722 lines
35 KiB
C++
722 lines
35 KiB
C++
/*! \file dist_graphs.cpp
|
|
\brief Produces Scalable Vector Graphic (.svg) files for all distributions.
|
|
\details These files can be viewed using most browsers,
|
|
though MS Internet Explorer requires a plugin from Adobe.
|
|
These file can be converted to .png using Inkscape
|
|
(see www.inkscape.org) Export Bit option which by default produces
|
|
a Portable Network Graphic file with that same filename but .png suffix instead of .svg.
|
|
Using Python, generate.sh does this conversion automatically for all .svg files in a folder.
|
|
|
|
\author John Maddock and Paul A. Bristow
|
|
*/
|
|
// Copyright John Maddock 2008.
|
|
// Copyright Paul A. Bristow 2008, 2009, 2012, 2016
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0. (See accompanying file
|
|
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning (disable : 4180) // qualifier applied to function type has no meaning; ignored
|
|
# pragma warning (disable : 4503) // decorated name length exceeded, name was truncated
|
|
# pragma warning (disable : 4512) // assignment operator could not be generated
|
|
# pragma warning (disable : 4224) // nonstandard extension used : formal parameter 'function_ptr' was previously defined as a type
|
|
# pragma warning (disable : 4127) // conditional expression is constant
|
|
#endif
|
|
|
|
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
|
|
|
|
#include <boost/math/distributions.hpp>
|
|
#include <boost/math/tools/roots.hpp>
|
|
#include <boost/svg_plot/svg_2d_plot.hpp>
|
|
|
|
#include <list>
|
|
#include <map>
|
|
#include <string>
|
|
|
|
template <class Dist>
|
|
struct is_discrete_distribution
|
|
: public boost::mpl::false_{}; // Default is continuous distribution.
|
|
|
|
// Some discrete distributions.
|
|
template<class T, class P>
|
|
struct is_discrete_distribution<boost::math::bernoulli_distribution<T,P> >
|
|
: public boost::mpl::true_{};
|
|
template<class T, class P>
|
|
struct is_discrete_distribution<boost::math::binomial_distribution<T,P> >
|
|
: public boost::mpl::true_{};
|
|
template<class T, class P>
|
|
struct is_discrete_distribution<boost::math::negative_binomial_distribution<T,P> >
|
|
: public boost::mpl::true_{};
|
|
template<class T, class P>
|
|
struct is_discrete_distribution<boost::math::poisson_distribution<T,P> >
|
|
: public boost::mpl::true_{};
|
|
template<class T, class P>
|
|
struct is_discrete_distribution<boost::math::hypergeometric_distribution<T,P> >
|
|
: public boost::mpl::true_{};
|
|
|
|
|
|
template <class Dist>
|
|
struct value_finder
|
|
{
|
|
value_finder(Dist const& d, typename Dist::value_type v)
|
|
: m_dist(d), m_value(v) {}
|
|
|
|
inline typename Dist::value_type operator()(const typename Dist::value_type& x)
|
|
{
|
|
return pdf(m_dist, x) - m_value;
|
|
}
|
|
|
|
private:
|
|
Dist m_dist;
|
|
typename Dist::value_type m_value;
|
|
}; // value_finder
|
|
|
|
template <class Dist>
|
|
class distribution_plotter
|
|
{
|
|
public:
|
|
distribution_plotter() : m_pdf(true), m_min_x(0), m_max_x(0), m_min_y(0), m_max_y(0) {}
|
|
distribution_plotter(bool pdf) : m_pdf(pdf), m_min_x(0), m_max_x(0), m_min_y(0), m_max_y(0) {}
|
|
|
|
void add(const Dist& d, const std::string& name)
|
|
{
|
|
// Add name of distribution to our list for later:
|
|
m_distributions.push_back(std::make_pair(name, d));
|
|
//
|
|
// Get the extent of the distribution from the support:
|
|
double a, b;
|
|
std::tr1::tie(a, b) = support(d);
|
|
//
|
|
// PDF maximimum is at the mode (probably):
|
|
double mod;
|
|
try
|
|
{
|
|
mod = mode(d);
|
|
}
|
|
catch(const std::domain_error& )
|
|
{ // but if not use the lower limit of support.
|
|
mod = a;
|
|
}
|
|
if((mod <= a) && !is_discrete_distribution<Dist>::value)
|
|
{ // Continuous distribution at or below lower limit of support.
|
|
double margin = 1e-2; // Margin of 1% (say) to get lowest off the 'end stop'.
|
|
if((a != 0) && (fabs(a) > margin))
|
|
{
|
|
mod = a * (1 + ((a > 0) ? margin : -margin));
|
|
}
|
|
else
|
|
{ // Case of mod near zero?
|
|
mod = margin;
|
|
}
|
|
}
|
|
double peek_y = pdf(d, mod);
|
|
double min_y = peek_y / 20;
|
|
//
|
|
// If the extent is "infinite" then find out how large it
|
|
// has to be for the PDF to decay to min_y:
|
|
//
|
|
if(a <= -(std::numeric_limits<double>::max)())
|
|
{
|
|
boost::uintmax_t max_iter = 500;
|
|
double guess = mod;
|
|
if((pdf(d, 0) > min_y) || (guess == 0))
|
|
guess = -1e-3;
|
|
a = boost::math::tools::bracket_and_solve_root(
|
|
value_finder<Dist>(d, min_y),
|
|
guess,
|
|
8.0,
|
|
true,
|
|
boost::math::tools::eps_tolerance<double>(10),
|
|
max_iter).first;
|
|
}
|
|
if(b >= (std::numeric_limits<double>::max)())
|
|
{
|
|
boost::uintmax_t max_iter = 500;
|
|
double guess = mod;
|
|
if(a <= 0)
|
|
if((pdf(d, 0) > min_y) || (guess == 0))
|
|
guess = 1e-3;
|
|
b = boost::math::tools::bracket_and_solve_root(
|
|
value_finder<Dist>(d, min_y),
|
|
guess,
|
|
8.0,
|
|
false,
|
|
boost::math::tools::eps_tolerance<double>(10),
|
|
max_iter).first;
|
|
}
|
|
//
|
|
// Recalculate peek_y and location of mod so that
|
|
// it's not too close to one end of the graph:
|
|
// otherwise we may be shooting off to infinity.
|
|
//
|
|
if(!is_discrete_distribution<Dist>::value)
|
|
{
|
|
if(mod <= a + (b-a)/50)
|
|
{
|
|
mod = a + (b-a)/50;
|
|
}
|
|
if(mod >= b - (b-a)/50)
|
|
{
|
|
mod = b - (b-a)/50;
|
|
}
|
|
peek_y = pdf(d, mod);
|
|
}
|
|
//
|
|
// Now set our limits:
|
|
//
|
|
if(peek_y > m_max_y)
|
|
m_max_y = peek_y;
|
|
if(m_max_x == m_min_x)
|
|
{
|
|
m_max_x = b;
|
|
m_min_x = a;
|
|
}
|
|
else
|
|
{
|
|
if(a < m_min_x)
|
|
m_min_x = a;
|
|
if(b > m_max_x)
|
|
m_max_x = b;
|
|
}
|
|
} // add
|
|
|
|
void plot(const std::string& title, const std::string& file)
|
|
{
|
|
using namespace boost::svg;
|
|
|
|
static const svg_color colors[5] =
|
|
{
|
|
darkblue,
|
|
darkred,
|
|
darkgreen,
|
|
darkorange,
|
|
chartreuse
|
|
};
|
|
|
|
if(m_pdf == false)
|
|
{
|
|
m_min_y = 0;
|
|
m_max_y = 1;
|
|
}
|
|
|
|
std::cout << "Plotting " << title << " to " << file << std::endl;
|
|
|
|
svg_2d_plot plot;
|
|
plot.image_x_size(750);
|
|
plot.image_y_size(400);
|
|
plot.copyright_holder("John Maddock").copyright_date("2008").boost_license_on(true);
|
|
plot.coord_precision(4); // Avoids any visible steps.
|
|
plot.title_font_size(20);
|
|
plot.legend_title_font_size(15);
|
|
plot.title(title);
|
|
if((m_distributions.size() == 1) && (m_distributions.begin()->first == ""))
|
|
plot.legend_on(false);
|
|
else
|
|
plot.legend_on(true);
|
|
plot.title_on(true);
|
|
//plot.x_major_labels_on(true).y_major_labels_on(true);
|
|
//double x_delta = (m_max_x - m_min_x) / 10;
|
|
double y_delta = (m_max_y - m_min_y) / 10;
|
|
if(is_discrete_distribution<Dist>::value)
|
|
plot.x_range(m_min_x - 0.5, m_max_x + 0.5)
|
|
.y_range(m_min_y, m_max_y + y_delta);
|
|
else
|
|
plot.x_range(m_min_x, m_max_x)
|
|
.y_range(m_min_y, m_max_y + y_delta);
|
|
plot.x_label_on(true).x_label("Random Variable");
|
|
plot.y_label_on(true).y_label("Probability");
|
|
plot.plot_border_color(lightslategray)
|
|
.background_border_color(lightslategray)
|
|
.legend_border_color(lightslategray)
|
|
.legend_background_color(white);
|
|
//
|
|
// Work out axis tick intervals:
|
|
//
|
|
double l = std::floor(std::log10((m_max_x - m_min_x) / 10) + 0.5);
|
|
double interval = std::pow(10.0, (int)l);
|
|
if(((m_max_x - m_min_x) / interval) > 10)
|
|
interval *= 5;
|
|
if(is_discrete_distribution<Dist>::value)
|
|
{
|
|
interval = interval > 1 ? std::floor(interval) : 1;
|
|
plot.x_num_minor_ticks(0);
|
|
}
|
|
plot.x_major_interval(interval);
|
|
l = std::floor(std::log10((m_max_y - m_min_y) / 10) + 0.5);
|
|
interval = std::pow(10.0, (int)l);
|
|
if(((m_max_y - m_min_y) / interval) > 10)
|
|
interval *= 5;
|
|
plot.y_major_interval(interval);
|
|
|
|
int color_index = 0;
|
|
|
|
if(!is_discrete_distribution<Dist>::value)
|
|
{
|
|
// Continuous distribution:
|
|
for(std::list<std::pair<std::string, Dist> >::const_iterator i = m_distributions.begin();
|
|
i != m_distributions.end(); ++i)
|
|
{
|
|
double x = m_min_x;
|
|
double continuous_interval = (m_max_x - m_min_x) / 200;
|
|
std::map<double, double> data;
|
|
while(x <= m_max_x)
|
|
{
|
|
data[x] = m_pdf ? pdf(i->second, x) : cdf(i->second, x);
|
|
x += continuous_interval;
|
|
}
|
|
plot.plot(data, i->first)
|
|
.line_on(true)
|
|
.line_color(colors[color_index])
|
|
.line_width(1.)
|
|
.shape(none);
|
|
|
|
//.bezier_on(true) // Bezier can't cope with badly behaved like uniform & triangular.
|
|
++color_index;
|
|
color_index = color_index % (sizeof(colors)/sizeof(colors[0]));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Discrete distribution:
|
|
double x_width = 0.75 / m_distributions.size();
|
|
double x_off = -0.5 * 0.75;
|
|
for(std::list<std::pair<std::string, Dist> >::const_iterator i = m_distributions.begin();
|
|
i != m_distributions.end(); ++i)
|
|
{
|
|
double x = ceil(m_min_x);
|
|
double discrete_interval = 1;
|
|
std::map<double, double> data;
|
|
while(x <= m_max_x)
|
|
{
|
|
double p;
|
|
try{
|
|
p = m_pdf ? pdf(i->second, x) : cdf(i->second, x);
|
|
}
|
|
catch(const std::domain_error&)
|
|
{
|
|
p = 0;
|
|
}
|
|
data[x + x_off] = 0;
|
|
data[x + x_off + 0.00001] = p;
|
|
data[x + x_off + x_width] = p;
|
|
data[x + x_off + x_width + 0.00001] = 0;
|
|
x += discrete_interval;
|
|
}
|
|
x_off += x_width;
|
|
svg_2d_plot_series& s = plot.plot(data, i->first);
|
|
s.line_on(true)
|
|
.line_color(colors[color_index])
|
|
.line_width(1.)
|
|
.shape(none)
|
|
.area_fill(colors[color_index]);
|
|
++color_index;
|
|
color_index = color_index % (sizeof(colors)/sizeof(colors[0]));
|
|
}
|
|
} // descrete
|
|
plot.write(file);
|
|
} // void plot(const std::string& title, const std::string& file)
|
|
|
|
private:
|
|
bool m_pdf;
|
|
std::list<std::pair<std::string, Dist> > m_distributions;
|
|
double m_min_x, m_max_x, m_min_y, m_max_y;
|
|
};
|
|
|
|
int main()
|
|
{
|
|
try
|
|
{
|
|
std::cout << "Distribution Graphs" << std::endl;
|
|
distribution_plotter<boost::math::gamma_distribution<> >
|
|
gamma_plotter;
|
|
gamma_plotter.add(boost::math::gamma_distribution<>(0.75), "shape = 0.75");
|
|
gamma_plotter.add(boost::math::gamma_distribution<>(1), "shape = 1");
|
|
gamma_plotter.add(boost::math::gamma_distribution<>(3), "shape = 3");
|
|
gamma_plotter.plot("Gamma Distribution PDF With Scale = 1", "gamma1_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::gamma_distribution<> >
|
|
gamma_plotter2;
|
|
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 0.5), "scale = 0.5");
|
|
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 1), "scale = 1");
|
|
gamma_plotter2.add(boost::math::gamma_distribution<>(2, 2), "scale = 2");
|
|
gamma_plotter2.plot("Gamma Distribution PDF With Shape = 2", "gamma2_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::normal>
|
|
normal_plotter;
|
|
normal_plotter.add(boost::math::normal(0, 1), "μ = 0, σ = 1");
|
|
normal_plotter.add(boost::math::normal(0, 0.5), "μ = 0, σ = 0.5");
|
|
normal_plotter.add(boost::math::normal(0, 2), "μ = 0, σ = 2");
|
|
normal_plotter.add(boost::math::normal(-1, 1), "μ = -1, σ = 1");
|
|
normal_plotter.add(boost::math::normal(1, 1), "μ = 1, σ = 1");
|
|
normal_plotter.plot("Normal Distribution PDF", "normal_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::laplace>
|
|
laplace_plotter;
|
|
laplace_plotter.add(boost::math::laplace(0, 1), "μ = 0, σ = 1");
|
|
laplace_plotter.add(boost::math::laplace(0, 0.5), "μ = 0, σ = 0.5");
|
|
laplace_plotter.add(boost::math::laplace(0, 2), "μ = 0, σ = 2");
|
|
laplace_plotter.add(boost::math::laplace(-1, 1), "μ = -1, σ = 1");
|
|
laplace_plotter.add(boost::math::laplace(1, 1), "μ = 1, σ = 1");
|
|
laplace_plotter.plot("Laplace Distribution PDF", "laplace_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::non_central_chi_squared>
|
|
nc_cs_plotter;
|
|
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 0), "v=20, λ=0");
|
|
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 1), "v=20, λ=1");
|
|
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 5), "v=20, λ=5");
|
|
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 10), "v=20, λ=10");
|
|
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 20), "v=20, λ=20");
|
|
nc_cs_plotter.add(boost::math::non_central_chi_squared(20, 100), "v=20, λ=100");
|
|
nc_cs_plotter.plot("Non Central Chi Squared PDF", "nccs_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::non_central_beta>
|
|
nc_beta_plotter;
|
|
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 0), "α=10, β=15, δ=0");
|
|
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 1), "α=10, β=15, δ=1");
|
|
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 5), "α=10, β=15, δ=5");
|
|
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 10), "α=10, β=15, δ=10");
|
|
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 40), "α=10, β=15, δ=40");
|
|
nc_beta_plotter.add(boost::math::non_central_beta(10, 15, 100), "α=10, β=15, δ=100");
|
|
nc_beta_plotter.plot("Non Central Beta PDF", "nc_beta_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::non_central_f>
|
|
nc_f_plotter;
|
|
nc_f_plotter.add(boost::math::non_central_f(10, 20, 0), "v1=10, v2=20, λ=0");
|
|
nc_f_plotter.add(boost::math::non_central_f(10, 20, 1), "v1=10, v2=20, λ=1");
|
|
nc_f_plotter.add(boost::math::non_central_f(10, 20, 5), "v1=10, v2=20, λ=5");
|
|
nc_f_plotter.add(boost::math::non_central_f(10, 20, 10), "v1=10, v2=20, λ=10");
|
|
nc_f_plotter.add(boost::math::non_central_f(10, 20, 40), "v1=10, v2=20, λ=40");
|
|
nc_f_plotter.add(boost::math::non_central_f(10, 20, 100), "v1=10, v2=20, λ=100");
|
|
nc_f_plotter.plot("Non Central F PDF", "nc_f_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::non_central_t>
|
|
nc_t_plotter;
|
|
nc_t_plotter.add(boost::math::non_central_t(10, -10), "v=10, δ=-10");
|
|
nc_t_plotter.add(boost::math::non_central_t(10, -5), "v=10, δ=-5");
|
|
nc_t_plotter.add(boost::math::non_central_t(10, 0), "v=10, δ=0");
|
|
nc_t_plotter.add(boost::math::non_central_t(10, 5), "v=10, δ=5");
|
|
nc_t_plotter.add(boost::math::non_central_t(10, 10), "v=10, δ=10");
|
|
nc_t_plotter.add(boost::math::non_central_t(std::numeric_limits<double>::infinity(), 15), "v=inf, δ=15");
|
|
nc_t_plotter.plot("Non Central T PDF", "nc_t_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::non_central_t>
|
|
nc_t_CDF_plotter(false);
|
|
nc_t_CDF_plotter.add(boost::math::non_central_t(10, -10), "v=10, δ=-10");
|
|
nc_t_CDF_plotter.add(boost::math::non_central_t(10, -5), "v=10, δ=-5");
|
|
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 0), "v=10, δ=0");
|
|
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 5), "v=10, δ=5");
|
|
nc_t_CDF_plotter.add(boost::math::non_central_t(10, 10), "v=10, δ=10");
|
|
nc_t_CDF_plotter.add(boost::math::non_central_t(std::numeric_limits<double>::infinity(), 15), "v=inf, δ=15");
|
|
nc_t_CDF_plotter.plot("Non Central T CDF", "nc_t_cdf.svg");
|
|
|
|
distribution_plotter<boost::math::beta_distribution<> >
|
|
beta_plotter;
|
|
beta_plotter.add(boost::math::beta_distribution<>(0.5, 0.5), "alpha=0.5, beta=0.5");
|
|
beta_plotter.add(boost::math::beta_distribution<>(5, 1), "alpha=5, beta=1");
|
|
beta_plotter.add(boost::math::beta_distribution<>(1, 3), "alpha=1, beta=3");
|
|
beta_plotter.add(boost::math::beta_distribution<>(2, 2), "alpha=2, beta=2");
|
|
beta_plotter.add(boost::math::beta_distribution<>(2, 5), "alpha=2, beta=5");
|
|
beta_plotter.plot("Beta Distribution PDF", "beta_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::cauchy_distribution<> >
|
|
cauchy_plotter;
|
|
cauchy_plotter.add(boost::math::cauchy_distribution<>(-5, 1), "location = -5");
|
|
cauchy_plotter.add(boost::math::cauchy_distribution<>(0, 1), "location = 0");
|
|
cauchy_plotter.add(boost::math::cauchy_distribution<>(5, 1), "location = 5");
|
|
cauchy_plotter.plot("Cauchy Distribution PDF (scale = 1)", "cauchy_pdf1.svg");
|
|
|
|
distribution_plotter<boost::math::cauchy_distribution<> >
|
|
cauchy_plotter2;
|
|
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 0.5), "scale = 0.5");
|
|
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 1), "scale = 1");
|
|
cauchy_plotter2.add(boost::math::cauchy_distribution<>(0, 2), "scale = 2");
|
|
cauchy_plotter2.plot("Cauchy Distribution PDF (location = 0)", "cauchy_pdf2.svg");
|
|
|
|
distribution_plotter<boost::math::chi_squared_distribution<> >
|
|
chi_squared_plotter;
|
|
//chi_squared_plotter.add(boost::math::chi_squared_distribution<>(1), "v=1");
|
|
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(2), "v=2");
|
|
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(5), "v=5");
|
|
chi_squared_plotter.add(boost::math::chi_squared_distribution<>(10), "v=10");
|
|
chi_squared_plotter.plot("Chi Squared Distribution PDF", "chi_squared_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::exponential_distribution<> >
|
|
exponential_plotter;
|
|
exponential_plotter.add(boost::math::exponential_distribution<>(0.5), "λ=0.5");
|
|
exponential_plotter.add(boost::math::exponential_distribution<>(1), "λ=1");
|
|
exponential_plotter.add(boost::math::exponential_distribution<>(2), "λ=2");
|
|
exponential_plotter.plot("Exponential Distribution PDF", "exponential_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::extreme_value_distribution<> >
|
|
extreme_value_plotter;
|
|
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(-5), "location=-5");
|
|
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(0), "location=0");
|
|
extreme_value_plotter.add(boost::math::extreme_value_distribution<>(5), "location=5");
|
|
extreme_value_plotter.plot("Extreme Value Distribution PDF (shape=1)", "extreme_value_pdf1.svg");
|
|
|
|
distribution_plotter<boost::math::extreme_value_distribution<> >
|
|
extreme_value_plotter2;
|
|
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 0.5), "shape=0.5");
|
|
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 1), "shape=1");
|
|
extreme_value_plotter2.add(boost::math::extreme_value_distribution<>(0, 2), "shape=2");
|
|
extreme_value_plotter2.plot("Extreme Value Distribution PDF (location=0)", "extreme_value_pdf2.svg");
|
|
|
|
distribution_plotter<boost::math::fisher_f_distribution<> >
|
|
fisher_f_plotter;
|
|
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(4, 4), "n=4, m=4");
|
|
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(10, 4), "n=10, m=4");
|
|
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(10, 10), "n=10, m=10");
|
|
fisher_f_plotter.add(boost::math::fisher_f_distribution<>(4, 10), "n=4, m=10");
|
|
fisher_f_plotter.plot("F Distribution PDF", "fisher_f_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::lognormal_distribution<> >
|
|
lognormal_plotter;
|
|
lognormal_plotter.add(boost::math::lognormal_distribution<>(-1), "location=-1");
|
|
lognormal_plotter.add(boost::math::lognormal_distribution<>(0), "location=0");
|
|
lognormal_plotter.add(boost::math::lognormal_distribution<>(1), "location=1");
|
|
lognormal_plotter.plot("Lognormal Distribution PDF (scale=1)", "lognormal_pdf1.svg");
|
|
|
|
distribution_plotter<boost::math::lognormal_distribution<> >
|
|
lognormal_plotter2;
|
|
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 0.5), "scale=0.5");
|
|
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 1), "scale=1");
|
|
lognormal_plotter2.add(boost::math::lognormal_distribution<>(0, 2), "scale=2");
|
|
lognormal_plotter2.plot("Lognormal Distribution PDF (location=0)", "lognormal_pdf2.svg");
|
|
|
|
distribution_plotter<boost::math::pareto_distribution<> >
|
|
pareto_plotter; // Rely on 2nd parameter shape = 1 default.
|
|
pareto_plotter.add(boost::math::pareto_distribution<>(1), "scale=1");
|
|
pareto_plotter.add(boost::math::pareto_distribution<>(2), "scale=2");
|
|
pareto_plotter.add(boost::math::pareto_distribution<>(3), "scale=3");
|
|
pareto_plotter.plot("Pareto Distribution PDF (shape=1)", "pareto_pdf1.svg");
|
|
|
|
distribution_plotter<boost::math::pareto_distribution<> >
|
|
pareto_plotter2;
|
|
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 0.5), "shape=0.5");
|
|
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 1), "shape=1");
|
|
pareto_plotter2.add(boost::math::pareto_distribution<>(1, 2), "shape=2");
|
|
pareto_plotter2.plot("Pareto Distribution PDF (scale=1)", "pareto_pdf2.svg");
|
|
|
|
distribution_plotter<boost::math::rayleigh_distribution<> >
|
|
rayleigh_plotter;
|
|
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(0.5), "σ=0.5");
|
|
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(1), "σ=1");
|
|
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(2), "σ=2");
|
|
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(4), "σ=4");
|
|
rayleigh_plotter.add(boost::math::rayleigh_distribution<>(10), "σ=10");
|
|
rayleigh_plotter.plot("Rayleigh Distribution PDF", "rayleigh_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::rayleigh_distribution<> >
|
|
rayleigh_cdf_plotter(false);
|
|
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(0.5), "σ=0.5");
|
|
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(1), "σ=1");
|
|
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(2), "σ=2");
|
|
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(4), "σ=4");
|
|
rayleigh_cdf_plotter.add(boost::math::rayleigh_distribution<>(10), "σ=10");
|
|
rayleigh_cdf_plotter.plot("Rayleigh Distribution CDF", "rayleigh_cdf.svg");
|
|
|
|
distribution_plotter<boost::math::skew_normal_distribution<> >
|
|
skew_normal_plotter;
|
|
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,0), "{0,1,0}");
|
|
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,1), "{0,1,1}");
|
|
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,4), "{0,1,4}");
|
|
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,20), "{0,1,20}");
|
|
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(0,1,-2), "{0,1,-2}");
|
|
skew_normal_plotter.add(boost::math::skew_normal_distribution<>(-2,0.5,-1), "{-2,0.5,-1}");
|
|
skew_normal_plotter.plot("Skew Normal Distribution PDF", "skew_normal_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::skew_normal_distribution<> >
|
|
skew_normal_cdf_plotter(false);
|
|
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,0), "{0,1,0}");
|
|
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,1), "{0,1,1}");
|
|
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,4), "{0,1,4}");
|
|
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,20), "{0,1,20}");
|
|
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(0,1,-2), "{0,1,-2}");
|
|
skew_normal_cdf_plotter.add(boost::math::skew_normal_distribution<>(-2,0.5,-1), "{-2,0.5,-1}");
|
|
skew_normal_cdf_plotter.plot("Skew Normal Distribution CDF", "skew_normal_cdf.svg");
|
|
|
|
distribution_plotter<boost::math::triangular_distribution<> >
|
|
triangular_plotter;
|
|
triangular_plotter.add(boost::math::triangular_distribution<>(-1,0,1), "{-1,0,1}");
|
|
triangular_plotter.add(boost::math::triangular_distribution<>(0,1,1), "{0,1,1}");
|
|
triangular_plotter.add(boost::math::triangular_distribution<>(0,1,3), "{0,1,3}");
|
|
triangular_plotter.add(boost::math::triangular_distribution<>(0,0.5,1), "{0,0.5,1}");
|
|
triangular_plotter.add(boost::math::triangular_distribution<>(-2,0,3), "{-2,0,3}");
|
|
triangular_plotter.plot("Triangular Distribution PDF", "triangular_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::triangular_distribution<> >
|
|
triangular_cdf_plotter(false);
|
|
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(-1,0,1), "{-1,0,1}");
|
|
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,1,1), "{0,1,1}");
|
|
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,1,3), "{0,1,3}");
|
|
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(0,0.5,1), "{0,0.5,1}");
|
|
triangular_cdf_plotter.add(boost::math::triangular_distribution<>(-2,0,3), "{-2,0,3}");
|
|
triangular_cdf_plotter.plot("Triangular Distribution CDF", "triangular_cdf.svg");
|
|
|
|
distribution_plotter<boost::math::students_t_distribution<> >
|
|
students_t_plotter;
|
|
students_t_plotter.add(boost::math::students_t_distribution<>(1), "v=1");
|
|
students_t_plotter.add(boost::math::students_t_distribution<>(5), "v=5");
|
|
students_t_plotter.add(boost::math::students_t_distribution<>(30), "v=30");
|
|
students_t_plotter.plot("Students T Distribution PDF", "students_t_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::weibull_distribution<> >
|
|
weibull_plotter;
|
|
weibull_plotter.add(boost::math::weibull_distribution<>(0.75), "shape=0.75");
|
|
weibull_plotter.add(boost::math::weibull_distribution<>(1), "shape=1");
|
|
weibull_plotter.add(boost::math::weibull_distribution<>(5), "shape=5");
|
|
weibull_plotter.add(boost::math::weibull_distribution<>(10), "shape=10");
|
|
weibull_plotter.plot("Weibull Distribution PDF (scale=1)", "weibull_pdf1.svg");
|
|
|
|
distribution_plotter<boost::math::weibull_distribution<> >
|
|
weibull_plotter2;
|
|
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 0.5), "scale=0.5");
|
|
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 1), "scale=1");
|
|
weibull_plotter2.add(boost::math::weibull_distribution<>(3, 2), "scale=2");
|
|
weibull_plotter2.plot("Weibull Distribution PDF (shape=3)", "weibull_pdf2.svg");
|
|
|
|
distribution_plotter<boost::math::uniform_distribution<> >
|
|
uniform_plotter;
|
|
uniform_plotter.add(boost::math::uniform_distribution<>(0, 1), "{0,1}");
|
|
uniform_plotter.add(boost::math::uniform_distribution<>(0, 3), "{0,3}");
|
|
uniform_plotter.add(boost::math::uniform_distribution<>(-2, 3), "{-2,3}");
|
|
uniform_plotter.add(boost::math::uniform_distribution<>(-1, 1), "{-1,1}");
|
|
uniform_plotter.plot("Uniform Distribution PDF", "uniform_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::uniform_distribution<> >
|
|
uniform_cdf_plotter(false);
|
|
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(0, 1), "{0,1}");
|
|
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(0, 3), "{0,3}");
|
|
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(-2, 3), "{-2,3}");
|
|
uniform_cdf_plotter.add(boost::math::uniform_distribution<>(-1, 1), "{-1,1}");
|
|
uniform_cdf_plotter.plot("Uniform Distribution CDF", "uniform_cdf.svg");
|
|
|
|
distribution_plotter<boost::math::bernoulli_distribution<> >
|
|
bernoulli_plotter;
|
|
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.25), "p=0.25");
|
|
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.5), "p=0.5");
|
|
bernoulli_plotter.add(boost::math::bernoulli_distribution<>(0.75), "p=0.75");
|
|
bernoulli_plotter.plot("Bernoulli Distribution PDF", "bernoulli_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::bernoulli_distribution<> >
|
|
bernoulli_cdf_plotter(false);
|
|
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.25), "p=0.25");
|
|
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.5), "p=0.5");
|
|
bernoulli_cdf_plotter.add(boost::math::bernoulli_distribution<>(0.75), "p=0.75");
|
|
bernoulli_cdf_plotter.plot("Bernoulli Distribution CDF", "bernoulli_cdf.svg");
|
|
|
|
distribution_plotter<boost::math::binomial_distribution<> >
|
|
binomial_plotter;
|
|
binomial_plotter.add(boost::math::binomial_distribution<>(5, 0.5), "n=5 p=0.5");
|
|
binomial_plotter.add(boost::math::binomial_distribution<>(20, 0.5), "n=20 p=0.5");
|
|
binomial_plotter.add(boost::math::binomial_distribution<>(50, 0.5), "n=50 p=0.5");
|
|
binomial_plotter.plot("Binomial Distribution PDF", "binomial_pdf_1.svg");
|
|
|
|
distribution_plotter<boost::math::binomial_distribution<> >
|
|
binomial_plotter2;
|
|
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.1), "n=20 p=0.1");
|
|
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.5), "n=20 p=0.5");
|
|
binomial_plotter2.add(boost::math::binomial_distribution<>(20, 0.9), "n=20 p=0.9");
|
|
binomial_plotter2.plot("Binomial Distribution PDF", "binomial_pdf_2.svg");
|
|
|
|
distribution_plotter<boost::math::negative_binomial_distribution<> >
|
|
negative_binomial_plotter;
|
|
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.25), "n=20 p=0.25");
|
|
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.5), "n=20 p=0.5");
|
|
negative_binomial_plotter.add(boost::math::negative_binomial_distribution<>(20, 0.75), "n=20 p=0.75");
|
|
negative_binomial_plotter.plot("Negative Binomial Distribution PDF", "negative_binomial_pdf_1.svg");
|
|
|
|
distribution_plotter<boost::math::negative_binomial_distribution<> >
|
|
negative_binomial_plotter2;
|
|
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(10, 0.5), "n=10 p=0.5");
|
|
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(20, 0.5), "n=20 p=0.5");
|
|
negative_binomial_plotter2.add(boost::math::negative_binomial_distribution<>(70, 0.5), "n=70 p=0.5");
|
|
negative_binomial_plotter2.plot("Negative Binomial Distribution PDF", "negative_binomial_pdf_2.svg");
|
|
|
|
distribution_plotter<boost::math::poisson_distribution<> >
|
|
poisson_plotter;
|
|
poisson_plotter.add(boost::math::poisson_distribution<>(5), "λ=5");
|
|
poisson_plotter.add(boost::math::poisson_distribution<>(10), "λ=10");
|
|
poisson_plotter.add(boost::math::poisson_distribution<>(20), "λ=20");
|
|
poisson_plotter.plot("Poisson Distribution PDF", "poisson_pdf_1.svg");
|
|
|
|
distribution_plotter<boost::math::hypergeometric_distribution<> >
|
|
hypergeometric_plotter;
|
|
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 50, 500), "N=500, r=50, n=30");
|
|
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 100, 500), "N=500, r=100, n=30");
|
|
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 250, 500), "N=500, r=250, n=30");
|
|
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 400, 500), "N=500, r=400, n=30");
|
|
hypergeometric_plotter.add(boost::math::hypergeometric_distribution<>(30, 450, 500), "N=500, r=450, n=30");
|
|
hypergeometric_plotter.plot("Hypergeometric Distribution PDF", "hypergeometric_pdf_1.svg");
|
|
|
|
distribution_plotter<boost::math::hypergeometric_distribution<> >
|
|
hypergeometric_plotter2;
|
|
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(50, 50, 500), "N=500, r=50, n=50");
|
|
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(100, 50, 500), "N=500, r=50, n=100");
|
|
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(250, 50, 500), "N=500, r=50, n=250");
|
|
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(400, 50, 500), "N=500, r=50, n=400");
|
|
hypergeometric_plotter2.add(boost::math::hypergeometric_distribution<>(450, 50, 500), "N=500, r=50, n=450");
|
|
hypergeometric_plotter2.plot("Hypergeometric Distribution PDF", "hypergeometric_pdf_2.svg");
|
|
|
|
}
|
|
catch (std::exception ex)
|
|
{
|
|
std::cout << ex.what() << std::endl;
|
|
}
|
|
|
|
|
|
|
|
/* these graphs for hyperexponential distribution not used.
|
|
|
|
distribution_plotter<boost::math::hyperexponential_distribution<> >
|
|
hyperexponential_plotter;
|
|
{
|
|
const double probs1_1[] = {1.0};
|
|
const double rates1_1[] = {1.0};
|
|
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs1_1,rates1_1), "α=(1.0), λ=(1.0)");
|
|
const double probs2_1[] = {0.1,0.9};
|
|
const double rates2_1[] = {0.5,1.5};
|
|
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs2_1,rates2_1), "α=(0.1,0.9), λ=(0.5,1.5)");
|
|
const double probs2_2[] = {0.9,0.1};
|
|
const double rates2_2[] = {0.5,1.5};
|
|
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs2_2,rates2_2), "α=(0.9,0.1), λ=(0.5,1.5)");
|
|
const double probs3_1[] = {0.2,0.3,0.5};
|
|
const double rates3_1[] = {0.5,1.0,1.5};
|
|
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs3_1,rates3_1), "α=(0.2,0.3,0.5), λ=(0.5,1.0,1.5)");
|
|
const double probs3_2[] = {0.5,0.3,0.2};
|
|
const double rates3_2[] = {0.5,1.0,1.5};
|
|
hyperexponential_plotter.add(boost::math::hyperexponential_distribution<>(probs3_1,rates3_1), "α=(0.5,0.3,0.2), λ=(0.5,1.0,1.5)");
|
|
}
|
|
hyperexponential_plotter.plot("Hyperexponential Distribution PDF", "hyperexponential_pdf.svg");
|
|
|
|
distribution_plotter<boost::math::hyperexponential_distribution<> >
|
|
hyperexponential_plotter2;
|
|
{
|
|
const double rates[] = {0.5,1.5};
|
|
const double probs1[] = {0.1,0.9};
|
|
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs1,rates), "α=(0.1,0.9), λ=(0.5,1.5)");
|
|
const double probs2[] = {0.6,0.4};
|
|
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs2,rates), "α=(0.6,0.4), λ=(0.5,1.5)");
|
|
const double probs3[] = {0.9,0.1};
|
|
hyperexponential_plotter2.add(boost::math::hyperexponential_distribution<>(probs3,rates), "α=(0.9,0.1), λ=(0.5,1.5)");
|
|
}
|
|
hyperexponential_plotter2.plot("Hyperexponential Distribution PDF (Different Probabilities, Same Rates)", "hyperexponential_pdf_samerate.svg");
|
|
|
|
distribution_plotter<boost::math::hyperexponential_distribution<> >
|
|
hyperexponential_plotter3;
|
|
{
|
|
const double probs1[] = {1.0};
|
|
const double rates1[] = {2.0};
|
|
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs1,rates1), "α=(1.0), λ=(2.0)");
|
|
const double probs2[] = {0.5,0.5};
|
|
const double rates2[] = {0.3,1.5};
|
|
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs2,rates2), "α=(0.5,0.5), λ=(0.3,1.5)");
|
|
const double probs3[] = {1.0/3.0,1.0/3.0,1.0/3.0};
|
|
const double rates3[] = {0.2,1.5,3.0};
|
|
hyperexponential_plotter3.add(boost::math::hyperexponential_distribution<>(probs2,rates2), "α=(1.0/3.0,1.0/3.0,1.0/3.0), λ=(0.2,1.5,3.0)");
|
|
}
|
|
hyperexponential_plotter3.plot("Hyperexponential Distribution PDF (Different Number of Phases, Same Mean)", "hyperexponential_pdf_samemean.svg");
|
|
*/
|
|
|
|
} // int main()
|