if (p <= pow(1 - dist.success_fraction(), dist.trials()))

{ // p <= pdf(dist, 0) == cdf(dist, 0)
   return 0; // So the only reasonable result is zero.
} // And root finder would fail otherwise.
Added, and similarly for complement


[SVN r3445]
This commit is contained in:
Paul A. Bristow 2006-11-23 17:46:15 +00:00
parent 629c09b1ed
commit 48b5f13838

View File

@ -88,7 +88,7 @@
#if defined (BOOST_MSVC) && defined(BOOST_MATH_THROW_ON_DOMAIN_ERROR)
# pragma warning(push)
# pragma warning(disable: 4702) // unreachable code
//# pragma warning(disable: 4702) // unreachable code
// in domain_error_imp in error_handling
#endif
@ -190,7 +190,7 @@ namespace boost
}
// Estimation of the success fraction parameter.
// The best estimate is actually simply successes/trials,
// The best estimate is actually simply successes/trials,
// these functions are used
// to obtain confidence intervals for the success fraction:
//
@ -409,7 +409,7 @@ namespace boost
if (p == 1)
{ // This is correct but needs explanation:
// when k = 1
// all the cdf and pdf values are zero *except* when k == n,
// all the cdf and pdf values are zero *except* when k == n,
// and that case has been handled above already.
return 0;
}
@ -556,6 +556,10 @@ namespace boost
// so n is the most sensible answer here:
return dist.trials();
}
if (p <= pow(1 - dist.success_fraction(), dist.trials()))
{ // p <= pdf(dist, 0) == cdf(dist, 0)
return 0; // So the only reasonable result is zero.
} // And root finder would fail otherwise.
// Solve for quantile numerically:
//
@ -604,11 +608,17 @@ namespace boost
return 0;
}
if(q == 0)
{ // probability of greater than n successes is always zero,
{ // Probability of greater than n successes is always zero,
// so n is the most sensible answer here:
return dist.trials();
}
if (-q <= powm1(1 - dist.success_fraction(), dist.trials()))
{ // // q <= cdf(complement(dist, 0)) == pdf(dist, 0)
return 0; // So the only reasonable result is zero.
} // And root finder would fail otherwise.
// Need to consider the case where
//
// Solve for quantile numerically:
//