math/doc/distributions/empirical_cdf.qbk

154 lines
6.1 KiB
Plaintext

[/
Copyright (c) 2019 Nick Thompson
Use, modification and distribution are subject to the
Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
]
[section:empirical_cdf Empirical Cumulative Distribution Function]
[heading Synopsis]
```
#include <boost/math/distributions/empirical_cumulative_distribution_function.hpp>
namespace boost{ namespace math{
template <class RandomAccessContainer>
class empirical_cumulative_distribution_function
{
public:
using Real = typename RandomAccessContainer::value_type;
empirical_cumulative_distribution_function(RandomAccessContainer && v, bool sorted = false);
auto operator()(Real t) const;
RandomAccessContainer&& return_data();
};
}}
```
[heading Empirical Cumulative Distribution Function]
The empirical cumulative distribution function is a step function constructed from observed data which converges to the true cumulative distribution function in the limit of infinite data.
This function is a basic building block of hypothesis testing workflows that attempt to answer the question "does my data come from a given distribution?"
These tests require computing quadratures over some function of the empirical CDF and the supposed CDF to create a distance measurement, and hence it is occasionally useful to construct a continuous callable from the data.
An example usage is demonstrated below:
```
#include <vector>
#include <random>
#include <boost/math/distributions/empirical_cumulative_distribution_function.hpp>
using boost::math::empirical_cumulative_distribution_function;
std::random_device rd;
std::mt19937 gen{rd()};
std::normal_distribution<double> dis(0, 1);
size_t n = 128;
std::vector<double> v(n);
for (size_t i = 0; i < n; ++i) {
v[i] = dis(gen);
}
auto ecdf = empirical_cumulative_distribution_function(std::move(v));
std::cout << "ecdf(0.0) = " << ecdf(0.0) << "\n";
// should print approximately 0.5 . . .
```
The empirical distribution function requires sorted data.
By default, the constructor sorts it for you at O(Nlog(N)) cost.
If your data is already sorted, you can specify this and the constructor simply moves your data into the class:
```
std::sort(v.begin(), v.end());
auto ecdf = empirical_cumulative_distribution_function(std::move(v), /* already sorted = */ true);
```
If you want your data back after being done with the object, use
```
v = ecdf.return_data();
```
This operation invalidates `ecdf`; it can no longer be used.
The call operator complexity is O(log(N)), as it requires a call to `std::upper_bound`.
Works with both integer and floating point types.
If the input data consists of integers, the output of the call operator is a double. Requires C++17.
[$../graphs/empiricial_cumulative_distribution_gauss.svg]
[$../graphs/empiricial_cumulative_distribution_uniform.svg]
[heading Performance]
```
------------------------------------------------------
Benchmark Time
------------------------------------------------------
ECDFConstructorSorted<double>/8 4.52 ns
ECDFConstructorSorted<double>/16 5.20 ns
ECDFConstructorSorted<double>/32 5.22 ns
ECDFConstructorSorted<double>/64 7.37 ns
ECDFConstructorSorted<double>/128 7.16 ns
ECDFConstructorSorted<double>/256 8.97 ns
ECDFConstructorSorted<double>/512 8.44 ns
ECDFConstructorSorted<double>/1024 9.07 ns
ECDFConstructorSorted<double>/2048 11.4 ns
ECDFConstructorSorted<double>/4096 12.6 ns
ECDFConstructorSorted<double>/8192 11.4 ns
ECDFConstructorSorted<double>/16384 16.0 ns
ECDFConstructorSorted<double>/32768 17.0 ns
ECDFConstructorSorted<double>/65536 19.5 ns
ECDFConstructorSorted<double>/131072 15.8 ns
ECDFConstructorSorted<double>/262144 17.9 ns
ECDFConstructorSorted<double>/524288 26.7 ns
ECDFConstructorSorted<double>/1048576 29.5 ns
ECDFConstructorSorted<double>/2097152 31.8 ns
ECDFConstructorSorted<double>/4194304 32.8 ns
ECDFConstructorSorted<double>/8388608 35.4 ns
ECDFConstructorSorted<double>/16777216 30.4 ns
ECDFConstructorSorted<double>_BigO 1.27 lgN
ECDFConstructorSorted<double>_RMS 20 %
ECDFConstructorUnsorted<double>/8 155 ns
ECDFConstructorUnsorted<double>/64 2095 ns
ECDFConstructorUnsorted<double>/512 22212 ns
ECDFConstructorUnsorted<double>/4096 220821 ns
ECDFConstructorUnsorted<double>/32768 1996380 ns
ECDFConstructorUnsorted<double>/262144 18916039 ns
ECDFConstructorUnsorted<double>/2097152 194250013 ns
ECDFConstructorUnsorted<double>/16777216 2281469424 ns
ECDFConstructorUnsorted<double>_BigO 5.65 NlgN
ECDFConstructorUnsorted<double>_RMS 6 %
Shuffle<double>/8 82.4 ns
Shuffle<double>/64 731 ns
Shuffle<double>/512 5876 ns
Shuffle<double>/4096 46864 ns
Shuffle<double>/32768 385265 ns
Shuffle<double>/262144 4663866 ns
Shuffle<double>/2097152 54686332 ns
Shuffle<double>/16777216 875309099 ns
Shuffle<double>_BigO 2.16 NlgN
Shuffle<double>_RMS 12 %
ECDFEvaluation<double>/8 48.6 ns
ECDFEvaluation<double>/64 61.3 ns
ECDFEvaluation<double>/512 85.1 ns
ECDFEvaluation<double>/4096 105 ns
ECDFEvaluation<double>/32768 131 ns
ECDFEvaluation<double>/262144 196 ns
ECDFEvaluation<double>/2097152 391 ns
ECDFEvaluation<double>/16777216 715 ns
ECDFEvaluation<double>_BigO 18.19 lgN
ECDFEvaluation<double>_RMS 60 %
```
The call to the unsorted constructor is in fact a little faster than indicated, as the data must be shuffled after being sorted in the benchmark.
This is itself a fairly expensive operation.
[endsect]
[/section:empirical_cdf]