iterator/test/transform_iterator_test.cpp
2012-04-24 21:28:07 +00:00

286 lines
7.6 KiB
C++

// (C) Copyright Jeremy Siek 2002.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Revision History
// 22 Nov 2002 Thomas Witt
// Added interoperability check.
// 28 Oct 2002 Jeremy Siek
// Updated for new iterator adaptors.
// 08 Mar 2001 Jeremy Siek
// Moved test of transform iterator into its own file. It to
// to be in iterator_adaptor_test.cpp.
#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <algorithm>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/iterator/iterator_concepts.hpp>
#include <boost/iterator/new_iterator_tests.hpp>
#include <boost/pending/iterator_tests.hpp>
#include <boost/bind.hpp>
#include <boost/concept_check.hpp>
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace boost { namespace detail
{
template<> struct function_object_result<int (*)(int)>
{
typedef int type;
};
}}
#endif
struct mult_functor {
// Functors used with transform_iterator must be
// DefaultConstructible, as the transform_iterator must be
// DefaultConstructible to satisfy the requirements for
// TrivialIterator.
mult_functor() { }
mult_functor(int aa) : a(aa) { }
int operator()(int b) const { return a * b; }
int a;
};
struct adaptable_mult_functor
: mult_functor
{
typedef int result_type;
typedef int argument_type;
// Functors used with transform_iterator must be
// DefaultConstructible, as the transform_iterator must be
// DefaultConstructible to satisfy the requirements for
// TrivialIterator.
adaptable_mult_functor() { }
adaptable_mult_functor(int aa) : mult_functor(aa) { }
};
struct const_select_first
{
typedef int const& result_type;
int const& operator()(std::pair<int, int>const& p) const
{
return p.first;
}
};
struct select_first
: const_select_first // derivation to allow conversions
{
typedef int& result_type;
int& operator()(std::pair<int, int>& p) const
{
return p.first;
}
};
struct select_second
{
typedef int& result_type;
int& operator()(std::pair<int, int>& p) const
{
return p.second;
}
};
struct value_select_first
{
typedef int result_type;
int operator()(std::pair<int, int>const& p) const
{
return p.first;
}
};
int mult_2(int arg)
{
return arg*2;
}
struct polymorphic_mult_functor
{
//Implement result_of protocol
template <class FArgs> struct result;
template <class F, class T> struct result<const F(T )> {typedef T type;};
template <class F, class T> struct result<const F(T& )> {typedef T type;};
template <class F, class T> struct result<const F(const T&)> {typedef T type;};
template <class F, class T> struct result<F(T )> {typedef void type;};
template <class F, class T> struct result<F(T& )> {typedef void type;};
template <class F, class T> struct result<F(const T&)> {typedef void type;};
template <class T>
T operator()(const T& _arg) const {return _arg*2;}
template <class T>
void operator()(const T& _arg) { BOOST_ASSERT(0); }
};
int
main()
{
const int N = 10;
// Concept checks
{
typedef boost::transform_iterator<adaptable_mult_functor, int*> iter_t;
typedef boost::transform_iterator<adaptable_mult_functor, int const*> c_iter_t;
boost::function_requires< boost_concepts::InteroperableIteratorConcept<iter_t, c_iter_t> >();
}
// Test transform_iterator
{
int x[N], y[N];
for (int k = 0; k < N; ++k)
x[k] = k;
std::copy(x, x + N, y);
for (int k2 = 0; k2 < N; ++k2)
x[k2] = x[k2] * 2;
typedef boost::transform_iterator<adaptable_mult_functor, int*> iter_t;
iter_t i(y, adaptable_mult_functor(2));
boost::input_iterator_test(i, x[0], x[1]);
boost::input_iterator_test(iter_t(&y[0], adaptable_mult_functor(2)), x[0], x[1]);
boost::random_access_readable_iterator_test(i, N, x);
}
// Test transform_iterator non adaptable functor
{
int x[N], y[N];
for (int k = 0; k < N; ++k)
x[k] = k;
std::copy(x, x + N, y);
for (int k2 = 0; k2 < N; ++k2)
x[k2] = x[k2] * 2;
typedef boost::transform_iterator<mult_functor, int*, int> iter_t;
iter_t i(y, mult_functor(2));
boost::input_iterator_test(i, x[0], x[1]);
boost::input_iterator_test(iter_t(&y[0], mult_functor(2)), x[0], x[1]);
boost::random_access_readable_iterator_test(i, N, x);
}
// Test transform_iterator default argument handling
{
{
typedef boost::transform_iterator<adaptable_mult_functor, int*, float> iter_t;
BOOST_STATIC_ASSERT((boost::is_same<iter_t::reference, float>::value));
BOOST_STATIC_ASSERT((boost::is_same<iter_t::value_type, float>::value));
}
{
typedef boost::transform_iterator<adaptable_mult_functor, int*, boost::use_default, float> iter_t;
BOOST_STATIC_ASSERT((boost::is_same<iter_t::reference, int>::value));
BOOST_STATIC_ASSERT((boost::is_same<iter_t::value_type, float>::value));
}
{
typedef boost::transform_iterator<adaptable_mult_functor, int*, float, double> iter_t;
BOOST_STATIC_ASSERT((boost::is_same<iter_t::reference, float>::value));
BOOST_STATIC_ASSERT((boost::is_same<iter_t::value_type, double>::value));
}
}
// Test transform_iterator with function pointers
{
int x[N], y[N];
for (int k = 0; k < N; ++k)
x[k] = k;
std::copy(x, x + N, y);
for (int k2 = 0; k2 < N; ++k2)
x[k2] = x[k2] * 2;
boost::input_iterator_test(
boost::make_transform_iterator(y, mult_2), x[0], x[1]);
boost::input_iterator_test(
boost::make_transform_iterator(&y[0], mult_2), x[0], x[1]);
boost::random_access_readable_iterator_test(
boost::make_transform_iterator(y, mult_2), N, x);
}
// Test transform_iterator as projection iterator
{
typedef std::pair<int, int> pair_t;
int x[N];
int y[N];
pair_t values[N];
for(int i = 0; i < N; ++i) {
x[i] = i;
y[i] = N - (i + 1);
}
std::copy(
x
, x + N
, boost::make_transform_iterator((pair_t*)values, select_first())
);
std::copy(
y
, y + N
, boost::make_transform_iterator((pair_t*)values, select_second())
);
boost::random_access_readable_iterator_test(
boost::make_transform_iterator((pair_t*)values, value_select_first())
, N
, x
);
boost::random_access_readable_iterator_test(
boost::make_transform_iterator((pair_t*)values, const_select_first())
, N, x
);
boost::constant_lvalue_iterator_test(
boost::make_transform_iterator((pair_t*)values, const_select_first()), x[0]);
boost::non_const_lvalue_iterator_test(
boost::make_transform_iterator((pair_t*)values, select_first()), x[0], 17);
boost::const_nonconst_iterator_test(
++boost::make_transform_iterator((pair_t*)values, select_first())
, boost::make_transform_iterator((pair_t*)values, const_select_first())
);
}
// Test transform_iterator with polymorphic object function
{
int x[N], y[N];
for (int k = 0; k < N; ++k)
x[k] = k;
std::copy(x, x + N, y);
for (int k2 = 0; k2 < N; ++k2)
x[k2] = x[k2] * 2;
boost::input_iterator_test(
boost::make_transform_iterator(y, polymorphic_mult_functor()), x[0], x[1]);
boost::input_iterator_test(
boost::make_transform_iterator(&y[0], polymorphic_mult_functor()), x[0], x[1]);
boost::random_access_readable_iterator_test(
boost::make_transform_iterator(y, polymorphic_mult_functor()), N, x);
}
return boost::report_errors();
}