iterator/doc/quickbook/transform_iterator.qbk
morinmorin f7dfc36a9c Port rst docs changeset to quickbook (ad90dac).
UnaryFunction is treated as a const object, but the documentation was missing
the const qualification.
2017-08-28 20:39:10 +09:00

217 lines
6.3 KiB
Plaintext

[section:transform Transform Iterator]
The transform iterator adapts an iterator by modifying the
`operator*` to apply a function object to the result of
dereferencing the iterator and returning the result.
[h2 Example]
This is a simple example of using the transform_iterators class to
generate iterators that multiply (or add to) the value returned by
dereferencing the iterator. It would be cooler to use lambda library
in this example.
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
const int N = sizeof(x)/sizeof(int);
typedef boost::binder1st< std::multiplies<int> > Function;
typedef boost::transform_iterator<Function, int*> doubling_iterator;
doubling_iterator i(x, boost::bind1st(std::multiplies<int>(), 2)),
i_end(x + N, boost::bind1st(std::multiplies<int>(), 2));
std::cout << "multiplying the array by 2:" << std::endl;
while (i != i_end)
std::cout << *i++ << " ";
std::cout << std::endl;
std::cout << "adding 4 to each element in the array:" << std::endl;
std::copy(boost::make_transform_iterator(x, boost::bind1st(std::plus<int>(), 4)),
boost::make_transform_iterator(x + N, boost::bind1st(std::plus<int>(), 4)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
The output is:
multiplying the array by 2:
2 4 6 8 10 12 14 16
adding 4 to each element in the array:
5 6 7 8 9 10 11 12
The source code for this example can be found
[@../example/transform_iterator_example.cpp here].
[h2 Reference]
[h3 Synopsis]
template <class UnaryFunction,
class Iterator,
class Reference = use_default,
class Value = use_default>
class transform_iterator
{
public:
typedef /* see below */ value_type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef iterator_traits<Iterator>::difference_type difference_type;
typedef /* see below */ iterator_category;
transform_iterator();
transform_iterator(Iterator const& x, UnaryFunction f);
template<class F2, class I2, class R2, class V2>
transform_iterator(
transform_iterator<F2, I2, R2, V2> const& t
, typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only
, typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only
);
UnaryFunction functor() const;
Iterator const& base() const;
reference operator*() const;
transform_iterator& operator++();
transform_iterator& operator--();
private:
Iterator m_iterator; // exposition only
UnaryFunction m_f; // exposition only
};
If `Reference` is `use_default` then the `reference` member of
`transform_iterator` is[br]
`result_of<const UnaryFunction(iterator_traits<Iterator>::reference)>::type`.
Otherwise, `reference` is `Reference`.
If `Value` is `use_default` then the `value_type` member is
`remove_cv<remove_reference<reference> >::type`. Otherwise,
`value_type` is `Value`.
If `Iterator` models Readable Lvalue Iterator and if `Iterator`
models Random Access Traversal Iterator, then `iterator_category` is
convertible to `random_access_iterator_tag`. Otherwise, if
`Iterator` models Bidirectional Traversal Iterator, then
`iterator_category` is convertible to
`bidirectional_iterator_tag`. Otherwise `iterator_category` is
convertible to `forward_iterator_tag`. If `Iterator` does not
model Readable Lvalue Iterator then `iterator_category` is
convertible to `input_iterator_tag`.
[h3 Requirements]
The type `UnaryFunction` must be Assignable, Copy Constructible, and
the expression `f(*i)` must be valid where `f` is a const object of
type `UnaryFunction`, `i` is an object of type `Iterator`, and
where the type of `f(*i)` must be
`result_of<const UnaryFunction(iterator_traits<Iterator>::reference)>::type`.
The argument `Iterator` shall model Readable Iterator.
[h3 Concepts]
The resulting `transform_iterator` models the most refined of the
following that is also modeled by `Iterator`.
* Writable Lvalue Iterator if `transform_iterator::reference` is a non-const reference.
* Readable Lvalue Iterator if `transform_iterator::reference` is a const reference.
* Readable Iterator otherwise.
The `transform_iterator` models the most refined standard traversal
concept that is modeled by the `Iterator` argument.
If `transform_iterator` is a model of Readable Lvalue Iterator then
it models the following original iterator concepts depending on what
the `Iterator` argument models.
[table Category
[[If `Iterator` models][then `transform_iterator` models]]
[[Single Pass Iterator][Input Iterator]]
[[Forward Traversal Iterator][Forward Iterator]]
[[Bidirectional Traversal Iterator][Bidirectional Iterator]]
[[Random Access Traversal Iterator][Random Access Iterator]]
]
If `transform_iterator` models Writable Lvalue Iterator then it is a
mutable iterator (as defined in the old iterator requirements).
`transform_iterator<F1, X, R1, V1>` is interoperable with
`transform_iterator<F2, Y, R2, V2>` if and only if `X` is
interoperable with `Y`.
[h3 Operations]
In addition to the operations required by the [link iterator.specialized.transform.concepts concepts] modeled by
`transform_iterator`, `transform_iterator` provides the following
operations:
transform_iterator();
[*Returns: ] An instance of `transform_iterator` with `m_f`
and `m_iterator` default constructed.
transform_iterator(Iterator const& x, UnaryFunction f);
[*Returns: ] An instance of `transform_iterator` with `m_f`
initialized to `f` and `m_iterator` initialized to `x`.
template<class F2, class I2, class R2, class V2>
transform_iterator(
transform_iterator<F2, I2, R2, V2> const& t
, typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only
, typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only
);
[*Returns: ] An instance of `transform_iterator` with `m_f`
initialized to `t.functor()` and `m_iterator` initialized to
`t.base()`.[br]
[*Requires: ] `OtherIterator` is implicitly convertible to `Iterator`.
UnaryFunction functor() const;
[*Returns: ] `m_f`
Iterator const& base() const;
[*Returns: ] `m_iterator`
reference operator*() const;
[*Returns: ] `m_f(*m_iterator)`
transform_iterator& operator++();
[*Effects: ] `++m_iterator`[br]
[*Returns: ] `*this`
transform_iterator& operator--();
[*Effects: ] `--m_iterator`[br]
[*Returns: ] `*this`
[endsect]