lambda/test/operator_tests_simple.cpp
Steven Watanabe 0d0f71272e Merge lambda from the trunk
[SVN r63555]
2010-07-03 19:05:15 +00:00

432 lines
8.4 KiB
C++

// operator_tests_simple.cpp -- The Boost Lambda Library ---------------
//
// Copyright (C) 2000-2003 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2000-2003 Gary Powell (powellg@amazon.com)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see www.boost.org
// -----------------------------------------------------------------------
#include <boost/test/minimal.hpp> // see "Header Implementation Option"
#include "boost/lambda/lambda.hpp"
#include "boost/lambda/detail/suppress_unused.hpp"
#include <boost/shared_ptr.hpp>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <iostream>
#ifndef BOOST_NO_STRINGSTREAM
#include <sstream>
#endif
using namespace std;
using namespace boost;
using namespace boost::lambda;
class unary_plus_tester {};
unary_plus_tester operator+(const unary_plus_tester& a) { return a; }
void cout_tests()
{
#ifndef BOOST_NO_STRINGSTREAM
using std::cout;
ostringstream os;
int i = 10;
(os << _1)(i);
(os << constant("FOO"))();
BOOST_CHECK(os.str() == std::string("10FOO"));
istringstream is("ABC 1");
std::string s;
int k;
is >> s;
is >> k;
BOOST_CHECK(s == std::string("ABC"));
BOOST_CHECK(k == 1);
// test for constant, constant_ref and var
i = 5;
constant_type<int>::type ci(constant(i));
var_type<int>::type vi(var(i));
(vi = _1)(make_const(100));
BOOST_CHECK((ci)() == 5);
BOOST_CHECK(i == 100);
int a;
constant_ref_type<int>::type cr(constant_ref(i));
(++vi, var(a) = cr)();
BOOST_CHECK(i == 101);
#endif
}
void arithmetic_operators() {
int i = 1; int j = 2; int k = 3;
using namespace std;
using namespace boost::lambda;
BOOST_CHECK((_1 + 1)(i)==2);
BOOST_CHECK(((_1 + 1) * _2)(i, j)==4);
BOOST_CHECK((_1 - 1)(i)==0);
BOOST_CHECK((_1 * 2)(j)==4);
BOOST_CHECK((_1 / 2)(j)==1);
BOOST_CHECK((_1 % 2)(k)==1);
BOOST_CHECK((-_1)(i) == -1);
BOOST_CHECK((+_1)(i) == 1);
// test that unary plus really does something
unary_plus_tester u;
unary_plus_tester up = (+_1)(u);
boost::lambda::detail::suppress_unused_variable_warnings(up);
}
void bitwise_operators() {
unsigned int ui = 2;
BOOST_CHECK((_1 << 1)(ui)==(2 << 1));
BOOST_CHECK((_1 >> 1)(ui)==(2 >> 1));
BOOST_CHECK((_1 & 1)(ui)==(2 & 1));
BOOST_CHECK((_1 | 1)(ui)==(2 | 1));
BOOST_CHECK((_1 ^ 1)(ui)==(2 ^ 1));
BOOST_CHECK((~_1)(ui)==~2u);
}
void comparison_operators() {
int i = 0, j = 1;
BOOST_CHECK((_1 < _2)(i, j) == true);
BOOST_CHECK((_1 <= _2)(i, j) == true);
BOOST_CHECK((_1 == _2)(i, j) == false);
BOOST_CHECK((_1 != _2)(i, j) == true);
BOOST_CHECK((_1 > _2)(i, j) == false);
BOOST_CHECK((_1 >= _2)(i, j) == false);
BOOST_CHECK((!(_1 < _2))(i, j) == false);
BOOST_CHECK((!(_1 <= _2))(i, j) == false);
BOOST_CHECK((!(_1 == _2))(i, j) == true);
BOOST_CHECK((!(_1 != _2))(i, j) == false);
BOOST_CHECK((!(_1 > _2))(i, j) == true);
BOOST_CHECK((!(_1 >= _2))(i, j) == true);
}
void logical_operators() {
bool t = true, f = false;
BOOST_CHECK((_1 && _2)(t, t) == true);
BOOST_CHECK((_1 && _2)(t, f) == false);
BOOST_CHECK((_1 && _2)(f, t) == false);
BOOST_CHECK((_1 && _2)(f, f) == false);
BOOST_CHECK((_1 || _2)(t, t) == true);
BOOST_CHECK((_1 || _2)(t, f) == true);
BOOST_CHECK((_1 || _2)(f, t) == true);
BOOST_CHECK((_1 || _2)(f, f) == false);
BOOST_CHECK((!_1)(t) == false);
BOOST_CHECK((!_1)(f) == true);
// test short circuiting
int i=0;
(false && ++_1)(i);
BOOST_CHECK(i==0);
i = 0;
(true && ++_1)(i);
BOOST_CHECK(i==1);
i = 0;
(false || ++_1)(i);
BOOST_CHECK(i==1);
i = 0;
(true || ++_1)(i);
BOOST_CHECK(i==0);
i = 0;
}
void unary_incs_and_decs() {
int i = 0;
BOOST_CHECK(_1++(i) == 0);
BOOST_CHECK(i == 1);
i = 0;
BOOST_CHECK(_1--(i) == 0);
BOOST_CHECK(i == -1);
i = 0;
BOOST_CHECK((++_1)(i) == 1);
BOOST_CHECK(i == 1);
i = 0;
BOOST_CHECK((--_1)(i) == -1);
BOOST_CHECK(i == -1);
i = 0;
// the result of prefix -- and ++ are lvalues
(++_1)(i) = 10;
BOOST_CHECK(i==10);
i = 0;
(--_1)(i) = 10;
BOOST_CHECK(i==10);
i = 0;
}
void compound_operators() {
int i = 1;
// normal variable as the left operand
(i += _1)(make_const(1));
BOOST_CHECK(i == 2);
(i -= _1)(make_const(1));
BOOST_CHECK(i == 1);
(i *= _1)(make_const(10));
BOOST_CHECK(i == 10);
(i /= _1)(make_const(2));
BOOST_CHECK(i == 5);
(i %= _1)(make_const(2));
BOOST_CHECK(i == 1);
// lambda expression as a left operand
(_1 += 1)(i);
BOOST_CHECK(i == 2);
(_1 -= 1)(i);
BOOST_CHECK(i == 1);
(_1 *= 10)(i);
BOOST_CHECK(i == 10);
(_1 /= 2)(i);
BOOST_CHECK(i == 5);
(_1 %= 2)(i);
BOOST_CHECK(i == 1);
// lambda expression as a left operand with rvalue on RHS
(_1 += (0 + 1))(i);
BOOST_CHECK(i == 2);
(_1 -= (0 + 1))(i);
BOOST_CHECK(i == 1);
(_1 *= (0 + 10))(i);
BOOST_CHECK(i == 10);
(_1 /= (0 + 2))(i);
BOOST_CHECK(i == 5);
(_1 %= (0 + 2))(i);
BOOST_CHECK(i == 1);
// shifts
unsigned int ui = 2;
(_1 <<= 1)(ui);
BOOST_CHECK(ui==(2 << 1));
ui = 2;
(_1 >>= 1)(ui);
BOOST_CHECK(ui==(2 >> 1));
ui = 2;
(ui <<= _1)(make_const(1));
BOOST_CHECK(ui==(2 << 1));
ui = 2;
(ui >>= _1)(make_const(1));
BOOST_CHECK(ui==(2 >> 1));
// and, or, xor
ui = 2;
(_1 &= 1)(ui);
BOOST_CHECK(ui==(2 & 1));
ui = 2;
(_1 |= 1)(ui);
BOOST_CHECK(ui==(2 | 1));
ui = 2;
(_1 ^= 1)(ui);
BOOST_CHECK(ui==(2 ^ 1));
ui = 2;
(ui &= _1)(make_const(1));
BOOST_CHECK(ui==(2 & 1));
ui = 2;
(ui |= _1)(make_const(1));
BOOST_CHECK(ui==(2 | 1));
ui = 2;
(ui ^= _1)(make_const(1));
BOOST_CHECK(ui==(2 ^ 1));
}
void assignment_and_subscript() {
// assignment and subscript need to be defined as member functions.
// Hence, if you wish to use a normal variable as the left hand argument,
// you must wrap it with var to turn it into a lambda expression
using std::string;
string s;
(_1 = "one")(s);
BOOST_CHECK(s == string("one"));
(var(s) = "two")();
BOOST_CHECK(s == string("two"));
BOOST_CHECK((var(s)[_1])(make_const(2)) == 'o');
BOOST_CHECK((_1[2])(s) == 'o');
BOOST_CHECK((_1[_2])(s, make_const(2)) == 'o');
// subscript returns lvalue
(var(s)[_1])(make_const(1)) = 'o';
BOOST_CHECK(s == "too");
(_1[1])(s) = 'a';
BOOST_CHECK(s == "tao");
(_1[_2])(s, make_const(0)) = 'm';
BOOST_CHECK(s == "mao");
// TODO: tests for vector, set, map, multimap
}
class A {};
void address_of_and_dereference() {
A a; int i = 42;
BOOST_CHECK((&_1)(a) == &a);
BOOST_CHECK((*&_1)(i) == 42);
std::vector<int> vi; vi.push_back(1);
std::vector<int>::iterator it = vi.begin();
(*_1 = 7)(it);
BOOST_CHECK(vi[0] == 7);
const std::vector<int>::iterator cit(it);
(*_1 = 8)(cit);
BOOST_CHECK(vi[0] == 8);
// TODO: Add tests for more complex iterator types
boost::shared_ptr<int> ptr(new int(0));
(*_1 = 7)(ptr);
BOOST_CHECK(*ptr == 7);
const boost::shared_ptr<int> cptr(ptr);
(*_1 = 8)(cptr);
BOOST_CHECK(*ptr == 8);
}
void comma() {
int i = 100;
BOOST_CHECK((_1 = 10, 2 * _1)(i) == 20);
// TODO: that the return type is the exact type of the right argument
// (that r/l valueness is preserved)
}
void pointer_arithmetic() {
int ia[4] = { 1, 2, 3, 4 };
int* ip = ia;
int* ia_last = &ia[3];
const int cia[4] = { 1, 2, 3, 4 };
const int* cip = cia;
const int* cia_last = &cia[3];
// non-const array
BOOST_CHECK((*(_1 + 1))(ia) == 2);
// non-const pointer
BOOST_CHECK((*(_1 + 1))(ip) == 2);
BOOST_CHECK((*(_1 - 1))(ia_last) == 3);
// const array
BOOST_CHECK((*(_1 + 1))(cia) == 2);
// const pointer
BOOST_CHECK((*(_1 + 1))(cip) == 2);
BOOST_CHECK((*(_1 - 1))(cia_last) == 3);
// pointer arithmetic should not make non-consts const
(*(_1 + 2))(ia) = 0;
(*(_1 + 3))(ip) = 0;
BOOST_CHECK(ia[2] == 0);
BOOST_CHECK(ia[3] == 0);
// pointer - pointer
BOOST_CHECK((_1 - _2)(ia_last, ia) == 3);
BOOST_CHECK((_1 - _2)(cia_last, cia) == 3);
BOOST_CHECK((ia_last - _1)(ia) == 3);
BOOST_CHECK((cia_last - _1)(cia) == 3);
BOOST_CHECK((cia_last - _1)(cip) == 3);
}
int test_main(int, char *[]) {
arithmetic_operators();
bitwise_operators();
comparison_operators();
logical_operators();
unary_incs_and_decs();
compound_operators();
assignment_and_subscript();
address_of_and_dereference();
comma();
pointer_arithmetic();
cout_tests();
return 0;
}