72e469da0a
[CI SKIP]
129 lines
7.1 KiB
HTML
129 lines
7.1 KiB
HTML
<html>
|
|
<head>
|
|
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
|
|
<title>Examples Where Root Finding Goes Wrong</title>
|
|
<link rel="stylesheet" href="../math.css" type="text/css">
|
|
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
|
|
<link rel="home" href="../index.html" title="Math Toolkit 2.11.0">
|
|
<link rel="up" href="../root_finding.html" title="Chapter 10. Root Finding & Minimization Algorithms">
|
|
<link rel="prev" href="bad_guess.html" title="The Effect of a Poor Initial Guess">
|
|
<link rel="next" href="brent_minima.html" title="Locating Function Minima using Brent's algorithm">
|
|
</head>
|
|
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
|
|
<table cellpadding="2" width="100%"><tr>
|
|
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
|
|
<td align="center"><a href="../../../../../index.html">Home</a></td>
|
|
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
|
|
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
|
|
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="bad_guess.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../root_finding.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="brent_minima.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
<div class="section">
|
|
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
|
|
<a name="math_toolkit.bad_roots"></a><a class="link" href="bad_roots.html" title="Examples Where Root Finding Goes Wrong">Examples Where Root Finding Goes
|
|
Wrong</a>
|
|
</h2></div></div></div>
|
|
<p>
|
|
There are many reasons why root root finding can fail, here are just a few
|
|
of the more common examples:
|
|
</p>
|
|
<h4>
|
|
<a name="math_toolkit.bad_roots.h0"></a>
|
|
<span class="phrase"><a name="math_toolkit.bad_roots.local_minima"></a></span><a class="link" href="bad_roots.html#math_toolkit.bad_roots.local_minima">Local
|
|
Minima</a>
|
|
</h4>
|
|
<p>
|
|
If you start in the wrong place, such as z<sub>0</sub> here:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../roots/bad_root_1.svg" width="372" height="262"></object></span>
|
|
</p>
|
|
<p>
|
|
Then almost any root-finding algorithm will descend into a local minima rather
|
|
than find the root.
|
|
</p>
|
|
<h4>
|
|
<a name="math_toolkit.bad_roots.h1"></a>
|
|
<span class="phrase"><a name="math_toolkit.bad_roots.flatlining"></a></span><a class="link" href="bad_roots.html#math_toolkit.bad_roots.flatlining">Flatlining</a>
|
|
</h4>
|
|
<p>
|
|
In this example, we're starting from a location (z<sub>0</sub>) where the first derivative
|
|
is essentially zero:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../roots/bad_root_2.svg" width="372" height="262"></object></span>
|
|
</p>
|
|
<p>
|
|
In this situation the next iteration will shoot off to infinity (assuming we're
|
|
using derivatives that is). Our code guards against this by insisting that
|
|
the root is always bracketed, and then never stepping outside those bounds.
|
|
In a case like this, no root finding algorithm can do better than bisecting
|
|
until the root is found.
|
|
</p>
|
|
<p>
|
|
Note that there is no scale on the graph, we have seen examples of this situation
|
|
occur in practice <span class="emphasis"><em>even when several decimal places of the initial
|
|
guess z<sub>0</sub> are correct.</em></span>
|
|
</p>
|
|
<p>
|
|
This is really a special case of a more common situation where root finding
|
|
with derivatives is <span class="emphasis"><em>divergent</em></span>. Consider starting at z<sub>0</sub> in
|
|
this case:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../roots/bad_root_4.svg" width="372" height="262"></object></span>
|
|
</p>
|
|
<p>
|
|
An initial Newton step would take you further from the root than you started,
|
|
as will all subsequent steps.
|
|
</p>
|
|
<h4>
|
|
<a name="math_toolkit.bad_roots.h2"></a>
|
|
<span class="phrase"><a name="math_toolkit.bad_roots.micro_stepping_non_convergence"></a></span><a class="link" href="bad_roots.html#math_toolkit.bad_roots.micro_stepping_non_convergence">Micro-stepping
|
|
/ Non-convergence</a>
|
|
</h4>
|
|
<p>
|
|
Consider starting at z<sub>0</sub> in this situation:
|
|
</p>
|
|
<p>
|
|
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../roots/bad_root_3.svg" width="372" height="262"></object></span>
|
|
</p>
|
|
<p>
|
|
The first derivative is essentially infinite, and the second close to zero
|
|
(and so offers no correction if we use it), as a result we take a very small
|
|
first step. In the worst case situation, the first step is so small - perhaps
|
|
even so small that subtracting from z<sub>0</sub> has no effect at the current working
|
|
precision - that our algorithm will assume we are at the root already and terminate.
|
|
Otherwise we will take lot's of very small steps which never converge on the
|
|
root: our algorithms will protect against that by reverting to bisection.
|
|
</p>
|
|
<p>
|
|
An example of this situation would be trying to find the root of e<sup>-1/z<sup>2</sup></sup> - this
|
|
function has a single root at <span class="emphasis"><em>z = 0</em></span>, but for <span class="emphasis"><em>z<sub>0</sub> <
|
|
0</em></span> neither Newton nor Halley steps will ever converge on the root,
|
|
and for <span class="emphasis"><em>z<sub>0</sub> > 0</em></span> the steps are actually divergent.
|
|
</p>
|
|
</div>
|
|
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
|
|
<td align="left"></td>
|
|
<td align="right"><div class="copyright-footer">Copyright © 2006-2019 Nikhar
|
|
Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
|
|
Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
|
|
Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
|
|
Daryle Walker and Xiaogang Zhang<p>
|
|
Distributed under the Boost Software License, Version 1.0. (See accompanying
|
|
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
|
|
</p>
|
|
</div></td>
|
|
</tr></table>
|
|
<hr>
|
|
<div class="spirit-nav">
|
|
<a accesskey="p" href="bad_guess.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../root_finding.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="brent_minima.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
|
|
</div>
|
|
</body>
|
|
</html>
|