reuse)
return 1;
if(received_size < min_size)
return 1;
ptr = ret;
}
//There is only a single block so deallocate it
a.deallocate(ptr);
if(!a.all_memory_deallocated() || !a.check_sanity())
return false;
}
return true;
}
//This test allocates memory with different alignments
//and checks returned memory is aligned.
template<class Allocator>
bool test_aligned_allocation(Allocator &a)
{
//Allocate aligned buffers in a loop
//and then deallocate it
bool continue_loop = true;
for(unsigned int i = 1; continue_loop; i <<= 1){
for(unsigned int j = 1; true; j <<= 1){
void *ptr = a.allocate_aligned(i-1, j, std::nothrow);
if(!ptr){
if(j == 1)
continue_loop = false;
break;
}
if(((std::size_t)ptr & (j - 1)) != 0)
return false;
a.deallocate(ptr);
if(!a.all_memory_deallocated() || !a.check_sanity()){
return false;
}
}
}
return a.all_memory_deallocated() && a.check_sanity();
}
//This test allocates memory with different alignments
//and checks returned memory is aligned.
template<class Allocator>
bool test_continuous_aligned_allocation(Allocator &a)
{
std::vector<void*> buffers;
//Allocate aligned buffers in a loop
//and then deallocate it
bool continue_loop = true;
for(unsigned i = 1; continue_loop && i; i <<= 1){
for(unsigned int j = 1; j; j <<= 1){
for(bool any_allocated = false; 1;){
void *ptr = a.allocate_aligned(i-1, j, std::nothrow);
buffers.push_back(ptr);
if(!ptr){
if(j == 1 && !any_allocated){
continue_loop = false;
}
break;
}
else{
any_allocated = true;
}
if(((std::size_t)ptr & (j - 1)) != 0)
return false;
}
//Deallocate all
for(unsigned int k = (int)buffers.size(); k--;){
a.deallocate(buffers[k]);
}
buffers.clear();
if(!a.all_memory_deallocated() && a.check_sanity())
return false;
if(!continue_loop)
break;
}
}
return a.all_memory_deallocated() && a.check_sanity();
}
//This test allocates memory, writes it with a non-zero value and
//tests zero_free_memory initializes to zero for the next allocation
template<class Allocator>
bool test_clear_free_memory(Allocator &a)
{
std::vector<void*> buffers;
//Allocate memory
for(int i = 0; true; ++i){
void *ptr = a.allocate(i, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 1, size);
buffers.push_back(ptr);
}
//Mark it
for(int i = 0, max = buffers.size(); i < max; ++i){
std::memset(buffers[i], 1, i);
}
//Deallocate all
for(int j = (int)buffers.size()
;j--
;){
a.deallocate(buffers[j]);
}
buffers.clear();
if(!a.all_memory_deallocated() && a.check_sanity())
return false;
//Now clear all free memory
a.zero_free_memory();
if(!a.all_memory_deallocated() && a.check_sanity())
return false;
//Now test all allocated memory is zero
//Allocate memory
const char *first_addr = 0;
for(int i = 0; true; ++i){
void *ptr = a.allocate(i, std::nothrow);
if(!ptr)
break;
if(i == 0){
first_addr = (char*)ptr;
}
std::size_t memsize = a.size(ptr);
buffers.push_back(ptr);
for(int j = 0; j < (int)memsize; ++j){
if(static_cast<char*>((char*)ptr)[j]){
std::cout << "Zero memory test failed. in buffer " << i
<< " byte " << j << " first address " << (void*) first_addr << " offset " << ((char*)ptr+j) - (char*)first_addr << " memsize: " << memsize << std::endl;
return false;
}
}
}
//Deallocate all
for(int j = (int)buffers.size()
;j--
;){
a.deallocate(buffers[j]);
}
if(!a.all_memory_deallocated() && a.check_sanity())
return false;
return true;
}
//This test uses tests grow and shrink_to_fit functions
template<class Allocator>
bool test_grow_shrink_to_fit(Allocator &a)
{
std::vector<void*> buffers;
typename Allocator::size_type original_size = a.get_size();
typename Allocator::size_type original_free = a.get_free_memory();
a.shrink_to_fit();
if(!a.all_memory_deallocated() && a.check_sanity())
return false;
typename Allocator::size_type shrunk_size = a.get_size();
typename Allocator::size_type shrunk_free_memory = a.get_free_memory();
if(shrunk_size != a.get_min_size())
return 1;
a.grow(original_size - shrunk_size);
if(!a.all_memory_deallocated() && a.check_sanity())
return false;
if(original_size != a.get_size())
return false;
if(original_free != a.get_free_memory())
return false;
//Allocate memory
for(int i = 0; true; ++i){
void *ptr = a.allocate(i, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 0, size);
buffers.push_back(ptr);
}
//Now deallocate the half of the blocks
//so expand maybe can merge new free blocks
for(int i = 0, max = (int)buffers.size()
;i < max
;++i){
if(i%2){
a.deallocate(buffers[i]);
buffers[i] = 0;
}
}
//Deallocate the rest of the blocks
//Deallocate it in non sequential order
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
int pos = (j%5)*((int)buffers.size())/4;
if(pos == int(buffers.size()))
--pos;
a.deallocate(buffers[pos]);
buffers.erase(buffers.begin()+pos);
typename Allocator::size_type old_free = a.get_free_memory();
a.shrink_to_fit();
if(!a.check_sanity()) return false;
if(original_size < a.get_size()) return false;
if(old_free < a.get_free_memory()) return false;
a.grow(original_size - a.get_size());
if(!a.check_sanity()) return false;
if(original_size != a.get_size()) return false;
if(old_free != a.get_free_memory()) return false;
}
//Now shrink it to the maximum
a.shrink_to_fit();
if(a.get_size() != a.get_min_size())
return 1;
if(shrunk_free_memory != a.get_free_memory())
return 1;
if(!a.all_memory_deallocated() && a.check_sanity())
return false;
a.grow(original_size - shrunk_size);
if(original_size != a.get_size())
return false;
if(original_free != a.get_free_memory())
return false;
if(!a.all_memory_deallocated() && a.check_sanity())
return false;
return true;
}
//This test allocates multiple values until there is no more memory
//and after that deallocates all in the inverse order
template<class Allocator>
bool test_many_equal_allocation(Allocator &a)
{
for( deallocation_type t = DirectDeallocation
; t != EndDeallocationType
; t = (deallocation_type)((int)t + 1)){
typename Allocator::size_type free_memory = a.get_free_memory();
std::vector<void*> buffers2;
//Allocate buffers with extra memory
for(int i = 0; true; ++i){
void *ptr = a.allocate(i, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 0, size);
if(!a.check_sanity())
return false;
buffers2.push_back(ptr);
}
//Now deallocate the half of the blocks
//so expand maybe can merge new free blocks
for(int i = 0, max = (int)buffers2.size()
;i < max
;++i){
if(i%2){
a.deallocate(buffers2[i]);
buffers2[i] = 0;
}
}
if(!a.check_sanity())
return false;
typedef typename Allocator::multiallocation_chain multiallocation_chain;
std::vector<void*> buffers;
for(int i = 0; true; ++i){
multiallocation_chain chain;
a.allocate_many(std::nothrow, i+1, (i+1)*2, chain);
if(chain.empty())
break;
typename multiallocation_chain::size_type n = chain.size();
while(!chain.empty()){
buffers.push_back(ipcdetail::to_raw_pointer(chain.pop_front()));
}
if(n != std::size_t((i+1)*2))
return false;
}
if(!a.check_sanity())
return false;
switch(t){
case DirectDeallocation:
{
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
a.deallocate(buffers[j]);
}
}
break;
case InverseDeallocation:
{
for(int j = (int)buffers.size()
;j--
;){
a.deallocate(buffers[j]);
}
}
break;
case MixedDeallocation:
{
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers.size())/4;
a.deallocate(buffers[pos]);
buffers.erase(buffers.begin()+pos);
}
}
break;
default:
break;
}
//Deallocate the rest of the blocks
//Deallocate it in non sequential order
for(int j = 0, max = (int)buffers2.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers2.size())/4;
a.deallocate(buffers2[pos]);
buffers2.erase(buffers2.begin()+pos);
}
bool ok = free_memory == a.get_free_memory() &&
a.all_memory_deallocated() && a.check_sanity();
if(!ok) return ok;
}
return true;
}
//This test allocates multiple values until there is no more memory
//and after that deallocates all in the inverse order
template<class Allocator>
bool test_many_different_allocation(Allocator &a)
{
typedef typename Allocator::multiallocation_chain multiallocation_chain;
const std::size_t ArraySize = 11;
typename Allocator::size_type requested_sizes[ArraySize];
for(std::size_t i = 0; i < ArraySize; ++i){
requested_sizes[i] = 4*i;
}
for( deallocation_type t = DirectDeallocation
; t != EndDeallocationType
; t = (deallocation_type)((int)t + 1)){
typename Allocator::size_type free_memory = a.get_free_memory();
std::vector<void*> buffers2;
//Allocate buffers with extra memory
for(int i = 0; true; ++i){
void *ptr = a.allocate(i, std::nothrow);
if(!ptr)
break;
std::size_t size = a.size(ptr);
std::memset(ptr, 0, size);
buffers2.push_back(ptr);
}
//Now deallocate the half of the blocks
//so expand maybe can merge new free blocks
for(int i = 0, max = (int)buffers2.size()
;i < max
;++i){
if(i%2){
a.deallocate(buffers2[i]);
buffers2[i] = 0;
}
}
std::vector<void*> buffers;
for(int i = 0; true; ++i){
multiallocation_chain chain;
a.allocate_many(std::nothrow, requested_sizes, ArraySize, 1, chain);
if(chain.empty())
break;
typename multiallocation_chain::size_type n = chain.size();
while(!chain.empty()){
buffers.push_back(ipcdetail::to_raw_pointer(chain.pop_front()));
}
if(n != ArraySize)
return false;
}
switch(t){
case DirectDeallocation:
{
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
a.deallocate(buffers[j]);
}
}
break;
case InverseDeallocation:
{
for(int j = (int)buffers.size()
;j--
;){
a.deallocate(buffers[j]);
}
}
break;
case MixedDeallocation:
{
for(int j = 0, max = (int)buffers.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers.size())/4;
a.deallocate(buffers[pos]);
buffers.erase(buffers.begin()+pos);
}
}
break;
default:
break;
}
//Deallocate the rest of the blocks
//Deallocate it in non sequential order
for(int j = 0, max = (int)buffers2.size()
;j < max
;++j){
int pos = (j%4)*((int)buffers2.size())/4;
a.deallocate(buffers2[pos]);
buffers2.erase(buffers2.begin()+pos);
}
bool ok = free_memory == a.get_free_memory() &&
a.all_memory_deallocated() && a.check_sanity();
if(!ok) return ok;
}
return true;
}
//This test allocates multiple values until there is no more memory
//and after that deallocates all in the inverse order
template<class Allocator>
bool test_many_deallocation(Allocator &a)
{
typedef typename Allocator::multiallocation_chain multiallocation_chain;
typedef typename Allocator::multiallocation_chain multiallocation_chain;
const std::size_t ArraySize = 11;
vector<multiallocation_chain> buffers;
typename Allocator::size_type requested_sizes[ArraySize];
for(std::size_t i = 0; i < ArraySize; ++i){
requested_sizes[i] = 4*i;
}
typename Allocator::size_type free_memory = a.get_free_memory();
{
for(int i = 0; true; ++i){
multiallocation_chain chain;
a.allocate_many(std::nothrow, requested_sizes, ArraySize, 1, chain);
if(chain.empty())
break;
buffers.push_back(boost::move(chain));
}
for(int i = 0, max = (int)buffers.size(); i != max; ++i){
a.deallocate_many(buffers[i]);
}
buffers.clear();
bool ok = free_memory == a.get_free_memory() &&
a.all_memory_deallocated() && a.check_sanity();
if(!ok) return ok;
}
{
for(int i = 0; true; ++i){
multiallocation_chain chain;
a.allocate_many(std::nothrow, i*4, ArraySize, chain);
if(chain.empty())
break;
buffers.push_back(boost::move(chain));
}
for(int i = 0, max = (int)buffers.size(); i != max; ++i){
a.deallocate_many(buffers[i]);
}
buffers.clear();
bool ok = free_memory == a.get_free_memory() &&
a.all_memory_deallocated() && a.check_sanity();
if(!ok) return ok;
}
return true;
}
//This function calls all tests
template<class Allocator>
bool test_all_allocation(Allocator &a)
{
std::cout << "Starting test_allocation. Class: "
<< typeid(a).name() << std::endl;
if(!test_allocation(a)){
std::cout << "test_allocation_direct_deallocation failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_many_equal_allocation. Class: "
<< typeid(a).name() << std::endl;
if(!test_many_equal_allocation(a)){
std::cout << "test_many_equal_allocation failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_many_different_allocation. Class: "
<< typeid(a).name() << std::endl;
if(!test_many_different_allocation(a)){
std::cout << "test_many_different_allocation failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
if(!test_many_deallocation(a)){
std::cout << "test_many_deallocation failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_allocation_shrink. Class: "
<< typeid(a).name() << std::endl;
if(!test_allocation_shrink(a)){
std::cout << "test_allocation_shrink failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
if(!test_allocation_shrink_and_expand(a)){
std::cout << "test_allocation_shrink_and_expand failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_allocation_expand. Class: "
<< typeid(a).name() << std::endl;
if(!test_allocation_expand(a)){
std::cout << "test_allocation_expand failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_allocation_deallocation_expand. Class: "
<< typeid(a).name() << std::endl;
if(!test_allocation_deallocation_expand(a)){
std::cout << "test_allocation_deallocation_expand failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_allocation_with_reuse. Class: "
<< typeid(a).name() << std::endl;
if(!test_allocation_with_reuse(a)){
std::cout << "test_allocation_with_reuse failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_aligned_allocation. Class: "
<< typeid(a).name() << std::endl;
if(!test_aligned_allocation(a)){
std::cout << "test_aligned_allocation failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_continuous_aligned_allocation. Class: "
<< typeid(a).name() << std::endl;
if(!test_continuous_aligned_allocation(a)){
std::cout << "test_continuous_aligned_allocation failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_clear_free_memory. Class: "
<< typeid(a).name() << std::endl;
if(!test_clear_free_memory(a)){
std::cout << "test_clear_free_memory failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
std::cout << "Starting test_grow_shrink_to_fit. Class: "
<< typeid(a).name() << std::endl;
if(!test_grow_shrink_to_fit(a)){
std::cout << "test_grow_shrink_to_fit failed. Class: "
<< typeid(a).name() << std::endl;
return false;
}
return true;
}
}}} //namespace boost { namespace interprocess { namespace test {
#include <boost/interprocess/detail/config_end.hpp>
#endif //BOOST_INTERPROCESS_TEST_MEMORY_ALGORITHM_TEST_TEMPLATE_HEADER